Spaces:
Running
on
Zero
Running
on
Zero
import os | |
#if os.environ.get("SPACES_ZERO_GPU") is not None: | |
import spaces | |
#else: | |
# class spaces: | |
# @staticmethod | |
# def GPU(func): | |
# def wrapper(*args, **kwargs): | |
# return func(*args, **kwargs) | |
# return wrapper | |
import gradio as gr | |
import json | |
import logging | |
import argparse | |
import torch | |
import torchvision | |
from os import path | |
from PIL import Image | |
import numpy as np | |
import spaces | |
import copy | |
import random | |
import time | |
from torchvision import transforms | |
from dataclasses import dataclass | |
import math | |
from pathlib import Path | |
from typing import Any, Callable, Dict, List, Optional, Union | |
from huggingface_hub import hf_hub_download, snapshot_download | |
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoPipelineForImage2Image, FluxTransformer2DModel | |
import safetensors.torch | |
from safetensors.torch import load_file | |
import random | |
from tqdm import tqdm | |
from einops import rearrange, repeat | |
from torch import Tensor, nn | |
from pipeline import FluxWithCFGPipeline | |
from transformers import CLIPModel, CLIPProcessor, CLIPTextModel, CLIPTokenizer, CLIPConfig, T5EncoderModel, T5Tokenizer | |
import gc | |
import warnings | |
model_path = snapshot_download(repo_id="nyanko7/flux-dev-de-distill") | |
#cache_path = path.join(path.dirname(path.abspath(__file__)), "models") | |
#os.environ["TRANSFORMERS_CACHE"] = cache_path | |
#os.environ["HF_HUB_CACHE"] = cache_path | |
#os.environ["HF_HOME"] = cache_path | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
torch.backends.cuda.matmul.allow_tf32 = True | |
# Load LoRAs from JSON file | |
with open('loras.json', 'r') as f: | |
loras = json.load(f) | |
dtype = torch.bfloat16 | |
# ---------------- Encoders ---------------- | |
class HFEmbedder(nn.Module): | |
def __init__(self, version: str, max_length: int, **hf_kwargs): | |
super().__init__() | |
self.is_clip = version.startswith("openai") | |
self.max_length = max_length | |
self.output_key = "pooler_output" if self.is_clip else "last_hidden_state" | |
if self.is_clip: | |
self.tokenizer: CLIPTokenizer = CLIPTokenizer.from_pretrained(version, max_length=max_length) | |
self.hf_module: CLIPTextModel = CLIPTextModel.from_pretrained(version, **hf_kwargs) | |
else: | |
self.tokenizer: T5Tokenizer = T5Tokenizer.from_pretrained(version, max_length=max_length) | |
self.hf_module: T5EncoderModel = T5EncoderModel.from_pretrained(version, **hf_kwargs) | |
self.hf_module = self.hf_module.eval().requires_grad_(False) | |
def forward(self, text: list[str]) -> Tensor: | |
batch_encoding = self.tokenizer( | |
text, | |
truncation=True, | |
max_length=self.max_length, | |
return_length=False, | |
return_overflowing_tokens=False, | |
padding="max_length", | |
return_tensors="pt", | |
) | |
outputs = self.hf_module( | |
input_ids=batch_encoding["input_ids"].to(self.hf_module.device), | |
attention_mask=None, | |
output_hidden_states=False, | |
) | |
return outputs[self.output_key] | |
pipe = FluxWithCFGPipeline.from_pretrained("ostris/OpenFLUX.1", torch_dtype=dtype).to("cuda") | |
pipe.vae = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to("cuda") | |
pipe.to("cuda") | |
clipmodel = 'norm' | |
if clipmodel == "long": | |
model_id = "zer0int/LongCLIP-GmP-ViT-L-14" | |
config = CLIPConfig.from_pretrained(model_id) | |
maxtokens = 77 | |
if clipmodel == "norm": | |
model_id = "zer0int/CLIP-GmP-ViT-L-14" | |
config = CLIPConfig.from_pretrained(model_id) | |
maxtokens = 77 | |
clip_model = CLIPModel.from_pretrained(model_id, torch_dtype=torch.bfloat16, config=config, ignore_mismatched_sizes=True).to("cuda") | |
clip_processor = CLIPProcessor.from_pretrained(model_id, padding="max_length", max_length=maxtokens, ignore_mismatched_sizes=True, return_tensors="pt", truncation=True) | |
pipe.tokenizer = clip_processor.tokenizer | |
pipe.text_encoder = clip_model.text_model | |
pipe.text_encoder.dtype = torch.bfloat16 | |
pipe.to("cuda") | |
#clipmodel = 'norm' | |
#if clipmodel == "long": | |
# model_id = "zer0int/LongCLIP-GmP-ViT-L-14" | |
# config = CLIPConfig.from_pretrained(model_id) | |
# maxtokens = 77 | |
#if clipmodel == "norm": | |
# model_id = "zer0int/CLIP-GmP-ViT-L-14" | |
# config = CLIPConfig.from_pretrained(model_id) | |
# maxtokens = 77 | |
#clip_model = CLIPModel.from_pretrained(model_id, torch_dtype=torch.bfloat16, config=config, ignore_mismatched_sizes=True).to("cuda") | |
#clip_processor = CLIPProcessor.from_pretrained(model_id, padding="max_length", max_length=maxtokens, ignore_mismatched_sizes=True, return_tensors="pt", truncation=True) | |
#pipe.tokenizer = clip_processor.tokenizer | |
#pipe.text_encoder = clip_model.text_model | |
#pipe.tokenizer_max_length = maxtokens | |
#pipe.text_encoder.dtype = torch.bfloat16 | |
def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor) -> Tensor: | |
q, k = apply_rope(q, k, pe) | |
x = torch.nn.functional.scaled_dot_product_attention(q, k, v) | |
# x = rearrange(x, "B H L D -> B L (H D)") | |
x = x.permute(0, 2, 1, 3).reshape(x.size(0), x.size(2), -1) | |
return x | |
def rope(pos, dim, theta): | |
scale = torch.arange(0, dim, 2, dtype=torch.float64, device=pos.device) / dim | |
omega = 1.0 / (theta ** scale) | |
# out = torch.einsum("...n,d->...nd", pos, omega) | |
out = pos.unsqueeze(-1) * omega.unsqueeze(0) | |
cos_out = torch.cos(out) | |
sin_out = torch.sin(out) | |
out = torch.stack([cos_out, -sin_out, sin_out, cos_out], dim=-1) | |
# out = rearrange(out, "b n d (i j) -> b n d i j", i=2, j=2) | |
b, n, d, _ = out.shape | |
out = out.view(b, n, d, 2, 2) | |
return out.float() | |
def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor) -> tuple[Tensor, Tensor]: | |
xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2) | |
xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2) | |
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1] | |
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1] | |
return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk) | |
class EmbedND(nn.Module): | |
def __init__(self, dim: int, theta: int, axes_dim: list[int]): | |
super().__init__() | |
self.dim = dim | |
self.theta = theta | |
self.axes_dim = axes_dim | |
def forward(self, ids: Tensor) -> Tensor: | |
n_axes = ids.shape[-1] | |
emb = torch.cat( | |
[rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)], | |
dim=-3, | |
) | |
return emb.unsqueeze(1) | |
def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 1000.0): | |
""" | |
Create sinusoidal timestep embeddings. | |
:param t: a 1-D Tensor of N indices, one per batch element. | |
These may be fractional. | |
:param dim: the dimension of the output. | |
:param max_period: controls the minimum frequency of the embeddings. | |
:return: an (N, D) Tensor of positional embeddings. | |
""" | |
t = time_factor * t | |
half = dim // 2 | |
# Do not block CUDA steam, but having about 1e-4 differences with Flux official codes: | |
# freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32, device=t.device) / half) | |
# Block CUDA steam, but consistent with official codes: | |
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(t.device) | |
args = t[:, None].float() * freqs[None] | |
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) | |
if dim % 2: | |
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) | |
if torch.is_floating_point(t): | |
embedding = embedding.to(t) | |
return embedding | |
class MLPEmbedder(nn.Module): | |
def __init__(self, in_dim: int, hidden_dim: int): | |
super().__init__() | |
self.in_layer = nn.Linear(in_dim, hidden_dim, bias=True) | |
self.silu = nn.SiLU() | |
self.out_layer = nn.Linear(hidden_dim, hidden_dim, bias=True) | |
def forward(self, x: Tensor) -> Tensor: | |
return self.out_layer(self.silu(self.in_layer(x))) | |
class RMSNorm(torch.nn.Module): | |
def __init__(self, dim: int): | |
super().__init__() | |
self.scale = nn.Parameter(torch.ones(dim)) | |
def forward(self, x: Tensor): | |
x_dtype = x.dtype | |
x = x.float() | |
rrms = torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + 1e-6) | |
return (x * rrms).to(dtype=x_dtype) * self.scale | |
class QKNorm(torch.nn.Module): | |
def __init__(self, dim: int): | |
super().__init__() | |
self.query_norm = RMSNorm(dim) | |
self.key_norm = RMSNorm(dim) | |
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> tuple[Tensor, Tensor]: | |
q = self.query_norm(q) | |
k = self.key_norm(k) | |
return q.to(v), k.to(v) | |
class SelfAttention(nn.Module): | |
def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False): | |
super().__init__() | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
self.norm = QKNorm(head_dim) | |
self.proj = nn.Linear(dim, dim) | |
def forward(self, x: Tensor, pe: Tensor) -> Tensor: | |
qkv = self.qkv(x) | |
# q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads) | |
B, L, _ = qkv.shape | |
qkv = qkv.view(B, L, 3, self.num_heads, -1) | |
q, k, v = qkv.permute(2, 0, 3, 1, 4) | |
q, k = self.norm(q, k, v) | |
x = attention(q, k, v, pe=pe) | |
x = self.proj(x) | |
return x | |
class ModulationOut: | |
shift: Tensor | |
scale: Tensor | |
gate: Tensor | |
class Modulation(nn.Module): | |
def __init__(self, dim: int, double: bool): | |
super().__init__() | |
self.is_double = double | |
self.multiplier = 6 if double else 3 | |
self.lin = nn.Linear(dim, self.multiplier * dim, bias=True) | |
def forward(self, vec: Tensor) -> tuple[ModulationOut, ModulationOut | None]: | |
out = self.lin(nn.functional.silu(vec))[:, None, :].chunk(self.multiplier, dim=-1) | |
return ( | |
ModulationOut(*out[:3]), | |
ModulationOut(*out[3:]) if self.is_double else None, | |
) | |
class DoubleStreamBlock(nn.Module): | |
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False): | |
super().__init__() | |
mlp_hidden_dim = int(hidden_size * mlp_ratio) | |
self.num_heads = num_heads | |
self.hidden_size = hidden_size | |
self.img_mod = Modulation(hidden_size, double=True) | |
self.img_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias) | |
self.img_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
self.img_mlp = nn.Sequential( | |
nn.Linear(hidden_size, mlp_hidden_dim, bias=True), | |
nn.GELU(approximate="tanh"), | |
nn.Linear(mlp_hidden_dim, hidden_size, bias=True), | |
) | |
self.txt_mod = Modulation(hidden_size, double=True) | |
self.txt_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias) | |
self.txt_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
self.txt_mlp = nn.Sequential( | |
nn.Linear(hidden_size, mlp_hidden_dim, bias=True), | |
nn.GELU(approximate="tanh"), | |
nn.Linear(mlp_hidden_dim, hidden_size, bias=True), | |
) | |
def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor) -> tuple[Tensor, Tensor]: | |
img_mod1, img_mod2 = self.img_mod(vec) | |
txt_mod1, txt_mod2 = self.txt_mod(vec) | |
# prepare image for attention | |
img_modulated = self.img_norm1(img) | |
img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift | |
img_qkv = self.img_attn.qkv(img_modulated) | |
# img_q, img_k, img_v = rearrange(img_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads) | |
B, L, _ = img_qkv.shape | |
H = self.num_heads | |
D = img_qkv.shape[-1] // (3 * H) | |
img_q, img_k, img_v = img_qkv.view(B, L, 3, H, D).permute(2, 0, 3, 1, 4) | |
img_q, img_k = self.img_attn.norm(img_q, img_k, img_v) | |
# prepare txt for attention | |
txt_modulated = self.txt_norm1(txt) | |
txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift | |
txt_qkv = self.txt_attn.qkv(txt_modulated) | |
# txt_q, txt_k, txt_v = rearrange(txt_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads) | |
B, L, _ = txt_qkv.shape | |
txt_q, txt_k, txt_v = txt_qkv.view(B, L, 3, H, D).permute(2, 0, 3, 1, 4) | |
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v) | |
# run actual attention | |
q = torch.cat((txt_q, img_q), dim=2) | |
k = torch.cat((txt_k, img_k), dim=2) | |
v = torch.cat((txt_v, img_v), dim=2) | |
attn = attention(q, k, v, pe=pe) | |
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :] | |
# calculate the img bloks | |
img = img + img_mod1.gate * self.img_attn.proj(img_attn) | |
img = img + img_mod2.gate * self.img_mlp((1 + img_mod2.scale) * self.img_norm2(img) + img_mod2.shift) | |
# calculate the txt bloks | |
txt = txt + txt_mod1.gate * self.txt_attn.proj(txt_attn) | |
txt = txt + txt_mod2.gate * self.txt_mlp((1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift) | |
return img, txt | |
class SingleStreamBlock(nn.Module): | |
""" | |
A DiT block with parallel linear layers as described in | |
https://arxiv.org/abs/2302.05442 and adapted modulation interface. | |
""" | |
def __init__( | |
self, | |
hidden_size: int, | |
num_heads: int, | |
mlp_ratio: float = 4.0, | |
qk_scale: float | None = None, | |
): | |
super().__init__() | |
self.hidden_dim = hidden_size | |
self.num_heads = num_heads | |
head_dim = hidden_size // num_heads | |
self.scale = qk_scale or head_dim**-0.5 | |
self.mlp_hidden_dim = int(hidden_size * mlp_ratio) | |
# qkv and mlp_in | |
self.linear1 = nn.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim) | |
# proj and mlp_out | |
self.linear2 = nn.Linear(hidden_size + self.mlp_hidden_dim, hidden_size) | |
self.norm = QKNorm(head_dim) | |
self.hidden_size = hidden_size | |
self.pre_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
self.mlp_act = nn.GELU(approximate="tanh") | |
self.modulation = Modulation(hidden_size, double=False) | |
def forward(self, x: Tensor, vec: Tensor, pe: Tensor) -> Tensor: | |
mod, _ = self.modulation(vec) | |
x_mod = (1 + mod.scale) * self.pre_norm(x) + mod.shift | |
qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1) | |
# q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads) | |
qkv = qkv.view(qkv.size(0), qkv.size(1), 3, self.num_heads, self.hidden_size // self.num_heads) | |
q, k, v = qkv.permute(2, 0, 3, 1, 4) | |
q, k = self.norm(q, k, v) | |
# compute attention | |
attn = attention(q, k, v, pe=pe) | |
# compute activation in mlp stream, cat again and run second linear layer | |
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2)) | |
return x + mod.gate * output | |
class LastLayer(nn.Module): | |
def __init__(self, hidden_size: int, patch_size: int, out_channels: int): | |
super().__init__() | |
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True) | |
self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True)) | |
def forward(self, x: Tensor, vec: Tensor) -> Tensor: | |
shift, scale = self.adaLN_modulation(vec).chunk(2, dim=1) | |
x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :] | |
x = self.linear(x) | |
return x | |
class FluxParams: | |
in_channels: int = 64 | |
vec_in_dim: int = 768 | |
context_in_dim: int = 4096 | |
hidden_size: int = 3072 | |
mlp_ratio: float = 4.0 | |
num_heads: int = 24 | |
depth: int = 19 | |
depth_single_blocks: int = 38 | |
axes_dim: list = [16, 56, 56] | |
theta: int = 10_000 | |
qkv_bias: bool = True | |
guidance_embed: bool = True | |
class Flux(nn.Module): | |
""" | |
Transformer model for flow matching on sequences. | |
""" | |
def __init__(self, params = FluxParams()): | |
super().__init__() | |
self.params = params | |
self.in_channels = params.in_channels | |
self.out_channels = self.in_channels | |
if params.hidden_size % params.num_heads != 0: | |
raise ValueError( | |
f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}" | |
) | |
pe_dim = params.hidden_size // params.num_heads | |
if sum(params.axes_dim) != pe_dim: | |
raise ValueError(f"Got {params.axes_dim} but expected positional dim {pe_dim}") | |
self.hidden_size = params.hidden_size | |
self.num_heads = params.num_heads | |
self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim) | |
self.img_in = nn.Linear(self.in_channels, self.hidden_size, bias=True) | |
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) | |
self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size) | |
# self.guidance_in = ( | |
# MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) if params.guidance_embed else nn.Identity() | |
# ) | |
self.txt_in = nn.Linear(params.context_in_dim, self.hidden_size) | |
self.double_blocks = nn.ModuleList( | |
[ | |
DoubleStreamBlock( | |
self.hidden_size, | |
self.num_heads, | |
mlp_ratio=params.mlp_ratio, | |
qkv_bias=params.qkv_bias, | |
) | |
for _ in range(params.depth) | |
] | |
) | |
self.single_blocks = nn.ModuleList( | |
[ | |
SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio) | |
for _ in range(params.depth_single_blocks) | |
] | |
) | |
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels) | |
def forward( | |
self, | |
img: Tensor, | |
img_ids: Tensor, | |
txt: Tensor, | |
txt_ids: Tensor, | |
timesteps: Tensor, | |
y: Tensor, | |
guidance: Tensor | None = None, | |
use_guidance_vec = True, | |
) -> Tensor: | |
if img.ndim != 3 or txt.ndim != 3: | |
raise ValueError("Input img and txt tensors must have 3 dimensions.") | |
# running on sequences img | |
img = self.img_in(img) | |
vec = self.time_in(timestep_embedding(timesteps, 256)) | |
# if self.params.guidance_embed and use_guidance_vec: | |
# if guidance is None: | |
# raise ValueError("Didn't get guidance strength for guidance distilled model.") | |
# vec = vec + self.guidance_in(timestep_embedding(guidance, 256)) | |
vec = vec + self.vector_in(y) | |
txt = self.txt_in(txt) | |
ids = torch.cat((txt_ids, img_ids), dim=1) | |
pe = self.pe_embedder(ids) | |
for block in self.double_blocks: | |
img, txt = block(img=img, txt=txt, vec=vec, pe=pe) | |
img = torch.cat((txt, img), 1) | |
for block in self.single_blocks: | |
img = block(img, vec=vec, pe=pe) | |
img = img[:, txt.shape[1] :, ...] | |
img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels) | |
return img | |
def prepare(t5: HFEmbedder, clip: HFEmbedder, img: Tensor, prompt: str | list[str]) -> dict[str, Tensor]: | |
bs, c, h, w = img.shape | |
if bs == 1 and not isinstance(prompt, str): | |
bs = len(prompt) | |
img = rearrange(img, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2) | |
if img.shape[0] == 1 and bs > 1: | |
img = repeat(img, "1 ... -> bs ...", bs=bs) | |
img_ids = torch.zeros(h // 2, w // 2, 3) | |
img_ids[..., 1] = img_ids[..., 1] + torch.arange(h // 2)[:, None] | |
img_ids[..., 2] = img_ids[..., 2] + torch.arange(w // 2)[None, :] | |
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs) | |
if isinstance(prompt, str): | |
prompt = [prompt] | |
txt = t5(prompt) | |
if txt.shape[0] == 1 and bs > 1: | |
txt = repeat(txt, "1 ... -> bs ...", bs=bs) | |
txt_ids = torch.zeros(bs, txt.shape[1], 3) | |
vec = clip(prompt) | |
if vec.shape[0] == 1 and bs > 1: | |
vec = repeat(vec, "1 ... -> bs ...", bs=bs) | |
return { | |
"img": img, | |
"img_ids": img_ids.to(img.device), | |
"txt": txt.to(img.device), | |
"txt_ids": txt_ids.to(img.device), | |
"vec": vec.to(img.device), | |
} | |
def time_shift(mu: float, sigma: float, t: Tensor): | |
return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma) | |
def get_lin_function( | |
x1: float = 256, y1: float = 0.5, x2: float = 4096, y2: float = 1.15 | |
) -> Callable[[float], float]: | |
m = (y2 - y1) / (x2 - x1) | |
b = y1 - m * x1 | |
return lambda x: m * x + b | |
def get_schedule( | |
num_steps: int, | |
image_seq_len: int, | |
base_shift: float = 0.5, | |
max_shift: float = 1.15, | |
shift: bool = True, | |
) -> list[float]: | |
# extra step for zero | |
timesteps = torch.linspace(1, 0, num_steps + 1) | |
# shifting the schedule to favor high timesteps for higher signal images | |
if shift: | |
# eastimate mu based on linear estimation between two points | |
mu = get_lin_function(y1=base_shift, y2=max_shift)(image_seq_len) | |
timesteps = time_shift(mu, 1.0, timesteps) | |
return timesteps.tolist() | |
def denoise( | |
model: Flux, | |
# model input | |
img: Tensor, | |
img_ids: Tensor, | |
txt: Tensor, | |
txt_ids: Tensor, | |
vec: Tensor, | |
# sampling parameters | |
timesteps: list[float], | |
guidance: float = 4.0, | |
use_cfg_guidance = False, | |
): | |
# this is ignored for schnell | |
guidance_vec = torch.full((img.shape[0],), guidance, device=img.device, dtype=img.dtype) | |
for t_curr, t_prev in tqdm(zip(timesteps[:-1], timesteps[1:])): | |
t_vec = torch.full((img.shape[0],), t_curr, dtype=img.dtype, device=img.device) | |
if use_cfg_guidance: | |
half_x = img[:len(img)//2] | |
img = torch.cat([half_x, half_x], dim=0) | |
t_vec = torch.full((img.shape[0],), t_curr, dtype=img.dtype, device=img.device) | |
pred = model( | |
img=img, | |
img_ids=img_ids, | |
txt=txt, | |
txt_ids=txt_ids, | |
y=vec, | |
timesteps=t_vec, | |
guidance=guidance_vec, | |
use_guidance_vec=not use_cfg_guidance, | |
) | |
if use_cfg_guidance: | |
uncond, cond = pred.chunk(2, dim=0) | |
model_output = uncond + guidance * (cond - uncond) | |
pred = torch.cat([model_output, model_output], dim=0) | |
img = img + (t_prev - t_curr) * pred | |
return img | |
def unpack(x: Tensor, height: int, width: int) -> Tensor: | |
return rearrange( | |
x, | |
"b (h w) (c ph pw) -> b c (h ph) (w pw)", | |
h=math.ceil(height / 16), | |
w=math.ceil(width / 16), | |
ph=2, | |
pw=2, | |
) | |
class SamplingOptions: | |
prompt: str | |
width: int | |
height: int | |
guidance: float | |
seed: int | None | |
def get_image(image) -> torch.Tensor | None: | |
if image is None: | |
return None | |
image = Image.fromarray(image).convert("RGB") | |
transform = transforms.Compose([ | |
transforms.ToTensor(), | |
transforms.Lambda(lambda x: 2.0 * x - 1.0), | |
]) | |
img: torch.Tensor = transform(image) | |
return img[None, ...] | |
# ---------------- Demo ---------------- | |
class EmptyInitWrapper(torch.overrides.TorchFunctionMode): | |
def __init__(self, device=None): | |
self.device = device | |
def __torch_function__(self, func, types, args=(), kwargs=None): | |
kwargs = kwargs or {} | |
if getattr(func, "__module__", None) == "torch.nn.init": | |
if "tensor" in kwargs: | |
return kwargs["tensor"] | |
else: | |
return args[0] | |
if ( | |
self.device is not None | |
and func in torch.utils._device._device_constructors() | |
and kwargs.get("device") is None | |
): | |
kwargs["device"] = self.device | |
return func(*args, **kwargs) | |
with EmptyInitWrapper(): | |
model = Flux().to(dtype=torch.bfloat16, device="cuda") | |
sd = load_file(f"{model_path}/consolidated_s6700.safetensors") | |
sd = {k.replace("model.", ""): v for k, v in sd.items()} | |
result = model.load_state_dict(sd) | |
#@torch.cuda.empty_cache() | |
class calculateDuration: | |
def __init__(self, activity_name=""): | |
self.activity_name = activity_name | |
def __enter__(self): | |
self.start_time = time.time() | |
return self | |
def __exit__(self, exc_type, exc_value, traceback): | |
self.end_time = time.time() | |
self.elapsed_time = self.end_time - self.start_time | |
if self.activity_name: | |
print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds") | |
else: | |
print(f"Elapsed time: {self.elapsed_time:.6f} seconds") | |
def update_selection(evt: gr.SelectData, width, height): | |
selected_lora = loras[evt.index] | |
new_placeholder = f"Type a prompt for {selected_lora['title']}" | |
lora_repo = selected_lora["repo"] | |
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨" | |
if "aspect" in selected_lora: | |
if selected_lora["aspect"] == "portrait": | |
width = 768 | |
height = 1024 | |
elif selected_lora["aspect"] == "landscape": | |
width = 1024 | |
height = 768 | |
return ( | |
gr.update(placeholder=new_placeholder), | |
updated_text, | |
evt.index, | |
width, | |
height, | |
) | |
def generate_image(prompt, trigger_word, steps, seed, cfg_scale, width, height, negative_prompt, lora_scale, progress): | |
pipe.to("cuda") | |
generator = torch.Generator(device="cuda").manual_seed(seed) | |
with calculateDuration("Generating image"): | |
# Generate image | |
image = pipe( | |
prompt=f"{prompt} {trigger_word}", | |
negative_prompt=negative_prompt, | |
num_inference_steps=steps, | |
guidance_scale=cfg_scale, | |
width=width, | |
height=height, | |
generator=generator, | |
joint_attention_kwargs={"scale": lora_scale}, | |
).images[0] | |
return image | |
def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, negative_prompt, lora_scale, progress=gr.Progress(track_tqdm=True)): | |
if negative_prompt == "": | |
negative_prompt = None | |
if selected_index is None: | |
raise gr.Error("You must select a LoRA before proceeding.") | |
selected_lora = loras[selected_index] | |
lora_path = selected_lora["repo"] | |
trigger_word = selected_lora["trigger_word"] | |
# Load LoRA weights | |
with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"): | |
if "weights" in selected_lora: | |
pipe.load_lora_weights(lora_path, weight_name=selected_lora["weights"]) | |
else: | |
pipe.load_lora_weights(lora_path) | |
# Set random seed for reproducibility | |
with calculateDuration("Randomizing seed"): | |
if randomize_seed: | |
seed = random.randint(0, 2**32-1) | |
image = generate_image(prompt, trigger_word, steps, seed, cfg_scale, width, height, negative_prompt, lora_scale, progress) | |
pipe.to("cpu") | |
pipe.unload_lora_weights() | |
return image, seed | |
run_lora.zerogpu = True | |
css = ''' | |
#gen_btn{height: 100%} | |
#title{text-align: center} | |
#title h1{font-size: 3em; display:inline-flex; align-items:center} | |
#title img{width: 100px; margin-right: 0.5em} | |
#gallery .grid-wrap{height: 10vh} | |
''' | |
with gr.Blocks(theme=gr.themes.Soft(), css=css) as app: | |
title = gr.HTML( | |
"""<h1><img src="https://huggingface.co/AlekseyCalvin/HSTklimbimOPENfluxLora/resolve/main/acs62iv.png" alt="LoRA">OpenFlux LoRAsoon®</h1>""", | |
elem_id="title", | |
) | |
# Info blob stating what the app is running | |
info_blob = gr.HTML( | |
"""<div id="info_blob"> SOON®'s curated LoRa Gallery & Art Manufactory Space.|Runs on Ostris' OpenFLUX.1 model + fast-gen LoRA & Zer0int's fine-tuned CLIP-GmP-ViT-L-14*! (*'normal' 77 tokens)| Largely stocked w/our trained LoRAs: Historic Color, Silver Age Poets, Sots Art, more!|</div>""" | |
) | |
# Info blob stating what the app is running | |
info_blob = gr.HTML( | |
"""<div id="info_blob"> *Auto-planting of prompts with a choice LoRA trigger errors out in this space over flaws yet unclear. In its stead, we pose numbered LoRA-box rows & a matched token cheat-sheet: ungainly & free. So, prephrase your prompts w/: 1-2. HST style autochrome |3. RCA style Communist poster |4. SOTS art |5. HST Austin Osman Spare style |6. Vladimir Mayakovsky |7-8. Marina Tsvetaeva Tsvetaeva_02.CR2 |9. Anna Akhmatova |10. Osip Mandelshtam |11-12. Alexander Blok |13. Blok_02.CR2 |14. LEN Lenin |15. Leon Trotsky |16. Rosa Fluxemburg |17. HST Peterhof photo |18-19. HST |20. HST portrait |21. HST |22. HST 80s Perestroika-era Soviet photo |23-30. HST |31. How2Draw a__ |32. propaganda poster |33. TOK hybrid photo of__ with cartoon of__ |34. 2004 IMG_1099.CR2 photo |35. unexpected photo of |36. flmft |37. 80s yearbook photo |38. TOK portra |39. pficonics |40. retrofuturism |41. wh3r3sw4ld0 |42. amateur photo |43. crisp |44-45. IMG_1099.CR2 |46. FilmFotos |47. ff-collage |48. HST |49-50. AOS |51. cover </div>""" | |
) | |
selected_index = gr.State(None) | |
with gr.Row(): | |
with gr.Column(scale=3): | |
prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Select LoRa/Style & type prompt!") | |
with gr.Row(): | |
with gr.Column(scale=3): | |
negative_prompt = gr.Textbox(label="Negative Prompt", lines=1, placeholder="List unwanted conditions, open-fluxedly!") | |
with gr.Column(scale=1, elem_id="gen_column"): | |
generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn") | |
with gr.Row(): | |
with gr.Column(scale=3): | |
selected_info = gr.Markdown("") | |
gallery = gr.Gallery( | |
[(item["image"], item["title"]) for item in loras], | |
label="LoRA Inventory", | |
allow_preview=False, | |
columns=3, | |
elem_id="gallery" | |
) | |
with gr.Column(scale=4): | |
result = gr.Image(label="Generated Image") | |
with gr.Row(): | |
with gr.Accordion("Advanced Settings", open=True): | |
with gr.Column(): | |
with gr.Row(): | |
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=1, value=3) | |
steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=6) | |
with gr.Row(): | |
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=768) | |
height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=768) | |
with gr.Row(): | |
randomize_seed = gr.Checkbox(True, label="Randomize seed") | |
seed = gr.Slider(label="Seed", minimum=0, maximum=2**32-1, step=1, value=0, randomize=True) | |
lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=1, step=0.01, value=0.95) | |
gallery.select( | |
update_selection, | |
inputs=[width, height], | |
outputs=[prompt, selected_info, selected_index, width, height] | |
) | |
gr.on( | |
triggers=[generate_button.click, prompt.submit], | |
fn=run_lora, | |
inputs=[prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, negative_prompt, lora_scale], | |
outputs=[result, seed] | |
) | |
warnings.filterwarnings("ignore", category=FutureWarning) | |
app.queue(default_concurrency_limit=None).launch(show_error=True) | |
app.launch() | |