AdminDashboard / app.py
AkashMnd's picture
Create app.py
119e4cc verified
import os
import json
import requests
import gradio as gr
import threading
import time
import PyPDF2
import chromadb
import shutil
from pydantic import BaseModel, Field
from typing import Dict
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_huggingface import HuggingFaceEmbeddings
API_KEY = os.getenv("mistral")
BASE_URL = "https://api.together.xyz"
# Store user inputs
user_inputs = {
"organization": "",
"rules_l1": "",
"rules_l2": "",
"rules_l3": "",
}
# Function to classify query
def classify_query(query: str) -> Dict:
if not all(user_inputs.values()):
raise ValueError("Please fill all input fields first.")
messages = [
{"role": "system", "content": f"""You are a Customer Query Classification Agent for {user_inputs["organization"]}.
What is considered Level 1 Query (Requires no account info just provided documents by the admin is enough to answer):
{user_inputs["rules_l1"]}
What is considered Level 2 Query (Requires account info and provided documents by the admin is enough to answer):
{user_inputs["rules_l2"]}
What is considered as Level 3 Query (Immediate Escalation to Human Customer Service Agents):
{user_inputs["rules_l3"]}
Classify the following customer query and provide the output in JSON format:
```json
{{
"title": "title of the query in under 10 words",
"level": "1 or 2 or 3"
}}
```"""},
{"role": "user", "content": query}
]
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {API_KEY}"
}
data = {
"model": "mistralai/Mixtral-8x7B-Instruct-v0.1",
"messages": messages,
"temperature": 0.7,
"response_format": {
"type": "json_object",
"schema": {
"type": "object",
"properties": {
"title": {"type": "string"},
"level": {"type": "integer"}
},
"required": ["title", "level"]
}
}
}
response = requests.post(f"{BASE_URL}/chat/completions", headers=headers, json=data)
response.raise_for_status()
classification_result = response.json().get('choices')[0].get('message').get('content')
return classification_result
# Function to convert PDF to text
def pdf_to_text(file_path):
pdf_file = open(file_path, 'rb')
pdf_reader = PyPDF2.PdfReader(pdf_file)
text = ""
for page_num in range(len(pdf_reader.pages)):
text += pdf_reader.pages[page_num].extract_text()
pdf_file.close()
return text
# Function to handle file upload and save embeddings to ChromaDB
def handle_file_upload(files, collection_name):
if not collection_name:
return "Please provide a collection name."
os.makedirs('chabot_pdfs', exist_ok=True)
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
embeddings = HuggingFaceEmbeddings(model_name="thenlper/gte-small")
# Initialize Chroma DB client
client = chromadb.PersistentClient(path="./db")
try:
collection = client.create_collection(name=collection_name)
except ValueError as e:
return f"Error creating collection: {str(e)}. Please try a different collection name."
for file in files:
file_name = os.path.basename(file.name)
file_path = os.path.join('chabot_pdfs', file_name)
shutil.copy(file.name, file_path) # Copy the file instead of saving
text = pdf_to_text(file_path)
chunks = text_splitter.split_text(text)
documents_list = []
embeddings_list = []
ids_list = []
for i, chunk in enumerate(chunks):
vector = embeddings.embed_query(chunk)
documents_list.append(chunk)
embeddings_list.append(vector)
ids_list.append(f"{file_name}_{i}")
collection.add(
embeddings=embeddings_list,
documents=documents_list,
ids=ids_list
)
return "Files uploaded and processed successfully."
# Function to search vector database
def search_vector_database(query, collection_name):
if not collection_name:
return "Please provide a collection name."
embeddings = HuggingFaceEmbeddings(model_name="thenlper/gte-small")
client = chromadb.PersistentClient(path="./db")
try:
collection = client.get_collection(name=collection_name)
except ValueError as e:
return f"Error accessing collection: {str(e)}. Make sure the collection name is correct."
query_vector = embeddings.embed_query(query)
results = collection.query(query_embeddings=[query_vector], n_results=2, include=["documents"])
return "\n\n".join("\n".join(result) for result in results["documents"])
# New function to handle login
def handle_login(username, password):
# This is a simple example. In a real application, you'd want to use secure authentication methods.
if username == "admin" and password == "password":
return """
"NeoBank": {
"user_id": "NB782940",
"user_name": "john_doe123",
"full_name": "John Doe",
"email": "[email protected]",
"balance": 2875.43,
"transactions": [
{"date": "2024-06-20", "description": "Coffee Shop", "amount": -4.50},
{"date": "2024-06-19", "description": "Grocery Store", "amount": -85.22},
{"date": "2024-06-18", "description": "Salary Deposit", "amount": 2500.00}
]
},
"CryptoInvest": {
"user_id": "CI549217",
"user_name": "crypto_enthusiast",
"full_name": "Alice Johnson",
"email": "[email protected]",
"portfolio": {
"BTC": {"amount": 0.025, "value": 7500.00},
"ETH": {"amount": 1.2, "value": 2100.00},
"SOL": {"amount": 5.8, "value": 450.50}
},
"transactions": [
{"date": "2024-06-22", "description": "Bought ETH", "amount": -500.00},
{"date": "2024-06-20", "description": "Sold BTC", "amount": 1200.00}
]
},
"RoboAdvisor": {
"user_id": "RA385712",
"user_name": "jane_smith",
"full_name": "Jane Smith",
"email": "[email protected]",
"risk_tolerance": "moderate",
"portfolio_value": 15800.75,
"allocations": {
"stocks": 0.60,
"bonds": 0.30,
"real_estate": 0.10
},
"recent_activity": [
{"date": "2024-06-21", "description": "Dividends received", "amount": 32.50},
{"date": "2024-06-15", "description": "Portfolio rebalanced" }
]
},
"PeerLend": {
"user_id": "PL916350",
"user_name": "bob_williams",
"full_name": "Bob Williams",
"email": "[email protected]",
"account_type": "borrower",
"loan_amount": 5000.00,
"interest_rate": 7.8,
"monthly_payment": 150.30,
"payment_history": [
{"date": "2024-06-22", "status": "paid"},
{"date": "2024-05-22", "status": "paid"},
{"date": "2024-04-22", "status": "paid"}
]
},
"InsureTech": {
"user_id": "IT264805",
"user_name": "eva_brown4",
"full_name": "Eva Brown",
"email": "[email protected]",
"policy_type": "auto",
"coverage_details": {
"liability": "50/100/50",
"collision": "500 deductible",
"comprehensive": "100 deductible"
},
"premium": 85.50,
"next_payment": "2024-07-10",
"claims": []
}
"""
else:
return "Invalid username or password"
# Gradio interface
def gradio_interface():
with gr.Blocks(theme='gl198976/The-Rounded') as interface:
gr.Markdown("# Admin Dashboard🧖🏻‍♀️")
with gr.Tab("Query Classifier Agent"):
with gr.Row():
with gr.Column():
organization_input = gr.Textbox(label="Organization Name")
rules_l1_input = gr.Textbox(label="Rules for Level 1 Query", lines=5)
rules_l2_input = gr.Textbox(label="Rules for Level 2 Query", lines=5)
rules_l3_input = gr.Textbox(label="Rules for Level 3 Query", lines=5)
submit_btn = gr.Button("Submit Rules")
with gr.Column():
query_input = gr.Textbox(label="Customer Query")
classification_output = gr.Textbox(label="Classification Result")
classify_btn = gr.Button("Classify Query")
api_details = gr.Markdown("""
### API Endpoint Details
- **URL:** `http://0.0.0.0:7860/classify`
- **Method:** POST
- **Request Body:** JSON with a single key `query`
- **Example Usage:**
```python
from gradio_client import Client
client = Client("http://0.0.0.0:7860/")
result = client.predict(
"Hello!!", # str in 'Customer Query' Textbox component
api_name="/classify_and_display"
)
print(result)
```
""")
submit_btn.click(lambda org, r1, r2, r3: (
setattr(user_inputs, "organization", org),
setattr(user_inputs, "rules_l1", r1),
setattr(user_inputs, "rules_l2", r2),
setattr(user_inputs, "rules_l3", r3)
), inputs=[organization_input, rules_l1_input, rules_l2_input, rules_l3_input])
classify_btn.click(classify_query, inputs=[query_input], outputs=[classification_output])
with gr.Tab("Organization Documentation Agent"):
gr.Markdown("""
### Warning
If you encounter an error when uploading files, try changing the collection name and upload again.
Each collection name must be unique.
""")
with gr.Row():
with gr.Column():
collection_name_input = gr.Textbox(label="Collection Name", placeholder="Enter a unique name for this collection")
file_upload = gr.Files(file_types=[".pdf"], label="Upload PDFs")
upload_btn = gr.Button("Upload and Process Files")
upload_status = gr.Textbox(label="Upload Status", interactive=False)
with gr.Column():
search_query_input = gr.Textbox(label="Search Query")
search_output = gr.Textbox(label="Search Results", lines=10)
search_btn = gr.Button("Search")
api_details = gr.Markdown("""
### API Endpoint Details
- **URL:** `http://0.0.0.0:7860/search_vector_database`
- **Method:** POST
- **Example Usage:**
```python
from gradio_client import Client
client = Client("http://0.0.0.0:7860/")
result = client.predict(
"search query", # str in 'Search Query' Textbox component
"name of collection given in ui", # str in 'Collection Name' Textbox component
api_name="/search_vector_database"
)
print(result)
```
""")
upload_btn.click(handle_file_upload, inputs=[file_upload, collection_name_input], outputs=[upload_status])
search_btn.click(search_vector_database, inputs=[search_query_input, collection_name_input], outputs=[search_output])
with gr.Tab("Account Information"):
with gr.Row():
with gr.Column():
username_input = gr.Textbox(label="Username")
password_input = gr.Textbox(label="Password", type="password")
login_btn = gr.Button("Login")
with gr.Column():
account_info_output = gr.Textbox(label="Account Info", lines=20)
api_details = gr.Markdown("""
### API Endpoint Details
- **URL:** `http://0.0.0.0:7860/handle_login`
- **Method:** POST
- **Example Usage:**
```python
from gradio_client import Client
client = Client("http://0.0.0.0:7860/")
result = client.predict(
"admin", # str in 'Username' Textbox component
"password", # str in 'Password' Textbox component
api_name="/handle_login"
)
print(result)
```
""")
login_btn.click(handle_login, inputs=[username_input, password_input], outputs=[account_info_output])
interface.launch(server_name="0.0.0.0", server_port=7860)
if __name__ == "__main__":
gradio_interface()