Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,197 Bytes
fb103c9 026a400 fb103c9 7befb0b c78df80 fb103c9 e956e8f fb103c9 fbdebbe 58b2d1a 0945218 c78df80 bcad601 c78df80 fb103c9 c78df80 32a33cf c78df80 fb103c9 fbdebbe fb103c9 a2aad52 fb103c9 1e0017b fb103c9 1e0017b fb103c9 1e0017b b075e82 fb103c9 1e0017b fb103c9 a599dc8 a10dcba fb103c9 a599dc8 b9597b2 fb103c9 1e0017b fb103c9 c78df80 fb103c9 d974734 fb103c9 45ae65e fb103c9 1fa44a9 fb103c9 1e0017b fb103c9 1b5843f fb103c9 617f900 fb103c9 617f900 fb103c9 1e0017b fb103c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
import gradio as gr
import json
import logging
import argparse
import torch
import os
from os import path
from PIL import Image
import numpy as np
import spaces
import copy
import random
import time
from typing import Any, Dict, List, Optional, Union
from huggingface_hub import hf_hub_download
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoPipelineForImage2Image
import safetensors.torch
from safetensors.torch import load_file
from pipeline import FluxWithCFGPipeline
from transformers import CLIPModel, CLIPProcessor, CLIPConfig
import gc
cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
os.environ["TRANSFORMERS_CACHE"] = cache_path
os.environ["HF_HUB_CACHE"] = cache_path
os.environ["HF_HOME"] = cache_path
device = "cuda" if torch.cuda.is_available() else "cpu"
torch.backends.cuda.matmul.allow_tf32 = True
torch._inductor.config.conv_1x1_as_mm = True
torch._inductor.config.coordinate_descent_tuning = True
torch._inductor.config.epilogue_fusion = False
torch._inductor.config.coordinate_descent_check_all_directions = True
dtype = torch.bfloat16
pipe = FluxWithCFGPipeline.from_pretrained("ostris/OpenFLUX.1", torch_dtype=dtype, text_encoder_3=None, tokenizer_3=None
).to("cuda")
pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to("cuda")
pipe.to("cuda")
clipmodel = 'norm'
if clipmodel == "long":
model_id = "zer0int/LongCLIP-GmP-ViT-L-14"
config = CLIPConfig.from_pretrained(model_id)
maxtokens = 77
if clipmodel == "norm":
model_id = "zer0int/CLIP-GmP-ViT-L-14"
config = CLIPConfig.from_pretrained(model_id)
maxtokens = 77
clip_model = CLIPModel.from_pretrained(model_id, torch_dtype=torch.bfloat16, config=config, ignore_mismatched_sizes=True).to("cuda")
clip_processor = CLIPProcessor.from_pretrained(model_id, padding="max_length", max_length=maxtokens, ignore_mismatched_sizes=True, return_tensors="pt", truncation=True)
config.text_config.max_position_embeddings = 77
_optional_components = [transformer, scheduler, vae, text_encoder, text_encoder_2, text_encoder_3, tokenizer, tokenizer_2, tokenizer_3]
pipe.tokenizer = clip_processor.tokenizer
pipe.text_encoder = clip_model.text_model
pipe.tokenizer_max_length = maxtokens
pipe.text_encoder.dtype = torch.bfloat16
torch.cuda.empty_cache()
pipe.transformer.to(memory_format=torch.channels_last)
pipe.vae.to(memory_format=torch.channels_last)
pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True)
pipe.vae.decode = torch.compile(pipe.vae.decode, mode="max-autotune", fullgraph=True)
# Load LoRAs from JSON file
with open('loras.json', 'r') as f:
loras = json.load(f)
MAX_SEED = 2**32-1
class calculateDuration:
def __init__(self, activity_name=""):
self.activity_name = activity_name
def __enter__(self):
self.start_time = time.time()
return self
def __exit__(self, exc_type, exc_value, traceback):
self.end_time = time.time()
self.elapsed_time = self.end_time - self.start_time
if self.activity_name:
print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
else:
print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
def update_selection(evt: gr.SelectData, width, height):
selected_lora = loras[evt.index]
new_placeholder = f"Type a prompt for {selected_lora['title']}"
lora_repo = selected_lora["repo"]
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨"
if "aspect" in selected_lora:
if selected_lora["aspect"] == "portrait":
width = 768
height = 1024
elif selected_lora["aspect"] == "landscape":
width = 1024
height = 768
return (
gr.update(placeholder=new_placeholder),
updated_text,
evt.index,
width,
height,
)
@spaces.GPU(duration=70)
def generate_image(prompt, negative_prompt, trigger_word, steps, seed, cfg_scale, width, height, lora_scale, progress):
pipe.to("cuda")
generator = torch.Generator(device="cuda").manual_seed(seed)
with calculateDuration("Generating image"):
# Generate image
image = pipe(
prompt=f"{prompt} {trigger_word}",
negative_prompt=negative_prompt,
num_inference_steps=steps,
guidance_scale=cfg_scale,
width=width,
height=height,
generator=generator,
joint_attention_kwargs={"scale": lora_scale},
).images[0]
return image
def run_lora(prompt, negative_prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
if negative_prompt == "":
negative_prompt = None
if selected_index is None:
raise gr.Error("Select a LoRA adapter square before proceeding.")
selected_lora = loras[selected_index]
lora_path = selected_lora["repo"]
trigger_word = selected_lora["trigger_word"]
if(trigger_word):
if "trigger_position" in selected_lora:
if selected_lora["trigger_position"] == "prepend":
prompt_mash = f"{trigger_word} {prompt}"
else:
prompt_mash = f"{prompt} {trigger_word}"
else:
prompt_mash = f"{trigger_word} {prompt}"
else:
prompt_mash = prompt
# Load LoRA weights
with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"):
if "weights" in selected_lora:
pipe.load_lora_weights("ostris/OpenFLUX.1", weight_name="openflux1-v0.1.0-fast-lora.safetensors", adapter_weights=[1.0])
pipe.load_lora_weights(lora_path, weight_name=selected_lora["weights"], adapter_name=selected_lora["repo"], adapter_weights=[lora_scale])
else:
pipe.load_lora_weights("ostris/OpenFLUX.1", weight_name="openflux1-v0.1.0-fast-lora.safetensors", adapter_weights=[1.0])
pipe.load_lora_weights(lora_path, adapter_name=selected_lora["repo"], adapter_weights=lora_scale)
# Set random seed for reproducibility
with calculateDuration("Randomizing seed"):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
image = generate_image(prompt, negative_prompt, trigger_word, steps, seed, cfg_scale, width, height, lora_scale, progress)
pipe.to("cpu")
pipe.unload_lora_weights()
return image, seed
run_lora.zerogpu = True
#pipe.load_lora_weights("ostris/OpenFLUX.1", weight_name="openflux1-v0.1.0-fast-lora.safetensors", adapter_name="fast")
#pipe.set_adapters("fast")
#pipe.set_adapters(["fast", "toy"], adapter_weights=[0.5, 1.0])
#pipe.fuse_lora(adapter_names=["fast"], lora_scale=1.0)
css = '''
#gen_btn{height: 100%}
#title{text-align: center}
#title h1{font-size: 3em; display:inline-flex; align-items:center}
#title img{width: 100px; margin-right: 0.5em}
#gallery .grid-wrap{height: 10vh}
'''
with gr.Blocks(theme=gr.themes.Soft(), css=css) as app:
title = gr.HTML(
"""<h1><img src="https://huggingface.co/AlekseyCalvin/HSTklimbimOPENfluxLora/resolve/main/acs62iv.png" alt="LoRA">OpenFlux LoRAsoon®</h1>""",
elem_id="title",
)
# Info blob stating what the app is running
info_blob = gr.HTML(
"""<div id="info_blob"> SOON®'s curated LoRa Gallery & Art Manufactory Space.|Runs on Ostris' OpenFLUX.1 model + fast-gen LoRA & Zer0int's fine-tuned CLIP-GmP-ViT-L-14*! (*'normal' 77 tokens)| Largely stocked w/our trained LoRAs: Historic Color, Silver Age Poets, Sots Art, more!|</div>"""
)
# Info blob stating what the app is running
info_blob = gr.HTML(
"""<div id="info_blob"> *Auto-planting of prompts with a choice LoRA trigger errors out in this space over flaws yet unclear. In its stead, we pose numbered LoRA-box rows & a matched token cheat-sheet: ungainly & free. So, prephrase your prompts w/: 1-2. HST style autochrome |3. RCA style Communist poster |4. SOTS art |5. HST Austin Osman Spare style |6. Vladimir Mayakovsky |7-8. Marina Tsvetaeva Tsvetaeva_02.CR2 |9. Anna Akhmatova |10. Osip Mandelshtam |11-12. Alexander Blok |13. Blok_02.CR2 |14. LEN Lenin |15. Leon Trotsky |16. Rosa Fluxemburg |17. HST Peterhof photo |18-19. HST |20. HST portrait |21. HST |22. HST 80s Perestroika-era Soviet photo |23-30. HST |31. How2Draw a__ |32. propaganda poster |33. TOK hybrid photo of__ with cartoon of__ |34. 2004 IMG_1099.CR2 photo |35. unexpected photo of |36. flmft |37. 80s yearbook photo |38. TOK portra |39. pficonics |40. retrofuturism |41. wh3r3sw4ld0 |42. amateur photo |43. crisp |44-45. IMG_1099.CR2 |46. FilmFotos |47. ff-collage |48. HST |49-50. AOS |51. cover </div>"""
)
selected_index = gr.State(None)
with gr.Row():
with gr.Column(scale=3):
prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Select LoRa/Style & type prompt! What do you want to see?")
with gr.Row():
with gr.Column(scale=3):
negative_prompt = gr.Textbox(label="Negative Prompt", lines=1, placeholder="List unwanted conditions, open-fluxedly!")
with gr.Column(scale=1, elem_id="gen_column"):
generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn")
with gr.Row():
with gr.Column(scale=3):
selected_info = gr.Markdown("")
gallery = gr.Gallery(
[(item["image"], item["title"]) for item in loras],
label="LoRA Inventory",
allow_preview=False,
columns=3,
elem_id="gallery"
)
with gr.Column(scale=4):
result = gr.Image(label="Generated Image")
with gr.Row():
with gr.Accordion("Advanced Settings", open=True):
with gr.Column():
with gr.Row():
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3)
steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=6)
with gr.Row():
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024)
height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)
with gr.Row():
randomize_seed = gr.Checkbox(True, label="Randomize seed")
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=2.0, step=0.01, value=0.85)
gallery.select(
update_selection,
inputs=[width, height],
outputs=[prompt, selected_info, selected_index, width, height]
)
gr.on(
triggers=[generate_button.click, prompt.submit],
fn=run_lora,
inputs=[prompt, negative_prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale],
outputs=[result, seed]
)
app.queue(default_concurrency_limit=None).launch(show_error=True)
app.launch()
|