Doubiiu's picture
init
db8912f
raw
history blame
16.4 kB
import numpy as np
from tqdm import tqdm
import torch
from lvdm.models.utils_diffusion import make_ddim_sampling_parameters, make_ddim_timesteps, rescale_noise_cfg
from lvdm.common import noise_like
from lvdm.common import extract_into_tensor
import copy
class DDIMSampler(object):
def __init__(self, model, schedule="linear", **kwargs):
super().__init__()
self.model = model
self.ddpm_num_timesteps = model.num_timesteps
self.schedule = schedule
self.counter = 0
def register_buffer(self, name, attr):
if type(attr) == torch.Tensor:
if attr.device != torch.device("cuda"):
attr = attr.to(torch.device("cuda"))
setattr(self, name, attr)
def make_schedule(self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0., verbose=True):
self.ddim_timesteps = make_ddim_timesteps(ddim_discr_method=ddim_discretize, num_ddim_timesteps=ddim_num_steps,
num_ddpm_timesteps=self.ddpm_num_timesteps,verbose=verbose)
alphas_cumprod = self.model.alphas_cumprod
assert alphas_cumprod.shape[0] == self.ddpm_num_timesteps, 'alphas have to be defined for each timestep'
to_torch = lambda x: x.clone().detach().to(torch.float32).to(self.model.device)
if self.model.use_dynamic_rescale:
self.ddim_scale_arr = self.model.scale_arr[self.ddim_timesteps]
self.ddim_scale_arr_prev = torch.cat([self.ddim_scale_arr[0:1], self.ddim_scale_arr[:-1]])
self.register_buffer('betas', to_torch(self.model.betas))
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
self.register_buffer('alphas_cumprod_prev', to_torch(self.model.alphas_cumprod_prev))
# calculations for diffusion q(x_t | x_{t-1}) and others
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod.cpu())))
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod.cpu())))
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod.cpu())))
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu())))
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod.cpu() - 1)))
# ddim sampling parameters
ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(alphacums=alphas_cumprod.cpu(),
ddim_timesteps=self.ddim_timesteps,
eta=ddim_eta,verbose=verbose)
self.register_buffer('ddim_sigmas', ddim_sigmas)
self.register_buffer('ddim_alphas', ddim_alphas)
self.register_buffer('ddim_alphas_prev', ddim_alphas_prev)
self.register_buffer('ddim_sqrt_one_minus_alphas', np.sqrt(1. - ddim_alphas))
sigmas_for_original_sampling_steps = ddim_eta * torch.sqrt(
(1 - self.alphas_cumprod_prev) / (1 - self.alphas_cumprod) * (
1 - self.alphas_cumprod / self.alphas_cumprod_prev))
self.register_buffer('ddim_sigmas_for_original_num_steps', sigmas_for_original_sampling_steps)
@torch.no_grad()
def sample(self,
S,
batch_size,
shape,
conditioning=None,
callback=None,
normals_sequence=None,
img_callback=None,
quantize_x0=False,
eta=0.,
mask=None,
x0=None,
temperature=1.,
noise_dropout=0.,
score_corrector=None,
corrector_kwargs=None,
verbose=True,
schedule_verbose=False,
x_T=None,
log_every_t=100,
unconditional_guidance_scale=1.,
unconditional_conditioning=None,
precision=None,
fs=None,
timestep_spacing='uniform', #uniform_trailing for starting from last timestep
guidance_rescale=0.0,
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
**kwargs
):
# check condition bs
if conditioning is not None:
if isinstance(conditioning, dict):
try:
cbs = conditioning[list(conditioning.keys())[0]].shape[0]
except:
cbs = conditioning[list(conditioning.keys())[0]][0].shape[0]
if cbs != batch_size:
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
else:
if conditioning.shape[0] != batch_size:
print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
# print('==> timestep_spacing: ', timestep_spacing, guidance_rescale)
self.make_schedule(ddim_num_steps=S, ddim_discretize=timestep_spacing, ddim_eta=eta, verbose=schedule_verbose)
# make shape
if len(shape) == 3:
C, H, W = shape
size = (batch_size, C, H, W)
elif len(shape) == 4:
C, T, H, W = shape
size = (batch_size, C, T, H, W)
# print(f'Data shape for DDIM sampling is {size}, eta {eta}')
samples, intermediates = self.ddim_sampling(conditioning, size,
callback=callback,
img_callback=img_callback,
quantize_denoised=quantize_x0,
mask=mask, x0=x0,
ddim_use_original_steps=False,
noise_dropout=noise_dropout,
temperature=temperature,
score_corrector=score_corrector,
corrector_kwargs=corrector_kwargs,
x_T=x_T,
log_every_t=log_every_t,
unconditional_guidance_scale=unconditional_guidance_scale,
unconditional_conditioning=unconditional_conditioning,
verbose=verbose,
precision=precision,
fs=fs,
guidance_rescale=guidance_rescale,
**kwargs)
return samples, intermediates
@torch.no_grad()
def ddim_sampling(self, cond, shape,
x_T=None, ddim_use_original_steps=False,
callback=None, timesteps=None, quantize_denoised=False,
mask=None, x0=None, img_callback=None, log_every_t=100,
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
unconditional_guidance_scale=1., unconditional_conditioning=None, verbose=True,precision=None,fs=None,guidance_rescale=0.0,
**kwargs):
device = self.model.betas.device
b = shape[0]
if x_T is None:
img = torch.randn(shape, device=device)
else:
img = x_T
if precision is not None:
if precision == 16:
img = img.to(dtype=torch.float16)
if timesteps is None:
timesteps = self.ddpm_num_timesteps if ddim_use_original_steps else self.ddim_timesteps
elif timesteps is not None and not ddim_use_original_steps:
subset_end = int(min(timesteps / self.ddim_timesteps.shape[0], 1) * self.ddim_timesteps.shape[0]) - 1
timesteps = self.ddim_timesteps[:subset_end]
intermediates = {'x_inter': [img], 'pred_x0': [img]}
time_range = reversed(range(0,timesteps)) if ddim_use_original_steps else np.flip(timesteps)
total_steps = timesteps if ddim_use_original_steps else timesteps.shape[0]
if verbose:
iterator = tqdm(time_range, desc='DDIM Sampler', total=total_steps)
else:
iterator = time_range
clean_cond = kwargs.pop("clean_cond", False)
# cond_copy, unconditional_conditioning_copy = copy.deepcopy(cond), copy.deepcopy(unconditional_conditioning)
for i, step in enumerate(iterator):
index = total_steps - i - 1
ts = torch.full((b,), step, device=device, dtype=torch.long)
## use mask to blend noised original latent (img_orig) & new sampled latent (img)
if mask is not None:
assert x0 is not None
if clean_cond:
img_orig = x0
else:
img_orig = self.model.q_sample(x0, ts) # TODO: deterministic forward pass? <ddim inversion>
img = img_orig * mask + (1. - mask) * img # keep original & modify use img
outs = self.p_sample_ddim(img, cond, ts, index=index, use_original_steps=ddim_use_original_steps,
quantize_denoised=quantize_denoised, temperature=temperature,
noise_dropout=noise_dropout, score_corrector=score_corrector,
corrector_kwargs=corrector_kwargs,
unconditional_guidance_scale=unconditional_guidance_scale,
unconditional_conditioning=unconditional_conditioning,
mask=mask,x0=x0,fs=fs,guidance_rescale=guidance_rescale,
**kwargs)
img, pred_x0 = outs
if callback: callback(i)
if img_callback: img_callback(pred_x0, i)
if index % log_every_t == 0 or index == total_steps - 1:
intermediates['x_inter'].append(img)
intermediates['pred_x0'].append(pred_x0)
return img, intermediates
@torch.no_grad()
def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
unconditional_guidance_scale=1., unconditional_conditioning=None,
uc_type=None, cfg_img=None,mask=None,x0=None,guidance_rescale=0.0, **kwargs):
b, *_, device = *x.shape, x.device
if x.dim() == 5:
is_video = True
else:
is_video = False
if cfg_img is None:
cfg_img = unconditional_guidance_scale
unconditional_conditioning_img_nonetext = kwargs['unconditional_conditioning_img_nonetext']
if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
model_output = self.model.apply_model(x, t, c, **kwargs) # unet denoiser
else:
### with unconditional condition
e_t_cond = self.model.apply_model(x, t, c, **kwargs)
e_t_uncond = self.model.apply_model(x, t, unconditional_conditioning, **kwargs)
e_t_uncond_img = self.model.apply_model(x, t, unconditional_conditioning_img_nonetext, **kwargs)
# text cfg
model_output = e_t_uncond + cfg_img * (e_t_uncond_img - e_t_uncond) + unconditional_guidance_scale * (e_t_cond - e_t_uncond_img)
if guidance_rescale > 0.0:
model_output = rescale_noise_cfg(model_output, e_t_cond, guidance_rescale=guidance_rescale)
if self.model.parameterization == "v":
e_t = self.model.predict_eps_from_z_and_v(x, t, model_output)
else:
e_t = model_output
if score_corrector is not None:
assert self.model.parameterization == "eps", 'not implemented'
e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
sigmas = self.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
# select parameters corresponding to the currently considered timestep
if is_video:
size = (b, 1, 1, 1, 1)
else:
size = (b, 1, 1, 1)
a_t = torch.full(size, alphas[index], device=device)
a_prev = torch.full(size, alphas_prev[index], device=device)
sigma_t = torch.full(size, sigmas[index], device=device)
sqrt_one_minus_at = torch.full(size, sqrt_one_minus_alphas[index],device=device)
# current prediction for x_0
if self.model.parameterization != "v":
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
else:
pred_x0 = self.model.predict_start_from_z_and_v(x, t, model_output)
if self.model.use_dynamic_rescale:
scale_t = torch.full(size, self.ddim_scale_arr[index], device=device)
prev_scale_t = torch.full(size, self.ddim_scale_arr_prev[index], device=device)
rescale = (prev_scale_t / scale_t)
pred_x0 *= rescale
if quantize_denoised:
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
# direction pointing to x_t
dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
if noise_dropout > 0.:
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
return x_prev, pred_x0
@torch.no_grad()
def decode(self, x_latent, cond, t_start, unconditional_guidance_scale=1.0, unconditional_conditioning=None,
use_original_steps=False, callback=None):
timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timesteps
timesteps = timesteps[:t_start]
time_range = np.flip(timesteps)
total_steps = timesteps.shape[0]
print(f"Running DDIM Sampling with {total_steps} timesteps")
iterator = tqdm(time_range, desc='Decoding image', total=total_steps)
x_dec = x_latent
for i, step in enumerate(iterator):
index = total_steps - i - 1
ts = torch.full((x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long)
x_dec, _ = self.p_sample_ddim(x_dec, cond, ts, index=index, use_original_steps=use_original_steps,
unconditional_guidance_scale=unconditional_guidance_scale,
unconditional_conditioning=unconditional_conditioning)
if callback: callback(i)
return x_dec
@torch.no_grad()
def stochastic_encode(self, x0, t, use_original_steps=False, noise=None):
# fast, but does not allow for exact reconstruction
# t serves as an index to gather the correct alphas
if use_original_steps:
sqrt_alphas_cumprod = self.sqrt_alphas_cumprod
sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod
else:
sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas)
sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas
if noise is None:
noise = torch.randn_like(x0)
return (extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 +
extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise)