File size: 10,827 Bytes
fb103c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c78df80
fb103c9
 
 
 
 
 
 
e956e8f
 
fb103c9
 
58b2d1a
fb103c9
 
c78df80
bcad601
c78df80
fb103c9
c78df80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb103c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a2aad52
fb103c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e0017b
fb103c9
 
 
 
 
 
 
1e0017b
fb103c9
 
 
 
 
 
 
 
 
1e0017b
 
 
fb103c9
1e0017b
fb103c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44f2386
617f900
44f2386
fb103c9
44f2386
617f900
44f2386
fb103c9
 
 
 
 
 
1e0017b
fb103c9
 
 
 
 
c78df80
 
 
 
fb103c9
 
 
 
 
 
 
 
 
 
d974734
fb103c9
 
 
 
45ae65e
fb103c9
 
 
 
1b5843f
fb103c9
 
 
 
1e0017b
 
 
 
fb103c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b5843f
 
fb103c9
 
617f900
fb103c9
 
 
 
 
617f900
fb103c9
 
 
 
 
 
 
 
 
 
1e0017b
fb103c9
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import gradio as gr
import json
import logging
import argparse
import torch
import os
from os import path
from PIL import Image
import numpy as np
import spaces
import copy
import random
import time
from typing import Any, Dict, List, Optional, Union
from huggingface_hub import hf_hub_download
from diffusers import DiffusionPipeline, FluxTransformer2DModel, FluxPipeline, AutoencoderTiny
import safetensors.torch
from safetensors.torch import load_file
from custom_pipeline import FluxWithCFGPipeline
from transformers import CLIPModel, CLIPProcessor, CLIPConfig
import gc

cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
os.environ["TRANSFORMERS_CACHE"] = cache_path
os.environ["HF_HUB_CACHE"] = cache_path
os.environ["HF_HOME"] = cache_path

device = "cuda" if torch.cuda.is_available() else "cpu"

torch.backends.cuda.matmul.allow_tf32 = True

dtype = torch.bfloat16
pipe = FluxWithCFGPipeline.from_pretrained(
    "ostris/OpenFLUX.1", torch_dtype=dtype
).to("cuda")
pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to("cuda")

pipe.to("cuda")
clipmodel = 'norm'
if clipmodel == "long":
    model_id = "zer0int/LongCLIP-GmP-ViT-L-14"
    config = CLIPConfig.from_pretrained(model_id)
    maxtokens = 77
if clipmodel == "norm":
    model_id = "zer0int/CLIP-GmP-ViT-L-14"
    config = CLIPConfig.from_pretrained(model_id)
    maxtokens = 77
clip_model = CLIPModel.from_pretrained(model_id, torch_dtype=torch.bfloat16, config=config, ignore_mismatched_sizes=True).to("cuda")
clip_processor = CLIPProcessor.from_pretrained(model_id, padding="max_length", max_length=maxtokens, ignore_mismatched_sizes=True, return_tensors="pt", truncation=True)
config.text_config.max_position_embeddings = 77

pipe.tokenizer = clip_processor.tokenizer
pipe.text_encoder = clip_model.text_model
pipe.tokenizer_max_length = maxtokens
pipe.text_encoder.dtype = torch.bfloat16
torch.cuda.empty_cache()

# Load LoRAs from JSON file
with open('loras.json', 'r') as f:
    loras = json.load(f)
    
MAX_SEED = 2**32-1

class calculateDuration:
    def __init__(self, activity_name=""):
        self.activity_name = activity_name

    def __enter__(self):
        self.start_time = time.time()
        return self

    def __exit__(self, exc_type, exc_value, traceback):
        self.end_time = time.time()
        self.elapsed_time = self.end_time - self.start_time
        if self.activity_name:
            print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
        else:
            print(f"Elapsed time: {self.elapsed_time:.6f} seconds")


def update_selection(evt: gr.SelectData, width, height):
    selected_lora = loras[evt.index]
    new_placeholder = f"Type a prompt for {selected_lora['title']}"
    lora_repo = selected_lora["repo"]
    updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨"
    if "aspect" in selected_lora:
        if selected_lora["aspect"] == "portrait":
            width = 768
            height = 1024
        elif selected_lora["aspect"] == "landscape":
            width = 1024
            height = 768
    return (
        gr.update(placeholder=new_placeholder),
        updated_text,
        evt.index,
        width,
        height,
    )

@spaces.GPU(duration=70)
def generate_image(prompt, negative_prompt, trigger_word, steps, seed, cfg_scale, width, height, lora_scale, progress):
    pipe.to("cuda")
    generator = torch.Generator(device="cuda").manual_seed(seed)
    
    with calculateDuration("Generating image"):
        # Generate image
        image = pipe(
            prompt=f"{prompt} {trigger_word}",
            negative_prompt=negative_prompt,
            num_inference_steps=steps,
            guidance_scale=cfg_scale,
            width=width,
            height=height,
            generator=generator,
            joint_attention_kwargs={"scale": lora_scale},
        ).images[0]
    return image

def run_lora(prompt, negative_prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
    if negative == "":
        negative = None
    if selected_index is None:
        raise gr.Error("Select a LoRA adapter square before proceeding.")

    selected_lora = loras[selected_index]
    lora_path = selected_lora["repo"]
    trigger_word = selected_lora["trigger_word"]
    if(trigger_word):
        if "trigger_position" in selected_lora:
            if selected_lora["trigger_position"] == "prepend":
                prompt_mash = f"{trigger_word} {prompt}"
            else:
                prompt_mash = f"{prompt} {trigger_word}"
        else:
            prompt_mash = f"{trigger_word} {prompt}"
    else:
        prompt_mash = prompt

    # Load LoRA weights
    with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"):
        if "weights" in selected_lora:
            pipe.load_lora_weights("ostris/OpenFLUX.1", weight_name="openflux1-v0.1.0-fast-lora.safetensors", adapter_name="fast")
            pipe.load_lora_weights(lora_path, weight_name=selected_lora["weights"], adapter_name=selected_lora["repo"], adapter_weights=lora_scale)
            pipe.set_adapters(adapter_names={"fast", selected_lora["repo"]}, adapter_weights=[1.0, lora_scale])
        else:
            pipe.load_lora_weights("ostris/OpenFLUX.1", weight_name="openflux1-v0.1.0-fast-lora.safetensors", adapter_name="fast")
            pipe.load_lora_weights(lora_path, adapter_name=selected_lora["repo"], adapter_weights=lora_scale)
            pipe.set_adapters(adapter_names={"fast", selected_lora["repo"]}, adapter_weights=[1.0, lora_scale])
        
    # Set random seed for reproducibility
    with calculateDuration("Randomizing seed"):
        if randomize_seed:
            seed = random.randint(0, MAX_SEED)
    
    image = generate_image(prompt, negative_prompt, trigger_word, steps, seed, cfg_scale, width, height, lora_scale, progress)
    pipe.to("cpu")
    pipe.unload_lora_weights()
    return image, seed  

run_lora.zerogpu = True
#pipe.load_lora_weights("ostris/OpenFLUX.1", weight_name="openflux1-v0.1.0-fast-lora.safetensors", adapter_name="fast")
#pipe.set_adapters("fast")
#pipe.set_adapters(["fast", "toy"], adapter_weights=[0.5, 1.0])
#pipe.fuse_lora(adapter_names=["fast"], lora_scale=1.0)

css = '''
#gen_btn{height: 100%}
#title{text-align: center}
#title h1{font-size: 3em; display:inline-flex; align-items:center}
#title img{width: 100px; margin-right: 0.5em}
#gallery .grid-wrap{height: 10vh}
'''
with gr.Blocks(theme=gr.themes.Soft(), css=css) as app:
    title = gr.HTML(
        """<h1><img src="https://huggingface.co/AlekseyCalvin/HSTklimbimOPENfluxLora/resolve/main/acs62iv.png" alt="LoRA">OpenFlux LoRAsoon®</h1>""",
        elem_id="title",
    )
    	    # Info blob stating what the app is running
    info_blob = gr.HTML(
        """<div id="info_blob"> SOON®'s curated LoRa Gallery & Art Manufactory Space.|Runs on Ostris' OpenFLUX.1 model + fast-gen LoRA & Zer0int's fine-tuned CLIP-GmP-ViT-L-14*! (*'normal' 77 tokens)| Largely stocked w/our trained LoRAs: Historic Color, Silver Age Poets, Sots Art, more!|</div>"""
    )

        # Info blob stating what the app is running
    info_blob = gr.HTML(
        """<div id="info_blob"> *Auto-planting of prompts with a choice LoRA trigger bugs on out in this space over flaws yet unclear. In its stead, I've preposed numbered LoRA-box rows with a matched token cheat-sheet: ungainly and free. So, prephrase your best prompts w/: 1-2. HST style autochrome photo |3. RCA style Communist poster |4. SOTS art |5. HST Austin Osman Spare style |6. Vladimir Mayakovsky |7. Marina Tsvetaeva |8. Tsvetaeva_02.CR2 |9. Anna Akhmatova |10. Osip Mandelshtam |11-12. Alexander Blok |13. Blok_02.CR2 |14. LEN Lenin |15. Leon Trotsky |16. Rosa Fluxemburg |17. HST photo in Peterhof |18-19. HST |20. HST autochrome portrait |21. HST archival photo |22. HST 1980s Perestroika-era Soviet photo |23-30. HST style |31. How2Draw a ____ |32. propaganda poster |33. TOK hybrid photo of____ with cartoon of____ |34. 2004 amateur IMG_1099.CR2 photo |35. unexpected photo of |36. flmft |37. 80s analog yearbook photo |38. TOK portra |39. pficonics |40. retrofuturism |41. wh3r3sw4ld0 |42. amateur photo |43. crisp |44-45. IMG_1099.CR2 photo |46. FilmFotos |47. ff-collage |48. vintage cover </div>"""
    )
    selected_index = gr.State(None)
    with gr.Row():
        with gr.Column(scale=3):
            prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Select LoRa/Style & type prompt! What do you want to see?")
    with gr.Row():
        with gr.Column(scale=3):
            negative_prompt = gr.Textbox(label="Negative Prompt", lines=1, placeholder="List unwanted conditions, open-fluxedly!")
        with gr.Column(scale=1, elem_id="gen_column"):
            generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn")
    with gr.Row():
        with gr.Column(scale=3):
            selected_info = gr.Markdown("")
            gallery = gr.Gallery(
                [(item["image"], item["title"]) for item in loras],
                label="LoRA Inventory",
                allow_preview=False,
                columns=3,
                elem_id="gallery"
            )
            
        with gr.Column(scale=4):
            result = gr.Image(label="Generated Image")

    with gr.Row():
        with gr.Accordion("Advanced Settings", open=True):
            with gr.Column():
                with gr.Row():
                    cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3)
                    steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=6)
                
                with gr.Row():
                    width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024)
                    height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)
                
                with gr.Row():
                    randomize_seed = gr.Checkbox(True, label="Randomize seed")
                    seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
                    lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=2.0, step=0.01, value=0.85)

    gallery.select(
        update_selection,
        inputs=[width, height],
        outputs=[prompt, selected_info, selected_index, width, height]
    )

    gr.on(
        triggers=[generate_button.click, prompt.submit],
        fn=run_lora,
        inputs=[prompt, negative_prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale],
        outputs=[result, seed]
    )

app.queue(default_concurrency_limit=None).launch(show_error=True)
app.launch()