File size: 9,873 Bytes
427f576 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
import os, sys
import streamlit as st
st.set_page_config(page_title="Pricing for scalar and binary embeddings", page_icon=":floppy-disk:", layout="wide", menu_items={'Report a bug': "mailto:[email protected]"})
kb2gb = 1024**3 #Conversion memory
# MAIN
st.title("***Pricing model with scalar and binary embeddings***")
st.write("***Akim Mousterou*** (April 2024) *[LinkedIn](https://www.linkedin.com/in/akim-mousterou/), [HuggingFace](https://huggingface.co/Akimfromparis), and [GitHub](https://github.com/AkimParis)*")
st.write("*The real democratization of AI can only be achieved by a powerful open-source ecosystem and low prices for memory/GPU usage. Thanks to quantization, we can say bye to float32, and hello binary! Compression-friendly embedding models implemented in int8 and binary can save up to x4 and x32 of memory, storage, and, costs. To achieve X32 compute efficiency and retain ∼96% of retrieval performance, the binary quantization is powered by the normalization of embedding values (either 0 or 1), the calculation of Hamming Distance with only 2 CPU runtimes, and the application of ReRank step of [Yamada et al (2021)](https://arxiv.org/abs/2106.00882). Scalar and binary embeddings revealed great retrieval efficiency with just a minimal degradation of performance, perfect for NLP downstream tasks, semantic search, recommendation systems, and retrieval-augmented generation solutions.*")
st.divider() ###
col1, col2 = st.columns([1,1])
with col1:
cloud_price = st.slider("Price of the instance: *From 0 to 20 (default $3.8 per GB/mo estimated on x2gd instances on AWS)* ", 0.0,20.00,3.8)
with col2:
docs = st.slider("Number of vector embeddings: *From 100M to 1 Billion (default 250M)*", 100000000,1000000000,250000000, step=10000000) #Defaul 250M
st.divider() ###
col3, col4, col5, col6, col7, col8, col9, col10 = st.columns([1,1,1,1,1,1,1,1])
with col3:
st.write("***Embedding dimension***")
with col4:
st.write("***Memory usage in Gb***")
with col5:
st.write("***Price on a monthly basis***")
with col6:
st.write("***Price on a yearly basis***")
with col7:
st.write("***Int8 memory*** (div. by 4)")
with col8:
st.write("***Int8 price*** (div. by 4)")
with col9:
st.write("***Binary memory*** (div. by 32)")
with col10:
st.write("***Binary price*** (div. by 32)")
col11, col12, col13, col14, col15, col16, col17, col18 = st.columns([1,1,1,1,1,1,1,1])
with col11:
st.write("***384***")
st.write("***512***")
st.write("***768***")
st.write("***1024***")
st.write("***1536***")
st.write("***2048***")
st.write("***3072***")
st.write("***4096***")
with col12:
dim_1 = ((384 * 4) * docs) / kb2gb
st.write(str(round(dim_1, 2)) + " GB")
dim_2 = ((512 * 4) * docs) / kb2gb
r = st.write(str(round(dim_2, 2)) + " GB")
dim_3 = ((768 * 4) * docs) / kb2gb
r = st.write(str(round(dim_3, 2)) + " GB")
dim_4 = ((1024 * 4) * docs) / kb2gb
r = st.write(str(round(dim_4, 2)) + " GB")
dim_5 = ((1536 * 4) * docs) / kb2gb
r = st.write(str(round(dim_5, 2)) + " GB")
dim_6 = ((2048 * 4) * docs) / kb2gb
r = st.write(str(round(dim_6, 2)) + " GB")
dim_7 = ((3072 * 4) * docs) / kb2gb
r = st.write(str(round(dim_7, 2)) + " GB")
dim_8 = ((4096 * 4) * docs) / kb2gb
r = st.write(str(round(dim_8, 2)) + " GB")
with col13:
price_month_1 = dim_1 * cloud_price
st.write(str(round(price_month_1, 2)) + " $")
price_month_2 = dim_2 * cloud_price
st.write(str(round(price_month_2, 2)) + " $")
price_month_3 = dim_3 * cloud_price
st.write(str(round(price_month_3, 2)) + " $")
price_month_4 = dim_4 * cloud_price
st.write(str(round(price_month_4, 2)) + " $")
price_month_5 = dim_5 * cloud_price
st.write(str(round(price_month_5, 2)) + " $")
price_month_6 = dim_6 * cloud_price
st.write(str(round(price_month_6, 2)) + " $")
price_month_7 = dim_7 * cloud_price
st.write(str(round(price_month_7, 2)) + " $")
price_month_8 = dim_8 * cloud_price
st.write(str(round(price_month_8, 2)) + " $")
with col14:
price_year_1 = price_month_1 * 12
st.write(str(round(price_year_1, 2)) + " $")
price_year_2 = price_month_2 * 12
st.write(str(round(price_year_2, 2)) + " $")
price_year_3 = price_month_3 * 12
st.write(str(round(price_year_3, 2)) + " $")
price_year_4 = price_month_4 * 12
st.write(str(round(price_year_4, 2)) + " $")
price_year_5 = price_month_5 * 12
st.write(str(round(price_year_5, 2)) + " $")
price_year_6 = price_month_6 * 12
st.write(str(round(price_year_6, 2)) + " $")
price_year_7 = price_month_7 * 12
st.write(str(round(price_year_7, 2)) + " $")
price_year_8 = price_month_8 * 12
st.write(str(round(price_year_8, 2)) + " $")
with col15:
int8_mem_1 = dim_1 / 4
st.write(str(round(int8_mem_1, 2)) + " GB")
int8_mem_2 = dim_2 / 4
st.write(str(round(int8_mem_2, 2)) + " GB")
int8_mem_3 = dim_3 / 4
st.write(str(round(int8_mem_3, 2)) + " GB")
int8_mem_4 = dim_4 / 4
st.write(str(round(int8_mem_4, 2)) + " GB")
int8_mem_5 = dim_5 / 4
st.write(str(round(int8_mem_5, 2)) + " GB")
int8_mem_6 = dim_6 / 4
st.write(str(round(int8_mem_6, 2)) + " GB")
int8_mem_7 = dim_7 / 4
st.write(str(round(int8_mem_7, 2)) + " GB")
int8_mem_8 = dim_8 / 4
st.write(str(round(int8_mem_8, 2)) + " GB")
with col16:
int8_price_1 = price_month_1 / 4
st.write(str(round(int8_price_1, 2)) + " $")
int8_price_2 = price_month_2 / 4
st.write(str(round(int8_price_2, 2)) + " $")
int8_price_3 = price_month_3 / 4
st.write(str(round(int8_price_3, 2)) + " $")
int8_price_4 = price_month_4 / 4
st.write(str(round(int8_price_4, 2)) + " $")
int8_price_5 = price_month_5 / 4
st.write(str(round(int8_price_5, 2)) + " $")
int8_price_6 = price_month_6 / 4
st.write(str(round(int8_price_6, 2)) + " $")
int8_price_7 = price_month_7 / 4
st.write(str(round(int8_price_7, 2)) + " $")
int8_price_8 = price_month_8 / 4
st.write(str(round(int8_price_8, 2)) + " $")
with col17:
binary_mem_1 = dim_1 / 32
st.write(str(round(binary_mem_1, 2)) + " GB")
binary_mem_2 = dim_2 / 32
st.write(str(round(binary_mem_2, 2)) + " GB")
binary_mem_3 = dim_3 / 32
st.write(str(round(binary_mem_3, 2)) + " GB")
binary_mem_4 = dim_4 / 32
st.write(str(round(binary_mem_4, 2)) + " GB")
binary_mem_5 = dim_5 / 32
st.write(str(round(binary_mem_5, 2)) + " GB")
binary_mem_6 = dim_6 / 32
st.write(str(round(binary_mem_6, 2)) + " GB")
binary_mem_7 = dim_7 / 32
st.write(str(round(binary_mem_7, 2)) + " GB")
binary_mem_8 = dim_8 / 32
st.write(str(round(binary_mem_8, 2)) + " GB")
with col18:
binary_price_1 = price_month_1 / 32
st.write(str(round(binary_price_1, 2)) + " $")
binary_price_2 = price_month_2 / 32
st.write(str(round(binary_price_2, 2)) + " $")
binary_price_3 = price_month_3 / 32
st.write(str(round(binary_price_3, 2)) + " $")
binary_price_4 = price_month_4 / 32
st.write(str(round(binary_price_4, 2)) + " $")
binary_price_5 = price_month_5 / 32
st.write(str(round(binary_price_5, 2)) + " $")
binary_price_6 = price_month_6 / 32
st.write(str(round(binary_price_6, 2)) + " $")
binary_price_7 = price_month_7 / 32
st.write(str(round(binary_price_7, 2)) + " $")
binary_price_8 = price_month_8 / 32
st.write(str(round(binary_price_8, 2)) + " $")
st.write('***Disclaimer:*** *The financial projections below are based on ["Cohere int8 & binary Embeddings - Scale Your Vector Database to Large Datasets"](https://cohere.com/blog/int8-binary-embeddings) by Nils Reimers of [Cohere](https://cohere.com/). The cost of the index and the metadata might not have been factored in the calculus.*')
st.divider() ###
st.write("***- Open-source vector databases for Scalar and binary quantization:***")
col19, col20 = st.columns([1,1])
with col19:
st.write("- [FAISS](https://github.com/facebookresearch/faiss) from :flag-us:")
st.write("- [VESPA AI](https://github.com/vespa-engine/vespa) from :flag-no:")
st.write("- [Pgvector](https://github.com/pgvector/pgvector) from :flag-us:")
st.write("- [Milvus](https://github.com/milvus-io/milvus) from :flag-cn:")
st.write("- [Usearch](https://github.com/unum-cloud/usearch) from :flag-us:")
with col20:
st.write("- [Qdrant](https://github.com/qdrant) from :flag-de:")
st.write("- [pgvecto.rs](https://github.com/tensorchord/pgvecto.rs) from :flag-cn:")
st.write("- [TencentVectorDB](https://github.com/Tencent/vectordatabase-sdk-python) from :flag-cn:")
st.write("- [BinaryVectorDB](https://github.com/cohere-ai/BinaryVectorDB) from :flag-ca:")
st.write("- [Weaviate](https://github.com/weaviate/weaviate) from :flag-de:")
st.divider() ###
st.write("***- For further readings:***")
st.write("- [Billion-scale similarity search with GPUs](https://arxiv.org/abs/1702.08734)")
st.write("- [Efficient Passage Retrieval with Hashing for Open-domain Question Answering](https://arxiv.org/abs/2106.00882)")
st.write("- [Matryoshka Representation Learning](https://arxiv.org/abs/2205.13147)")
st.write("- [Incorporating Relevance Feedback for Information-Seeking Retrieval using Few-Shot Document Re-Ranking](https://arxiv.org/abs/2210.10695)")
st.write("- [Binary Embedding-based Retrieval at Tencent](https://arxiv.org/abs/2302.08714)")
st.divider() ###
st.write("***Akim Mousterou*** (April 2024) *[LinkedIn](https://www.linkedin.com/in/akim-mousterou/), [HuggingFace](https://huggingface.co/Akimfromparis), and [GitHub](https://github.com/AkimParis)*") |