import gradio as gr import torch import random import transformers from transformers import T5Tokenizer, T5ForConditionalGeneration if torch.cuda.is_available(): device = "cuda" print("Using GPU") else: device = "cpu" print("Using CPU") tokenizer = T5Tokenizer.from_pretrained("roborovski/superprompt-v1") model = T5ForConditionalGeneration.from_pretrained("roborovski/superprompt-v1", device_map="auto", torch_dtype="auto") model.to(device) def generate(your_prompt, task_prefix, max_new_tokens, repetition_penalty, temperature, model_precision_type, top_p, top_k, seed): if seed == 0: seed = random.randint(1, 2**32-1) transformers.set_seed(seed) if model_precision_type == "fp16": dtype = torch.float16 elif model_precision_type == "fp32": dtype = torch.float32 model.to(dtype) repetition_penalty = float(repetition_penalty) input_text = f"{task_prefix}: {your_prompt}" input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(device) outputs = model.generate( input_ids, max_new_tokens=max_new_tokens, repetition_penalty=repetition_penalty, do_sample=True, temperature=temperature, top_p=top_p, top_k=top_k, ) better_prompt = tokenizer.decode(outputs[0], skip_special_tokens=True) return better_prompt your_prompt = gr.Textbox(label="Your Prompt", info="Your Prompt that you wanna make better") task_prefix = gr.Textbox(label="Task Prefix", info="The prompt prefix for how the AI should make yours better",value="Expand the following prompt to add more detail") max_new_tokens = gr.Slider(value=512, minimum=25, maximum=512, step=1, label="Max New Tokens", info="The maximum numbers of new tokens, controls how long is the output") repetition_penalty = gr.Slider(value=1.2, minimum=0, maximum=2.0, step=0.05, label="Repetition Penalty", info="Penalize repeated tokens, making the AI repeat less itself") temperature = gr.Slider(value=0.7, minimum=0, maximum=1, step=0.05, label="Temperature", info="Higher values produce more diverse outputs") model_precision_type = gr.Dropdown(["fp16", "fp32"], value="fp16", label="Model Precision Type", info="The precision type to load the model, like fp16 which is faster, or fp32 which is more precise but more resource consuming") top_p = gr.Slider(value=1, minimum=0, maximum=2, step=0.05, label="Top P", info="Higher values sample more low-probability tokens") top_k = gr.Slider(value=50, minimum=1, maximum=100, step=1, label="Top K", info="Higher k means more diverse outputs by considering a range of tokens") seed = gr.Slider(value=42, minimum=0, maximum=2**32-1, step=1, label="Seed", info="A starting point to initiate the generation process, put 0 for a random one") examples = [ ["A storefront with 'Text to Image' written on it.", "Expand the following prompt to add more detail", 512, 1.2, 0.5, "fp16", 1, 50, 42] ] gr.Interface( fn=generate, inputs=[your_prompt, task_prefix, max_new_tokens, repetition_penalty, temperature, model_precision_type, top_p, top_k, seed], outputs=gr.Textbox(label="Better Prompt"), title="SuperPrompt-v1", description='Make your prompts more detailed!
Github Repository & Model used
Model Blog
Hugging Face Space made by [Nick088](https://linktr.ee/Nick088)', examples=examples, ).launch(share=True)