Spaces:
Running
Running
File size: 9,469 Bytes
a5ffe22 1df4c01 a5ffe22 1df4c01 a5ffe22 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
# flake8: noqa: E402
import sys, os
import logging
import os
import time
import numpy as np # 假设你使用NumPy来处理音频数据
import shutil # 用于删除文件夹和文件
from scipy.io import wavfile
import re
logging.getLogger("numba").setLevel(logging.WARNING)
logging.getLogger("markdown_it").setLevel(logging.WARNING)
logging.getLogger("urllib3").setLevel(logging.WARNING)
logging.getLogger("matplotlib").setLevel(logging.WARNING)
logging.basicConfig(
level=logging.INFO, format="| %(name)s | %(levelname)s | %(message)s"
)
logger = logging.getLogger(__name__)
import torch
import argparse
import commons
import utils
from models import SynthesizerTrn
from text.symbols import symbols
from text import cleaned_text_to_sequence, get_bert
from text.cleaner import clean_text
import gradio as gr
import webbrowser
import numpy as np
net_g = None
device = "cuda"
curr_model_name:str = None
hps_:tuple = None
def get_text(text, language_str, hps):
norm_text, phone, tone, word2ph = clean_text(text, language_str)
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
if hps.data.add_blank:
phone = commons.intersperse(phone, 0)
tone = commons.intersperse(tone, 0)
language = commons.intersperse(language, 0)
for i in range(len(word2ph)):
word2ph[i] = word2ph[i] * 2
word2ph[0] += 1
bert = get_bert(norm_text, word2ph, language_str, device)
del word2ph
assert bert.shape[-1] == len(phone), phone
if language_str == "ZH":
bert = bert
ja_bert = torch.zeros(768, len(phone))
elif language_str == "JP":
ja_bert = bert
bert = torch.zeros(1024, len(phone))
else:
bert = torch.zeros(1024, len(phone))
ja_bert = torch.zeros(768, len(phone))
assert bert.shape[-1] == len(
phone
), f"Bert seq len {bert.shape[-1]} != {len(phone)}"
phone = torch.LongTensor(phone)
tone = torch.LongTensor(tone)
language = torch.LongTensor(language)
return bert, ja_bert, phone, tone, language
def infer(text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid, language):
global net_g
bert, ja_bert, phones, tones, lang_ids = get_text(text, language, hps)
with torch.no_grad():
x_tst = phones.to(device).unsqueeze(0)
tones = tones.to(device).unsqueeze(0)
lang_ids = lang_ids.to(device).unsqueeze(0)
bert = bert.to(device).unsqueeze(0)
ja_bert = ja_bert.to(device).unsqueeze(0)
x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
#print(x_tst.type(), tones.type(), lang_ids.type(), bert.type(), ja_bert.type(), x_tst_lengths.type())
del phones
speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device)
audio = (
net_g.infer(
x_tst,
x_tst_lengths,
speakers,
tones,
lang_ids,
bert,
ja_bert,
sdp_ratio=sdp_ratio,
noise_scale=noise_scale,
noise_scale_w=noise_scale_w,
length_scale=length_scale,
)[0][0, 0]
.data.cpu()
.float()
.numpy()
)
del x_tst, tones, lang_ids, bert, x_tst_lengths, speakers
torch.cuda.empty_cache()
return audio
__LOG__ = "./generation_logs.txt"
def tts_fn(text, model_name:str, sdp_ratio, noise_scale, noise_scale_w, length_scale, language):
global curr_model_name
if curr_model_name != model_name:
load_model(model_name)
# 清空 ./infer_save 文件夹
if os.path.exists('./infer_save'):
shutil.rmtree('./infer_save')
os.makedirs('./infer_save')
slices = text.split("\n")
slices = [slice for slice in slices if slice.strip() != ""]
audio_list = []
with torch.no_grad():
with open(__LOG__,"a",encoding="UTF-8") as f:
for slice in slices:
assert len(slice) < 250 # 限制输入的文本长度
audio = infer(slice, sdp_ratio=sdp_ratio, noise_scale=noise_scale, noise_scale_w=noise_scale_w, length_scale=length_scale, sid=list(hps_[curr_model_name].data.spk2id.keys())[0], language=language)
audio_list.append(audio)
# 创建唯一的文件名
timestamp = str(int(time.time() * 1000))
audio_file_path = f'./infer_save/audio_{timestamp}.wav'
# 保存音频数据到.wav文件
wavfile.write(audio_file_path, hps.data.sampling_rate, audio)
silence = np.zeros(int(hps.data.sampling_rate/2), dtype=np.int16) # 生成半秒的静音
audio_list.append(silence) # 将静音添加到列表中
f.write(f"{slice} | {curr_model_name}\n")
print(f"{slice} | {curr_model_name}")
audio_concat = np.concatenate(audio_list)
return "Success", (hps.data.sampling_rate, audio_concat)
def load_model(model_name:str):
global net_g,curr_model_name,hps_,hps
assert os.path.exists(os.path.join("logs",model_name))
curr_model_name = model_name
hps = hps_[curr_model_name]
all_files = os.listdir(os.path.join("logs",model_name))
hps = utils.get_hparams_from_file(os.path.join("logs",model_name,"config.json"))
net_g = SynthesizerTrn(
len(symbols),
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
**hps.model,
).to(device)
_ = net_g.eval()
#获取G_最大的模型:
g_files = [f for f in all_files if f.startswith('G_') and f.endswith('.pth')]
# 提取文件名中的数字,并找到最大的数字
max_num = -1
max_file = None
for f in g_files:
num = int(re.search(r'G_(\d+).pth', f).group(1))
if num > max_num:
max_num = num
max_file = f
# 加载对应的模型
if max_file:
file_path = os.path.join('./logs/',model_name, max_file)
_ = utils.load_checkpoint(file_path, net_g, None, skip_optimizer=True)
else:
print("没有找到合适的文件")
if __name__ == "__main__":
models = os.listdir("./logs")
hps_ = {}
for i in models:
hps_[i] = utils.get_hparams_from_file(os.path.join("./logs", i, "config.json"))
curr_model_name = models[0]
hps = hps_[curr_model_name]
# speaker_ids = hps.data.spk2id
# speakers = list(speaker_ids.keys())
device = (
"cuda:0"
if torch.cuda.is_available()
else (
"mps"
if sys.platform == "darwin" and torch.backends.mps.is_available()
else "cpu"
)
)
net_g = SynthesizerTrn(
len(symbols),
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
**hps.model,
).to(device)
_ = net_g.eval()
languages = ["JP"]
with gr.Blocks() as app:
with gr.Tab(label="umamusume"):
with gr.Row():
with gr.Column():
text = gr.TextArea(
label="Text",
placeholder="Input Text Here",
value="はりきっていこう!",
)
speaker = gr.Dropdown(
choices=models, value=models[0], label="Models"
)
with gr.Accordion("Settings",open=False):
sdp_ratio = gr.Slider(
minimum=0, maximum=1, value=0.2, step=0.1, label="SDP Ratio"
)
noise_scale = gr.Slider(
minimum=0.1, maximum=2, value=0.6, step=0.1, label="Noise Scale"
)
noise_scale_w = gr.Slider(
minimum=0.1, maximum=2, value=0.8, step=0.1, label="Noise Scale W"
)
length_scale = gr.Slider(
minimum=0.1, maximum=2, value=1, step=0.1, label="Length Scale"
)
language = gr.Dropdown(
choices=languages, value=languages[0], label="Language"
)
btn = gr.Button("Generate!", variant="primary")
with gr.Column():
text_output = gr.Textbox(label="Message")
audio_output = gr.Audio(label="Output Audio")
gr.Markdown("# 赛马娘 Bert-VITS2 语音合成\n"
"Project page:[GitHub](https://github.com/fishaudio/Bert-VITS2)\n"
"- Still Updating...\n"
"- We found that model trained with only 1 speaker may generate better audio than multi-speaker model.\n")
btn.click(
tts_fn,
inputs=[
text,
speaker,
sdp_ratio,
noise_scale,
noise_scale_w,
length_scale,
language,
],
outputs=[text_output, audio_output],
)
app.launch(server_name="0.0.0.0")
|