File size: 6,499 Bytes
f56623f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import torch
import numpy as np
from diffusers import FluxPipeline, FlowMatchEulerDiscreteScheduler
from typing import Any, Dict, List, Optional, Union
from PIL import Image

# Constants for shift calculation
BASE_SEQ_LEN = 256
MAX_SEQ_LEN = 4096
BASE_SHIFT = 0.5
MAX_SHIFT = 1.2

# Helper functions
def calculate_timestep_shift(image_seq_len: int) -> float:
    """Calculates the timestep shift (mu) based on the image sequence length."""
    m = (MAX_SHIFT - BASE_SHIFT) / (MAX_SEQ_LEN - BASE_SEQ_LEN)
    b = BASE_SHIFT - m * BASE_SEQ_LEN
    mu = image_seq_len * m + b
    return mu

def prepare_timesteps(
    scheduler: FlowMatchEulerDiscreteScheduler,
    num_inference_steps: Optional[int] = None,
    device: Optional[Union[str, torch.device]] = None,
    timesteps: Optional[List[int]] = None,
    sigmas: Optional[List[float]] = None,
    mu: Optional[float] = None,
) -> (torch.Tensor, int):
    """Prepares the timesteps for the diffusion process."""
    if timesteps is not None and sigmas is not None:
        raise ValueError("Only one of `timesteps` or `sigmas` can be passed.")

    if timesteps is not None:
        scheduler.set_timesteps(timesteps=timesteps, device=device)
    elif sigmas is not None:
        scheduler.set_timesteps(sigmas=sigmas, device=device)
    else:
        scheduler.set_timesteps(num_inference_steps, device=device, mu=mu)

    timesteps = scheduler.timesteps
    num_inference_steps = len(timesteps)
    return timesteps, num_inference_steps

# FLUX pipeline function
class FluxWithCFGPipeline(FluxPipeline):
    """
    Extends the FluxPipeline to yield intermediate images during the denoising process 
    with progressively increasing resolution for faster generation.
    """
    @torch.inference_mode()
    def generate_images(
        self,
        prompt: Union[str, List[str]] = None,
        prompt_2: Optional[Union[str, List[str]]] = None,
        height: Optional[int] = None,
        width: Optional[int] = None,
        num_inference_steps: int = 4,
        timesteps: List[int] = None,
        guidance_scale: float = 3.5,
        num_images_per_prompt: Optional[int] = 1,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.FloatTensor] = None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        joint_attention_kwargs: Optional[Dict[str, Any]] = None,
        max_sequence_length: int = 300,
    ):
        """Generates images and yields intermediate results during the denoising process."""
        height = height or self.default_sample_size * self.vae_scale_factor
        width = width or self.default_sample_size * self.vae_scale_factor

        # 1. Check inputs
        self.check_inputs(
            prompt,
            prompt_2,
            height,
            width,
            prompt_embeds=prompt_embeds,
            pooled_prompt_embeds=pooled_prompt_embeds,
            max_sequence_length=max_sequence_length,
        )

        self._guidance_scale = guidance_scale
        self._joint_attention_kwargs = joint_attention_kwargs
        self._interrupt = False

        # 2. Define call parameters
        batch_size = 1 if isinstance(prompt, str) else len(prompt)
        device = self._execution_device

        # 3. Encode prompt
        lora_scale = joint_attention_kwargs.get("scale", None) if joint_attention_kwargs is not None else None
        prompt_embeds, pooled_prompt_embeds, text_ids = self.encode_prompt(
            prompt=prompt,
            prompt_2=prompt_2,
            prompt_embeds=prompt_embeds,
            pooled_prompt_embeds=pooled_prompt_embeds,
            device=device,
            num_images_per_prompt=num_images_per_prompt,
            max_sequence_length=max_sequence_length,
            lora_scale=lora_scale,
        )
        # 4. Prepare latent variables
        num_channels_latents = self.transformer.config.in_channels // 4
        latents, latent_image_ids = self.prepare_latents(
            batch_size * num_images_per_prompt,
            num_channels_latents,
            height,
            width,
            prompt_embeds.dtype,
            device,
            generator,
            latents,
        )
        # 5. Prepare timesteps
        sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
        image_seq_len = latents.shape[1]
        mu = calculate_timestep_shift(image_seq_len)
        timesteps, num_inference_steps = prepare_timesteps(
            self.scheduler,
            num_inference_steps,
            device,
            timesteps,
            sigmas,
            mu=mu,
        )
        self._num_timesteps = len(timesteps)

        # Handle guidance
        guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float16).expand(latents.shape[0]) if self.transformer.config.guidance_embeds else None

        # 6. Denoising loop
        for i, t in enumerate(timesteps):
            if self.interrupt:
                continue

            timestep = t.expand(latents.shape[0]).to(latents.dtype)

            noise_pred = self.transformer(
                hidden_states=latents,
                timestep=timestep / 1000,
                guidance=guidance,
                pooled_projections=pooled_prompt_embeds,
                encoder_hidden_states=prompt_embeds,
                txt_ids=text_ids,
                img_ids=latent_image_ids,
                joint_attention_kwargs=self.joint_attention_kwargs,
                return_dict=False,
            )[0]

             # Yield intermediate result
            latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
            torch.cuda.empty_cache()

        # Final image
        return self._decode_latents_to_image(latents, height, width, output_type)
        self.maybe_free_model_hooks()
        torch.cuda.empty_cache()

    def _decode_latents_to_image(self, latents, height, width, output_type, vae=None):
        """Decodes the given latents into an image."""
        vae = vae or self.vae
        latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
        latents = (latents / vae.config.scaling_factor) + vae.config.shift_factor
        image = vae.decode(latents, return_dict=False)[0]
        return self.image_processor.postprocess(image, output_type=output_type)[0]