import spaces
import os
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
import gradio as gr
text_generator = None
is_hugging_face = False
def init():
global text_generator
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
if not huggingface_token:
pass
print("no HUGGINGFACE_TOKEN if you need set secret ")
#raise ValueError("HUGGINGFACE_TOKEN environment variable is not set")
model_id = "Qwen/Qwen2.5-0.5B-Instruct"
device = "auto" # torch.device("cuda" if torch.cuda.is_available() else "cpu")
#device = "cuda"
dtype = torch.bfloat16
tokenizer = AutoTokenizer.from_pretrained(model_id, token=huggingface_token)
print(model_id,device,dtype)
histories = []
#model = None
model = AutoModelForCausalLM.from_pretrained(
model_id, token=huggingface_token ,torch_dtype=dtype,device_map=device
)
text_generator = pipeline("text-generation", model=model, tokenizer=tokenizer,torch_dtype=dtype,device_map=device ) #pipeline has not to(device)
if not is_hugging_face:
if next(model.parameters()).is_cuda:
print("The model is on a GPU")
else:
print("The model is on a CPU")
#print(f"text_generator.device='{text_generator.device}")
if str(text_generator.device).strip() == 'cuda':
print("The pipeline is using a GPU")
else:
print("The pipeline is using a CPU")
print("initialized")
@spaces.GPU
def generate_text(messages):
global text_generator
if is_hugging_face:#need everytime initialize for ZeroGPU
model = AutoModelForCausalLM.from_pretrained(
model_id, token=huggingface_token ,torch_dtype=dtype,device_map=device
)
text_generator = pipeline("text-generation", model=model, tokenizer=tokenizer,torch_dtype=dtype,device_map=device ) #pipeline has not to(device)
result = text_generator(messages, max_new_tokens=32, do_sample=True, temperature=0.7)
generated_output = result[0]["generated_text"]
if isinstance(generated_output, list):
for message in reversed(generated_output):
if message.get("role") == "assistant":
content= message.get("content", "No content found.")
return content
return "No assistant response found."
else:
return "Unexpected output format."
def call_generate_text(message, history):
if len(message) == 0:
message.append({"role": "system", "content": "you response around 10 words"})
# history.append({"role": "user", "content": message})
print(message)
print(history)
messages = history+[{"role":"user","content":message}]
try:
text = generate_text(messages)
messages += [{"role":"assistant","content":text}]
return "",messages
except RuntimeError as e:
print(f"An unexpected error occurred: {e}")
return "",history
head = '''
'''
with gr.Blocks(title="LLM with TTS",head=head) as demo:
gr.Markdown("## Please be patient, the first response may have a delay of up to over 20 seconds while loading.")
gr.Markdown("**Qwen2.5-0.5B-Instruct/LJSpeech**.LLM and TTS models will change without notice.")
gr.Markdown("### Sometime Crash with loud noise,Don't use headphones, and avoid high volume.")
js = """
function(chatbot){
text = (chatbot[chatbot.length -1])["content"]
window.MatchaTTSEn(text,"/file=models/ljspeech_sim.onnx")
}
"""
chatbot = gr.Chatbot(type="messages")
chatbot.change(None,[chatbot],[],js=js)
msg = gr.Textbox()
with gr.Row():
clear = gr.ClearButton([msg, chatbot])
gr.HTML("""