import logging import os import tempfile import time import gradio as gr import numpy as np import rembg import torch from PIL import Image from functools import partial from tsr.system import TSR from tsr.utils import remove_background, resize_foreground, to_gradio_3d_orientation #HF_TOKEN = os.getenv("HF_TOKEN") HEADER = """ """ if torch.cuda.is_available(): device = "cuda:0" else: device = "cpu" d = os.environ.get("DEVICE", None) if d != None: device = d model = TSR.from_pretrained( "stabilityai/TripoSR", config_name="config.yaml", weight_name="model.ckpt", # token=HF_TOKEN ) model.renderer.set_chunk_size(131072) model.to(device) rembg_session = rembg.new_session() def check_input_image(input_image): if input_image is None: raise gr.Error("No image uploaded!") def preprocess(input_image, do_remove_background, foreground_ratio): def fill_background(image): image = np.array(image).astype(np.float32) / 255.0 image = image[:, :, :3] * image[:, :, 3:4] + (1 - image[:, :, 3:4]) * 0.5 image = Image.fromarray((image * 255.0).astype(np.uint8)) return image if do_remove_background: image = input_image.convert("RGB") image = remove_background(image, rembg_session) image = resize_foreground(image, foreground_ratio) image = fill_background(image) else: image = input_image if image.mode == "RGBA": image = fill_background(image) return image def generate(image): scene_codes = model(image, device=device) mesh = model.extract_mesh(scene_codes)[0] mesh = to_gradio_3d_orientation(mesh) mesh_path = tempfile.NamedTemporaryFile(suffix=".obj", delete=False) mesh_path2 = tempfile.NamedTemporaryFile(suffix=".glb", delete=False) mesh.export(mesh_path.name) mesh.export(mesh_path2.name) return mesh_path.name, mesh_path2.name def run_example(image_pil): preprocessed = preprocess(image_pil, False, 0.9) mesh_name, mesn_name2 = generate(preprocessed) return preprocessed, mesh_name, mesh_name2 with gr.Blocks() as demo: gr.Markdown(HEADER) with gr.Row(variant="panel"): with gr.Column(): with gr.Row(): input_image = gr.Image( label="Input Image", image_mode="RGBA", sources="upload", type="pil", elem_id="content_image", ) processed_image = gr.Image(label="Processed Image", interactive=False) with gr.Row(): with gr.Group(): do_remove_background = gr.Checkbox( label="Remove Background", value=True ) foreground_ratio = gr.Slider( label="Foreground Ratio", minimum=0.5, maximum=1.0, value=0.85, step=0.05, ) with gr.Row(): submit = gr.Button("Generate", elem_id="generate", variant="primary") with gr.Column(): with gr.Tab("obj"): output_model = gr.Model3D( label="Output Model", interactive=False, ) with gr.Tab("glb"): output_model2 = gr.Model3D( label="Output Model", interactive=False, ) # with gr.Row(variant="panel"): # gr.Examples( # examples=[ # os.path.join("examples", img_name) for img_name in sorted(os.listdir("examples")) # ], # inputs=[input_image], # outputs=[processed_image, output_model, output_model2], # #cache_examples=True, # fn=partial(run_example), # label="Examples", # examples_per_page=20 # ) submit.click(fn=check_input_image, inputs=[input_image]).success( fn=preprocess, inputs=[input_image, do_remove_background, foreground_ratio], outputs=[processed_image], ).success( fn=generate, inputs=[processed_image], outputs=[output_model, output_model2], ) demo.queue(max_size=10) demo.launch()