File size: 9,926 Bytes
197aba7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import os, sys
import streamlit as st

st.set_page_config(page_title="Pricing for scalar and binary embeddings", page_icon=":floppy-disk:", layout="wide", initial_sidebar_state="expanded", menu_items={'Report a bug': "mailto:[email protected]"})

# SIDEBAR
st.sidebar.write('***"Exit float32, hello binary!"***')

cloud_price = st.sidebar.slider("Price of the instance: ", 0.0,20.00,3.8)
st.sidebar.write("*From 0 to 20 (default $3.8 per GB/mo estimated on x2gd instances on AWS)*")

st.sidebar.divider()  ###

docs = st.sidebar.slider("Number of vector embeddings: ", 100000000,1000000000,250000000, step=10000000) #Defaul 250M
st.sidebar.write("*From 100M to 1 Billion (default 250M)*")

st.sidebar.write(" ")

st.sidebar.write("***Akim Mousterou*** (April 2024) *[LinkedIn](https://www.linkedin.com/in/akim-mousterou/),[HuggingFace](https://huggingface.co/Akimfromparis), and [GitHub](https://github.com/AkimParis)*")
kb2gb = 1024**3 #Conversion memory
# MAIN
st.title("***Pricing model on billion-scale vector with scalar and binary embeddings***")

st.write("*The real democratization of AI can only be achieved by a powerful open-source ecosystem and low prices for memory/GPU usage.*")
st.write("*Compression-friendly embedding models implemented in int8 and binary can save up to x4 and x32 of memory, storage, and, costs. To achieve X32 compute efficiency and retain ∼96% of retrieval performance, the binary quantization is powered by the normalization of embedding values (either 0 or 1), the calculation of Hamming Distance with only 2 CPU runtimes, and the application of ReRank step of [Yamada et al (2021)](https://arxiv.org/abs/2106.00882).*")
st.write('*Scalar and binary embeddings revealed great retrieval efficiency with just a minimal degradation of performance, perfect for NLP downstream tasks, semantic search, recommendation systems, and retrieval-augmented generation solutions. The following financial projections are based on ["Cohere int8 & binary Embeddings - Scale Your Vector Database to Large Datasets"](https://cohere.com/blog/int8-binary-embeddings) by Nils Reimers of [Cohere](https://cohere.com/). The cost of the index and the metadata might not have been factored in the calculus.*')

col1, col2, col3, col4, col5, col6, col7, col8 = st.columns([1,1,1,1,1,1,1,1])
with col1:
    st.write("***Embedding dimension***")
    st.divider()  ###
    st.write("***384***")
    st.write("***512***")
    st.write("***768***")
    st.write("***1024***")
    st.write("***1536***")
    st.write("***2048***")
    st.write("***3072***")
    st.write("***4096***")
with col2:
    st.write("***Memory usage in Gb***")
    st.divider()  ###
    dim_1 = ((384 * 4) * docs) / kb2gb
    st.write(str(round(dim_1, 2)) + " GB")

    dim_2 = ((512 * 4) * docs) / kb2gb
    r = st.write(str(round(dim_2, 2)) + " GB")
    
    dim_3 = ((768 * 4) * docs) / kb2gb
    r = st.write(str(round(dim_3, 2)) + " GB")
    
    dim_4 = ((1024 * 4) * docs) / kb2gb
    r = st.write(str(round(dim_4, 2)) + " GB")

    dim_5 = ((1536 * 4) * docs) / kb2gb
    r = st.write(str(round(dim_5, 2)) + " GB")

    dim_6 = ((2048 * 4) * docs) / kb2gb
    r = st.write(str(round(dim_6, 2)) + " GB")

    dim_7 = ((3072 * 4) * docs) / kb2gb
    r = st.write(str(round(dim_7, 2)) + " GB")

    dim_8 = ((4096 * 4) * docs) / kb2gb
    r = st.write(str(round(dim_8, 2)) + " GB")

with col3:
    st.write("***$ Price by month***")
    st.divider()  ###
    price_month_1 = dim_1 * cloud_price
    st.write(str(round(price_month_1, 2)) + " $")
    
    price_month_2 = dim_2 * cloud_price
    st.write(str(round(price_month_2, 2)) + " $")

    price_month_3 = dim_3 * cloud_price
    st.write(str(round(price_month_3, 2)) + " $")
    
    price_month_4 = dim_4 * cloud_price
    st.write(str(round(price_month_4, 2)) + " $")
    
    price_month_5 = dim_5 * cloud_price
    st.write(str(round(price_month_5, 2)) + " $")
    
    price_month_6 = dim_6 * cloud_price
    st.write(str(round(price_month_6, 2)) + " $")
    
    price_month_7 = dim_7 * cloud_price
    st.write(str(round(price_month_7, 2)) + " $")

    price_month_8 = dim_8 * cloud_price
    st.write(str(round(price_month_8, 2)) + " $")

with col4:
    st.write("***$ Price by year***")
    st.divider()  ###
    price_year_1 = price_month_1 * 12
    st.write(str(round(price_year_1, 2)) + " $")
    
    price_year_2 = price_month_2 * 12
    st.write(str(round(price_year_2, 2)) + " $")

    price_year_3 = price_month_3 * 12
    st.write(str(round(price_year_3, 2)) + " $")
    
    price_year_4 = price_month_4 * 12
    st.write(str(round(price_year_4, 2)) + " $")

    price_year_5 = price_month_5 * 12
    st.write(str(round(price_year_5, 2)) + " $")
    
    price_year_6 = price_month_6 * 12
    st.write(str(round(price_year_6, 2)) + " $")
    
    price_year_7 = price_month_7 * 12
    st.write(str(round(price_year_7, 2)) + " $")
    
    price_year_8 = price_month_8 * 12
    st.write(str(round(price_year_8, 2)) + " $")
    
with col5:
    st.write("***Int8 memory*** (div. 4)")
    st.divider()  ###
    int8_mem_1 = dim_1 / 4
    st.write(str(round(int8_mem_1, 2)) + " GB")
    
    int8_mem_2 = dim_2 / 4
    st.write(str(round(int8_mem_2, 2)) + " GB")

    int8_mem_3 = dim_3 / 4
    st.write(str(round(int8_mem_3, 2)) + " GB")

    int8_mem_4 = dim_4 / 4
    st.write(str(round(int8_mem_4, 2)) + " GB")

    int8_mem_5 = dim_5 / 4
    st.write(str(round(int8_mem_5, 2)) + " GB")
    
    int8_mem_6 = dim_6 / 4
    st.write(str(round(int8_mem_6, 2)) + " GB")
    
    int8_mem_7 = dim_7 / 4
    st.write(str(round(int8_mem_7, 2)) + " GB")
    
    int8_mem_8 = dim_8 / 4
    st.write(str(round(int8_mem_8, 2)) + " GB")
with col6:
    st.write("***$ Int8 price*** (div. 4)")
    st.divider()  ###
    int8_price_1 = price_month_1 / 4
    st.write(str(round(int8_price_1, 2)) + " $")

    int8_price_2 = price_month_2 / 4
    st.write(str(round(int8_price_2, 2)) + " $")

    int8_price_3 = price_month_3 / 4
    st.write(str(round(int8_price_3, 2)) + " $")

    int8_price_4 = price_month_4 / 4
    st.write(str(round(int8_price_4, 2)) + " $")

    int8_price_5 = price_month_5 / 4
    st.write(str(round(int8_price_5, 2)) + " $")

    int8_price_6 = price_month_6 / 4
    st.write(str(round(int8_price_6, 2)) + " $")

    int8_price_7 = price_month_7 / 4
    st.write(str(round(int8_price_7, 2)) + " $")

    int8_price_8 = price_month_8 / 4
    st.write(str(round(int8_price_8, 2)) + " $")
    
with col7:
    st.write("***Bin memory*** (div. 32)")
    st.divider()  ###
    binary_mem_1 = dim_1 / 32
    st.write(str(round(binary_mem_1, 2)) + " GB")

    binary_mem_2 = dim_2 / 32
    st.write(str(round(binary_mem_2, 2)) + " GB")
    
    binary_mem_3 = dim_3 / 32
    st.write(str(round(binary_mem_3, 2)) + " GB")
    
    binary_mem_4 = dim_4 / 32
    st.write(str(round(binary_mem_4, 2)) + " GB")
    
    binary_mem_5 = dim_5 / 32
    st.write(str(round(binary_mem_5, 2)) + " GB")
    
    binary_mem_6 = dim_6 / 32
    st.write(str(round(binary_mem_6, 2)) + " GB")
    
    binary_mem_7 = dim_7 / 32
    st.write(str(round(binary_mem_7, 2)) + " GB")
    
    binary_mem_8 = dim_8 / 32
    st.write(str(round(binary_mem_8, 2)) + " GB")
    
with col8:
    st.write("***$ Bin price*** (div. 32)")
    st.divider()  ###
    binary_price_1 = price_month_1 / 32
    st.write(str(round(binary_price_1, 2)) + " $")

    binary_price_2 = price_month_2 / 32
    st.write(str(round(binary_price_2, 2)) + " $")
    
    binary_price_3 = price_month_3 / 32
    st.write(str(round(binary_price_3, 2)) + " $")
    
    binary_price_4 = price_month_4 / 32
    st.write(str(round(binary_price_4, 2)) + " $")
    
    binary_price_5 = price_month_5 / 32
    st.write(str(round(binary_price_5, 2)) + " $")
    
    binary_price_6 = price_month_6 / 32
    st.write(str(round(binary_price_6, 2)) + " $")
    
    binary_price_7 = price_month_7 / 32
    st.write(str(round(binary_price_7, 2)) + " $")
    
    binary_price_8 = price_month_8 / 32
    st.write(str(round(binary_price_8, 2)) + " $")
st.divider()  ###
st.write("***- Open-source vector databases for Scalar and binary quantization:***")
col9, col10 = st.columns([1,1])
with col9:
    st.write("- [FAISS](https://github.com/facebookresearch/faiss) from :flag-us:")
    st.write("- [VESPA AI](https://github.com/vespa-engine/vespa) from :flag-no:")
    st.write("- [Pgvector](https://github.com/pgvector/pgvector) from :flag-us:")
    st.write("- [Milvus](https://github.com/milvus-io/milvus) from :flag-cn:")
    st.write("- [Usearch](https://github.com/unum-cloud/usearch) from :flag-us:")
with col10:
    st.write("- [Qdrant](https://github.com/qdrant) from :flag-de:")
    st.write("- [pgvecto.rs](https://github.com/tensorchord/pgvecto.rs) from :flag-cn:")
    st.write("- [TencentVectorDB](https://github.com/Tencent/vectordatabase-sdk-python) from :flag-cn:")
    st.write("- [BinaryVectorDB](https://github.com/cohere-ai/BinaryVectorDB) from :flag-ca:")
    st.write("- [Weaviate](https://github.com/weaviate/weaviate) from :flag-de:")
st.divider()  ###
st.write("***- For further readings:***")

st.write("- [Billion-scale similarity search with GPUs](https://arxiv.org/abs/1702.08734)")
st.write("- [Efficient Passage Retrieval with Hashing for Open-domain Question Answering](https://arxiv.org/abs/2106.00882)")
st.write("- [Matryoshka Representation Learning](https://arxiv.org/abs/2205.13147)")
st.write("- [Incorporating Relevance Feedback for Information-Seeking Retrieval using Few-Shot Document Re-Ranking](https://arxiv.org/abs/2210.10695)")
st.write("- [Binary Embedding-based Retrieval at Tencent](https://arxiv.org/abs/2302.08714)")