Spaces:
Running
on
Zero
Running
on
Zero
AlekseyCalvin
commited on
Commit
•
9b31b59
1
Parent(s):
a2aad52
Upload 2 files
Browse files- mod.py +360 -0
- modutils.py +1290 -0
mod.py
ADDED
@@ -0,0 +1,360 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
+
import gradio as gr
|
3 |
+
import torch
|
4 |
+
from PIL import Image
|
5 |
+
from pathlib import Path
|
6 |
+
import gc
|
7 |
+
import subprocess
|
8 |
+
from env import num_cns, model_trigger
|
9 |
+
|
10 |
+
|
11 |
+
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
12 |
+
subprocess.run('pip cache purge', shell=True)
|
13 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
14 |
+
torch.set_grad_enabled(False)
|
15 |
+
|
16 |
+
|
17 |
+
control_images = [None] * num_cns
|
18 |
+
control_modes = [-1] * num_cns
|
19 |
+
control_scales = [0] * num_cns
|
20 |
+
|
21 |
+
|
22 |
+
def is_repo_name(s):
|
23 |
+
import re
|
24 |
+
return re.fullmatch(r'^[^/,\s\"\']+/[^/,\s\"\']+$', s)
|
25 |
+
|
26 |
+
|
27 |
+
def is_repo_exists(repo_id):
|
28 |
+
from huggingface_hub import HfApi
|
29 |
+
api = HfApi()
|
30 |
+
try:
|
31 |
+
if api.repo_exists(repo_id=repo_id): return True
|
32 |
+
else: return False
|
33 |
+
except Exception as e:
|
34 |
+
print(f"Error: Failed to connect {repo_id}.")
|
35 |
+
print(e)
|
36 |
+
return True # for safe
|
37 |
+
|
38 |
+
|
39 |
+
from translatepy import Translator
|
40 |
+
translator = Translator()
|
41 |
+
def translate_to_en(input: str):
|
42 |
+
try:
|
43 |
+
output = str(translator.translate(input, 'English'))
|
44 |
+
except Exception as e:
|
45 |
+
output = input
|
46 |
+
print(e)
|
47 |
+
return output
|
48 |
+
|
49 |
+
|
50 |
+
def clear_cache():
|
51 |
+
try:
|
52 |
+
torch.cuda.empty_cache()
|
53 |
+
#torch.cuda.reset_max_memory_allocated()
|
54 |
+
#torch.cuda.reset_peak_memory_stats()
|
55 |
+
gc.collect()
|
56 |
+
except Exception as e:
|
57 |
+
print(e)
|
58 |
+
raise Exception(f"Cache clearing error: {e}") from e
|
59 |
+
|
60 |
+
|
61 |
+
def get_repo_safetensors(repo_id: str):
|
62 |
+
from huggingface_hub import HfApi
|
63 |
+
api = HfApi()
|
64 |
+
try:
|
65 |
+
if not is_repo_name(repo_id) or not is_repo_exists(repo_id): return gr.update(value="", choices=[])
|
66 |
+
files = api.list_repo_files(repo_id=repo_id)
|
67 |
+
except Exception as e:
|
68 |
+
print(f"Error: Failed to get {repo_id}'s info.")
|
69 |
+
print(e)
|
70 |
+
gr.Warning(f"Error: Failed to get {repo_id}'s info.")
|
71 |
+
return gr.update(choices=[])
|
72 |
+
files = [f for f in files if f.endswith(".safetensors")]
|
73 |
+
if len(files) == 0: return gr.update(value="", choices=[])
|
74 |
+
else: return gr.update(value=files[0], choices=files)
|
75 |
+
|
76 |
+
|
77 |
+
def expand2square(pil_img: Image.Image, background_color: tuple=(0, 0, 0)):
|
78 |
+
width, height = pil_img.size
|
79 |
+
if width == height:
|
80 |
+
return pil_img
|
81 |
+
elif width > height:
|
82 |
+
result = Image.new(pil_img.mode, (width, width), background_color)
|
83 |
+
result.paste(pil_img, (0, (width - height) // 2))
|
84 |
+
return result
|
85 |
+
else:
|
86 |
+
result = Image.new(pil_img.mode, (height, height), background_color)
|
87 |
+
result.paste(pil_img, ((height - width) // 2, 0))
|
88 |
+
return result
|
89 |
+
|
90 |
+
|
91 |
+
# https://huggingface.co/spaces/DamarJati/FLUX.1-DEV-Canny/blob/main/app.py
|
92 |
+
def resize_image(image, target_width, target_height, crop=True):
|
93 |
+
from image_datasets.canny_dataset import c_crop
|
94 |
+
if crop:
|
95 |
+
image = c_crop(image) # Crop the image to square
|
96 |
+
original_width, original_height = image.size
|
97 |
+
|
98 |
+
# Resize to match the target size without stretching
|
99 |
+
scale = max(target_width / original_width, target_height / original_height)
|
100 |
+
resized_width = int(scale * original_width)
|
101 |
+
resized_height = int(scale * original_height)
|
102 |
+
|
103 |
+
image = image.resize((resized_width, resized_height), Image.LANCZOS)
|
104 |
+
|
105 |
+
# Center crop to match the target dimensions
|
106 |
+
left = (resized_width - target_width) // 2
|
107 |
+
top = (resized_height - target_height) // 2
|
108 |
+
image = image.crop((left, top, left + target_width, top + target_height))
|
109 |
+
else:
|
110 |
+
image = image.resize((target_width, target_height), Image.LANCZOS)
|
111 |
+
|
112 |
+
return image
|
113 |
+
|
114 |
+
|
115 |
+
# https://huggingface.co/spaces/jiuface/FLUX.1-dev-Controlnet-Union/blob/main/app.py
|
116 |
+
# https://huggingface.co/InstantX/FLUX.1-dev-Controlnet-Union
|
117 |
+
controlnet_union_modes = {
|
118 |
+
"None": -1,
|
119 |
+
#"scribble_hed": 0,
|
120 |
+
"canny": 0, # supported
|
121 |
+
"mlsd": 0, #supported
|
122 |
+
"tile": 1, #supported
|
123 |
+
"depth_midas": 2, # supported
|
124 |
+
"blur": 3, # supported
|
125 |
+
"openpose": 4, # supported
|
126 |
+
"gray": 5, # supported
|
127 |
+
"low_quality": 6, # supported
|
128 |
+
}
|
129 |
+
|
130 |
+
|
131 |
+
# https://github.com/pytorch/pytorch/issues/123834
|
132 |
+
def get_control_params():
|
133 |
+
from diffusers.utils import load_image
|
134 |
+
modes = []
|
135 |
+
images = []
|
136 |
+
scales = []
|
137 |
+
for i, mode in enumerate(control_modes):
|
138 |
+
if mode == -1 or control_images[i] is None: continue
|
139 |
+
modes.append(control_modes[i])
|
140 |
+
images.append(load_image(control_images[i]))
|
141 |
+
scales.append(control_scales[i])
|
142 |
+
return modes, images, scales
|
143 |
+
|
144 |
+
|
145 |
+
from preprocessor import Preprocessor
|
146 |
+
def preprocess_image(image: Image.Image, control_mode: str, height: int, width: int,
|
147 |
+
preprocess_resolution: int):
|
148 |
+
if control_mode == "None": return image
|
149 |
+
image_resolution = max(width, height)
|
150 |
+
image_before = resize_image(expand2square(image.convert("RGB")), image_resolution, image_resolution, False)
|
151 |
+
# generated control_
|
152 |
+
print("start to generate control image")
|
153 |
+
preprocessor = Preprocessor()
|
154 |
+
if control_mode == "depth_midas":
|
155 |
+
preprocessor.load("Midas")
|
156 |
+
control_image = preprocessor(
|
157 |
+
image=image_before,
|
158 |
+
image_resolution=image_resolution,
|
159 |
+
detect_resolution=preprocess_resolution,
|
160 |
+
)
|
161 |
+
if control_mode == "openpose":
|
162 |
+
preprocessor.load("Openpose")
|
163 |
+
control_image = preprocessor(
|
164 |
+
image=image_before,
|
165 |
+
hand_and_face=True,
|
166 |
+
image_resolution=image_resolution,
|
167 |
+
detect_resolution=preprocess_resolution,
|
168 |
+
)
|
169 |
+
if control_mode == "canny":
|
170 |
+
preprocessor.load("Canny")
|
171 |
+
control_image = preprocessor(
|
172 |
+
image=image_before,
|
173 |
+
image_resolution=image_resolution,
|
174 |
+
detect_resolution=preprocess_resolution,
|
175 |
+
)
|
176 |
+
|
177 |
+
if control_mode == "mlsd":
|
178 |
+
preprocessor.load("MLSD")
|
179 |
+
control_image = preprocessor(
|
180 |
+
image=image_before,
|
181 |
+
image_resolution=image_resolution,
|
182 |
+
detect_resolution=preprocess_resolution,
|
183 |
+
)
|
184 |
+
|
185 |
+
if control_mode == "scribble_hed":
|
186 |
+
preprocessor.load("HED")
|
187 |
+
control_image = preprocessor(
|
188 |
+
image=image_before,
|
189 |
+
image_resolution=image_resolution,
|
190 |
+
detect_resolution=preprocess_resolution,
|
191 |
+
)
|
192 |
+
|
193 |
+
if control_mode == "low_quality" or control_mode == "gray" or control_mode == "blur" or control_mode == "tile":
|
194 |
+
control_image = image_before
|
195 |
+
image_width = 768
|
196 |
+
image_height = 768
|
197 |
+
else:
|
198 |
+
# make sure control image size is same as resized_image
|
199 |
+
image_width, image_height = control_image.size
|
200 |
+
|
201 |
+
image_after = resize_image(control_image, width, height, False)
|
202 |
+
ref_width, ref_height = image.size
|
203 |
+
print(f"generate control image success: {ref_width}x{ref_height} => {image_width}x{image_height}")
|
204 |
+
return image_after
|
205 |
+
|
206 |
+
|
207 |
+
def get_control_union_mode():
|
208 |
+
return list(controlnet_union_modes.keys())
|
209 |
+
|
210 |
+
|
211 |
+
def set_control_union_mode(i: int, mode: str, scale: str):
|
212 |
+
global control_modes
|
213 |
+
global control_scales
|
214 |
+
control_modes[i] = controlnet_union_modes.get(mode, 0)
|
215 |
+
control_scales[i] = scale
|
216 |
+
if mode != "None": return True
|
217 |
+
else: return gr.update(visible=True)
|
218 |
+
|
219 |
+
|
220 |
+
def set_control_union_image(i: int, mode: str, image: Image.Image | None, height: int, width: int, preprocess_resolution: int):
|
221 |
+
global control_images
|
222 |
+
if image is None: return None
|
223 |
+
control_images[i] = preprocess_image(image, mode, height, width, preprocess_resolution)
|
224 |
+
return control_images[i]
|
225 |
+
|
226 |
+
|
227 |
+
def preprocess_i2i_image(image_path: str, is_preprocess: bool, height: int, width: int):
|
228 |
+
try:
|
229 |
+
if not is_preprocess: return image_path
|
230 |
+
image_resolution = max(width, height)
|
231 |
+
image = Image.open(image_path)
|
232 |
+
image_resized = resize_image(expand2square(image.convert("RGB")), image_resolution, image_resolution, False)
|
233 |
+
image_resized.save(image_path)
|
234 |
+
except Exception as e:
|
235 |
+
raise gr.Error(f"Error: {e}")
|
236 |
+
return image_path
|
237 |
+
|
238 |
+
|
239 |
+
def compose_lora_json(lorajson: list[dict], i: int, name: str, scale: float, filename: str, trigger: str):
|
240 |
+
lorajson[i]["name"] = str(name) if name != "None" else ""
|
241 |
+
lorajson[i]["scale"] = float(scale)
|
242 |
+
lorajson[i]["filename"] = str(filename)
|
243 |
+
lorajson[i]["trigger"] = str(trigger)
|
244 |
+
return lorajson
|
245 |
+
|
246 |
+
|
247 |
+
def is_valid_lora(lorajson: list[dict]):
|
248 |
+
valid = False
|
249 |
+
for d in lorajson:
|
250 |
+
if "name" in d.keys() and d["name"] and d["name"] != "None": valid = True
|
251 |
+
return valid
|
252 |
+
|
253 |
+
|
254 |
+
def get_trigger_word(lorajson: list[dict]):
|
255 |
+
trigger = ""
|
256 |
+
for d in lorajson:
|
257 |
+
if "name" in d.keys() and d["name"] and d["name"] != "None" and d["trigger"]:
|
258 |
+
trigger += ", " + d["trigger"]
|
259 |
+
return trigger
|
260 |
+
|
261 |
+
|
262 |
+
def get_model_trigger(model_name: str):
|
263 |
+
trigger = ""
|
264 |
+
if model_name in model_trigger.keys(): trigger += ", " + model_trigger[model_name]
|
265 |
+
return trigger
|
266 |
+
|
267 |
+
|
268 |
+
# https://huggingface.co/docs/diffusers/v0.23.1/en/api/loaders#diffusers.loaders.LoraLoaderMixin.fuse_lora
|
269 |
+
# https://github.com/huggingface/diffusers/issues/4919
|
270 |
+
def fuse_loras(pipe, lorajson: list[dict]):
|
271 |
+
try:
|
272 |
+
if not lorajson or not isinstance(lorajson, list): return pipe, [], []
|
273 |
+
a_list = []
|
274 |
+
w_list = []
|
275 |
+
for d in lorajson:
|
276 |
+
if not d or not isinstance(d, dict) or not d["name"] or d["name"] == "None": continue
|
277 |
+
k = d["name"]
|
278 |
+
if is_repo_name(k) and is_repo_exists(k):
|
279 |
+
a_name = Path(k).stem
|
280 |
+
pipe.load_lora_weights(k, weight_name=d["filename"], adapter_name = a_name, low_cpu_mem_usage=True)
|
281 |
+
elif not Path(k).exists():
|
282 |
+
print(f"LoRA not found: {k}")
|
283 |
+
continue
|
284 |
+
else:
|
285 |
+
w_name = Path(k).name
|
286 |
+
a_name = Path(k).stem
|
287 |
+
pipe.load_lora_weights(k, weight_name = w_name, adapter_name = a_name, low_cpu_mem_usage=True)
|
288 |
+
a_list.append(a_name)
|
289 |
+
w_list.append(d["scale"])
|
290 |
+
if not a_list: return pipe, [], []
|
291 |
+
#pipe.set_adapters(a_list, adapter_weights=w_list)
|
292 |
+
#pipe.fuse_lora(adapter_names=a_list, lora_scale=1.0)
|
293 |
+
#pipe.unload_lora_weights()
|
294 |
+
return pipe, a_list, w_list
|
295 |
+
except Exception as e:
|
296 |
+
print(f"External LoRA Error: {e}")
|
297 |
+
raise Exception(f"External LoRA Error: {e}") from e
|
298 |
+
|
299 |
+
|
300 |
+
def description_ui():
|
301 |
+
gr.Markdown(
|
302 |
+
"""
|
303 |
+
- Mod of [multimodalart/flux-lora-the-explorer](https://huggingface.co/spaces/multimodalart/flux-lora-the-explorer),
|
304 |
+
[multimodalart/flux-lora-lab](https://huggingface.co/spaces/multimodalart/flux-lora-lab),
|
305 |
+
[jiuface/FLUX.1-dev-Controlnet-Union](https://huggingface.co/spaces/jiuface/FLUX.1-dev-Controlnet-Union),
|
306 |
+
[DamarJati/FLUX.1-DEV-Canny](https://huggingface.co/spaces/DamarJati/FLUX.1-DEV-Canny),
|
307 |
+
[gokaygokay/FLUX-Prompt-Generator](https://huggingface.co/spaces/gokaygokay/FLUX-Prompt-Generator).
|
308 |
+
"""
|
309 |
+
)
|
310 |
+
|
311 |
+
|
312 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
|
313 |
+
def load_prompt_enhancer():
|
314 |
+
try:
|
315 |
+
model_checkpoint = "gokaygokay/Flux-Prompt-Enhance"
|
316 |
+
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
|
317 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint).eval().to(device=device)
|
318 |
+
enhancer_flux = pipeline('text2text-generation', model=model, tokenizer=tokenizer, repetition_penalty=1.5, device=device)
|
319 |
+
except Exception as e:
|
320 |
+
print(e)
|
321 |
+
enhancer_flux = None
|
322 |
+
return enhancer_flux
|
323 |
+
|
324 |
+
|
325 |
+
enhancer_flux = load_prompt_enhancer()
|
326 |
+
|
327 |
+
|
328 |
+
@spaces.GPU(duration=30)
|
329 |
+
def enhance_prompt(input_prompt):
|
330 |
+
result = enhancer_flux("enhance prompt: " + translate_to_en(input_prompt), max_length = 256)
|
331 |
+
enhanced_text = result[0]['generated_text']
|
332 |
+
return enhanced_text
|
333 |
+
|
334 |
+
|
335 |
+
def save_image(image, savefile, modelname, prompt, height, width, steps, cfg, seed):
|
336 |
+
import uuid
|
337 |
+
from PIL import PngImagePlugin
|
338 |
+
import json
|
339 |
+
try:
|
340 |
+
if savefile is None: savefile = f"{modelname.split('/')[-1]}_{str(uuid.uuid4())}.png"
|
341 |
+
metadata = {"prompt": prompt, "Model": {"Model": modelname.split("/")[-1]}}
|
342 |
+
metadata["num_inference_steps"] = steps
|
343 |
+
metadata["guidance_scale"] = cfg
|
344 |
+
metadata["seed"] = seed
|
345 |
+
metadata["resolution"] = f"{width} x {height}"
|
346 |
+
metadata_str = json.dumps(metadata)
|
347 |
+
info = PngImagePlugin.PngInfo()
|
348 |
+
info.add_text("metadata", metadata_str)
|
349 |
+
image.save(savefile, "PNG", pnginfo=info)
|
350 |
+
return str(Path(savefile).resolve())
|
351 |
+
except Exception as e:
|
352 |
+
print(f"Failed to save image file: {e}")
|
353 |
+
raise Exception(f"Failed to save image file:") from e
|
354 |
+
|
355 |
+
|
356 |
+
load_prompt_enhancer.zerogpu = True
|
357 |
+
fuse_loras.zerogpu = True
|
358 |
+
preprocess_image.zerogpu = True
|
359 |
+
get_control_params.zerogpu = True
|
360 |
+
clear_cache.zerogpu = True
|
modutils.py
ADDED
@@ -0,0 +1,1290 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
+
import json
|
3 |
+
import gradio as gr
|
4 |
+
from huggingface_hub import HfApi
|
5 |
+
import os
|
6 |
+
from pathlib import Path
|
7 |
+
from PIL import Image
|
8 |
+
|
9 |
+
|
10 |
+
from env import (HF_LORA_PRIVATE_REPOS1, HF_LORA_PRIVATE_REPOS2,
|
11 |
+
HF_MODEL_USER_EX, HF_MODEL_USER_LIKES, DIFFUSERS_FORMAT_LORAS,
|
12 |
+
directory_loras, hf_read_token, HF_TOKEN, CIVITAI_API_KEY)
|
13 |
+
|
14 |
+
|
15 |
+
MODEL_TYPE_DICT = {
|
16 |
+
"diffusers:StableDiffusionPipeline": "SD 1.5",
|
17 |
+
"diffusers:StableDiffusionXLPipeline": "SDXL",
|
18 |
+
"diffusers:FluxPipeline": "FLUX",
|
19 |
+
}
|
20 |
+
|
21 |
+
|
22 |
+
def get_user_agent():
|
23 |
+
return 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:127.0) Gecko/20100101 Firefox/127.0'
|
24 |
+
|
25 |
+
|
26 |
+
def to_list(s):
|
27 |
+
return [x.strip() for x in s.split(",") if not s == ""]
|
28 |
+
|
29 |
+
|
30 |
+
def list_uniq(l):
|
31 |
+
return sorted(set(l), key=l.index)
|
32 |
+
|
33 |
+
|
34 |
+
def list_sub(a, b):
|
35 |
+
return [e for e in a if e not in b]
|
36 |
+
|
37 |
+
|
38 |
+
def is_repo_name(s):
|
39 |
+
import re
|
40 |
+
return re.fullmatch(r'^[^/]+?/[^/]+?$', s)
|
41 |
+
|
42 |
+
|
43 |
+
from translatepy import Translator
|
44 |
+
translator = Translator()
|
45 |
+
def translate_to_en(input: str):
|
46 |
+
try:
|
47 |
+
output = str(translator.translate(input, 'English'))
|
48 |
+
except Exception as e:
|
49 |
+
output = input
|
50 |
+
print(e)
|
51 |
+
return output
|
52 |
+
|
53 |
+
|
54 |
+
def get_local_model_list(dir_path):
|
55 |
+
model_list = []
|
56 |
+
valid_extensions = ('.ckpt', '.pt', '.pth', '.safetensors', '.bin')
|
57 |
+
for file in Path(dir_path).glob("*"):
|
58 |
+
if file.suffix in valid_extensions:
|
59 |
+
file_path = str(Path(f"{dir_path}/{file.name}"))
|
60 |
+
model_list.append(file_path)
|
61 |
+
return model_list
|
62 |
+
|
63 |
+
|
64 |
+
def download_things(directory, url, hf_token="", civitai_api_key=""):
|
65 |
+
url = url.strip()
|
66 |
+
if "drive.google.com" in url:
|
67 |
+
original_dir = os.getcwd()
|
68 |
+
os.chdir(directory)
|
69 |
+
os.system(f"gdown --fuzzy {url}")
|
70 |
+
os.chdir(original_dir)
|
71 |
+
elif "huggingface.co" in url:
|
72 |
+
url = url.replace("?download=true", "")
|
73 |
+
# url = urllib.parse.quote(url, safe=':/') # fix encoding
|
74 |
+
if "/blob/" in url:
|
75 |
+
url = url.replace("/blob/", "/resolve/")
|
76 |
+
user_header = f'"Authorization: Bearer {hf_token}"'
|
77 |
+
if hf_token:
|
78 |
+
os.system(f"aria2c --console-log-level=error --summary-interval=10 --header={user_header} -c -x 16 -k 1M -s 16 {url} -d {directory} -o {url.split('/')[-1]}")
|
79 |
+
else:
|
80 |
+
os.system(f"aria2c --optimize-concurrent-downloads --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 {url} -d {directory} -o {url.split('/')[-1]}")
|
81 |
+
elif "civitai.com" in url:
|
82 |
+
if "?" in url:
|
83 |
+
url = url.split("?")[0]
|
84 |
+
if civitai_api_key:
|
85 |
+
url = url + f"?token={civitai_api_key}"
|
86 |
+
os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")
|
87 |
+
else:
|
88 |
+
print("\033[91mYou need an API key to download Civitai models.\033[0m")
|
89 |
+
else:
|
90 |
+
os.system(f"aria2c --console-log-level=error --summary-interval=10 -c -x 16 -k 1M -s 16 -d {directory} {url}")
|
91 |
+
|
92 |
+
|
93 |
+
def escape_lora_basename(basename: str):
|
94 |
+
return basename.replace(".", "_").replace(" ", "_").replace(",", "")
|
95 |
+
|
96 |
+
|
97 |
+
def to_lora_key(path: str):
|
98 |
+
return escape_lora_basename(Path(path).stem)
|
99 |
+
|
100 |
+
|
101 |
+
def to_lora_path(key: str):
|
102 |
+
if Path(key).is_file(): return key
|
103 |
+
path = Path(f"{directory_loras}/{escape_lora_basename(key)}.safetensors")
|
104 |
+
return str(path)
|
105 |
+
|
106 |
+
|
107 |
+
def safe_float(input):
|
108 |
+
output = 1.0
|
109 |
+
try:
|
110 |
+
output = float(input)
|
111 |
+
except Exception:
|
112 |
+
output = 1.0
|
113 |
+
return output
|
114 |
+
|
115 |
+
|
116 |
+
def save_images(images: list[Image.Image], metadatas: list[str]):
|
117 |
+
from PIL import PngImagePlugin
|
118 |
+
import uuid
|
119 |
+
try:
|
120 |
+
output_images = []
|
121 |
+
for image, metadata in zip(images, metadatas):
|
122 |
+
info = PngImagePlugin.PngInfo()
|
123 |
+
info.add_text("parameters", metadata)
|
124 |
+
savefile = f"{str(uuid.uuid4())}.png"
|
125 |
+
image.save(savefile, "PNG", pnginfo=info)
|
126 |
+
output_images.append(str(Path(savefile).resolve()))
|
127 |
+
return output_images
|
128 |
+
except Exception as e:
|
129 |
+
print(f"Failed to save image file: {e}")
|
130 |
+
raise Exception(f"Failed to save image file:") from e
|
131 |
+
|
132 |
+
|
133 |
+
def save_gallery_images(images, progress=gr.Progress(track_tqdm=True)):
|
134 |
+
from datetime import datetime, timezone, timedelta
|
135 |
+
progress(0, desc="Updating gallery...")
|
136 |
+
dt_now = datetime.now(timezone(timedelta(hours=9)))
|
137 |
+
basename = dt_now.strftime('%Y%m%d_%H%M%S_')
|
138 |
+
i = 1
|
139 |
+
if not images: return images, gr.update(visible=False)
|
140 |
+
output_images = []
|
141 |
+
output_paths = []
|
142 |
+
for image in images:
|
143 |
+
filename = basename + str(i) + ".png"
|
144 |
+
i += 1
|
145 |
+
oldpath = Path(image[0])
|
146 |
+
newpath = oldpath
|
147 |
+
try:
|
148 |
+
if oldpath.exists():
|
149 |
+
newpath = oldpath.resolve().rename(Path(filename).resolve())
|
150 |
+
except Exception as e:
|
151 |
+
print(e)
|
152 |
+
finally:
|
153 |
+
output_paths.append(str(newpath))
|
154 |
+
output_images.append((str(newpath), str(filename)))
|
155 |
+
progress(1, desc="Gallery updated.")
|
156 |
+
return gr.update(value=output_images), gr.update(value=output_paths, visible=True)
|
157 |
+
|
158 |
+
|
159 |
+
def download_private_repo(repo_id, dir_path, is_replace):
|
160 |
+
from huggingface_hub import snapshot_download
|
161 |
+
if not hf_read_token: return
|
162 |
+
try:
|
163 |
+
snapshot_download(repo_id=repo_id, local_dir=dir_path, allow_patterns=['*.ckpt', '*.pt', '*.pth', '*.safetensors', '*.bin'], use_auth_token=hf_read_token)
|
164 |
+
except Exception as e:
|
165 |
+
print(f"Error: Failed to download {repo_id}.")
|
166 |
+
print(e)
|
167 |
+
return
|
168 |
+
if is_replace:
|
169 |
+
for file in Path(dir_path).glob("*"):
|
170 |
+
if file.exists() and "." in file.stem or " " in file.stem and file.suffix in ['.ckpt', '.pt', '.pth', '.safetensors', '.bin']:
|
171 |
+
newpath = Path(f'{file.parent.name}/{escape_lora_basename(file.stem)}{file.suffix}')
|
172 |
+
file.resolve().rename(newpath.resolve())
|
173 |
+
|
174 |
+
|
175 |
+
private_model_path_repo_dict = {} # {"local filepath": "huggingface repo_id", ...}
|
176 |
+
|
177 |
+
|
178 |
+
def get_private_model_list(repo_id, dir_path):
|
179 |
+
global private_model_path_repo_dict
|
180 |
+
api = HfApi()
|
181 |
+
if not hf_read_token: return []
|
182 |
+
try:
|
183 |
+
files = api.list_repo_files(repo_id, token=hf_read_token)
|
184 |
+
except Exception as e:
|
185 |
+
print(f"Error: Failed to list {repo_id}.")
|
186 |
+
print(e)
|
187 |
+
return []
|
188 |
+
model_list = []
|
189 |
+
for file in files:
|
190 |
+
path = Path(f"{dir_path}/{file}")
|
191 |
+
if path.suffix in ['.ckpt', '.pt', '.pth', '.safetensors', '.bin']:
|
192 |
+
model_list.append(str(path))
|
193 |
+
for model in model_list:
|
194 |
+
private_model_path_repo_dict[model] = repo_id
|
195 |
+
return model_list
|
196 |
+
|
197 |
+
|
198 |
+
def download_private_file(repo_id, path, is_replace):
|
199 |
+
from huggingface_hub import hf_hub_download
|
200 |
+
file = Path(path)
|
201 |
+
newpath = Path(f'{file.parent.name}/{escape_lora_basename(file.stem)}{file.suffix}') if is_replace else file
|
202 |
+
if not hf_read_token or newpath.exists(): return
|
203 |
+
filename = file.name
|
204 |
+
dirname = file.parent.name
|
205 |
+
try:
|
206 |
+
hf_hub_download(repo_id=repo_id, filename=filename, local_dir=dirname, use_auth_token=hf_read_token)
|
207 |
+
except Exception as e:
|
208 |
+
print(f"Error: Failed to download {filename}.")
|
209 |
+
print(e)
|
210 |
+
return
|
211 |
+
if is_replace:
|
212 |
+
file.resolve().rename(newpath.resolve())
|
213 |
+
|
214 |
+
|
215 |
+
def download_private_file_from_somewhere(path, is_replace):
|
216 |
+
if not path in private_model_path_repo_dict.keys(): return
|
217 |
+
repo_id = private_model_path_repo_dict.get(path, None)
|
218 |
+
download_private_file(repo_id, path, is_replace)
|
219 |
+
|
220 |
+
|
221 |
+
model_id_list = []
|
222 |
+
def get_model_id_list():
|
223 |
+
global model_id_list
|
224 |
+
if len(model_id_list) != 0: return model_id_list
|
225 |
+
api = HfApi()
|
226 |
+
model_ids = []
|
227 |
+
try:
|
228 |
+
models_likes = []
|
229 |
+
for author in HF_MODEL_USER_LIKES:
|
230 |
+
models_likes.extend(api.list_models(author=author, task="text-to-image", cardData=True, sort="likes"))
|
231 |
+
models_ex = []
|
232 |
+
for author in HF_MODEL_USER_EX:
|
233 |
+
models_ex = api.list_models(author=author, task="text-to-image", cardData=True, sort="last_modified")
|
234 |
+
except Exception as e:
|
235 |
+
print(f"Error: Failed to list {author}'s models.")
|
236 |
+
print(e)
|
237 |
+
return model_ids
|
238 |
+
for model in models_likes:
|
239 |
+
model_ids.append(model.id) if not model.private else ""
|
240 |
+
anime_models = []
|
241 |
+
real_models = []
|
242 |
+
anime_models_flux = []
|
243 |
+
real_models_flux = []
|
244 |
+
for model in models_ex:
|
245 |
+
if not model.private and not model.gated:
|
246 |
+
if "diffusers:FluxPipeline" in model.tags: anime_models_flux.append(model.id) if "anime" in model.tags else real_models_flux.append(model.id)
|
247 |
+
else: anime_models.append(model.id) if "anime" in model.tags else real_models.append(model.id)
|
248 |
+
model_ids.extend(anime_models)
|
249 |
+
model_ids.extend(real_models)
|
250 |
+
model_ids.extend(anime_models_flux)
|
251 |
+
model_ids.extend(real_models_flux)
|
252 |
+
model_id_list = model_ids.copy()
|
253 |
+
return model_ids
|
254 |
+
|
255 |
+
|
256 |
+
model_id_list = get_model_id_list()
|
257 |
+
|
258 |
+
|
259 |
+
def get_t2i_model_info(repo_id: str):
|
260 |
+
api = HfApi(token=HF_TOKEN)
|
261 |
+
try:
|
262 |
+
if not is_repo_name(repo_id): return ""
|
263 |
+
model = api.model_info(repo_id=repo_id, timeout=5.0)
|
264 |
+
except Exception as e:
|
265 |
+
print(f"Error: Failed to get {repo_id}'s info.")
|
266 |
+
print(e)
|
267 |
+
return ""
|
268 |
+
if model.private or model.gated: return ""
|
269 |
+
tags = model.tags
|
270 |
+
info = []
|
271 |
+
url = f"https://huggingface.co/{repo_id}/"
|
272 |
+
if not 'diffusers' in tags: return ""
|
273 |
+
for k, v in MODEL_TYPE_DICT.items():
|
274 |
+
if k in tags: info.append(v)
|
275 |
+
if model.card_data and model.card_data.tags:
|
276 |
+
info.extend(list_sub(model.card_data.tags, ['text-to-image', 'stable-diffusion', 'stable-diffusion-api', 'safetensors', 'stable-diffusion-xl']))
|
277 |
+
info.append(f"DLs: {model.downloads}")
|
278 |
+
info.append(f"likes: {model.likes}")
|
279 |
+
info.append(model.last_modified.strftime("lastmod: %Y-%m-%d"))
|
280 |
+
md = f"Model Info: {', '.join(info)}, [Model Repo]({url})"
|
281 |
+
return gr.update(value=md)
|
282 |
+
|
283 |
+
|
284 |
+
def get_tupled_model_list(model_list):
|
285 |
+
if not model_list: return []
|
286 |
+
tupled_list = []
|
287 |
+
for repo_id in model_list:
|
288 |
+
api = HfApi()
|
289 |
+
try:
|
290 |
+
if not api.repo_exists(repo_id): continue
|
291 |
+
model = api.model_info(repo_id=repo_id)
|
292 |
+
except Exception as e:
|
293 |
+
print(e)
|
294 |
+
continue
|
295 |
+
if model.private or model.gated: continue
|
296 |
+
tags = model.tags
|
297 |
+
info = []
|
298 |
+
if not 'diffusers' in tags: continue
|
299 |
+
for k, v in MODEL_TYPE_DICT.items():
|
300 |
+
if k in tags: info.append(v)
|
301 |
+
if model.card_data and model.card_data.tags:
|
302 |
+
info.extend(list_sub(model.card_data.tags, ['text-to-image', 'stable-diffusion', 'stable-diffusion-api', 'safetensors', 'stable-diffusion-xl']))
|
303 |
+
if "pony" in info:
|
304 |
+
info.remove("pony")
|
305 |
+
name = f"{repo_id} (Pony🐴, {', '.join(info)})"
|
306 |
+
else:
|
307 |
+
name = f"{repo_id} ({', '.join(info)})"
|
308 |
+
tupled_list.append((name, repo_id))
|
309 |
+
return tupled_list
|
310 |
+
|
311 |
+
|
312 |
+
private_lora_dict = {}
|
313 |
+
try:
|
314 |
+
with open('lora_dict.json', encoding='utf-8') as f:
|
315 |
+
d = json.load(f)
|
316 |
+
for k, v in d.items():
|
317 |
+
private_lora_dict[escape_lora_basename(k)] = v
|
318 |
+
except Exception as e:
|
319 |
+
print(e)
|
320 |
+
loras_dict = {"None": ["", "", "", "", ""], "": ["", "", "", "", ""]} | private_lora_dict.copy()
|
321 |
+
civitai_not_exists_list = []
|
322 |
+
loras_url_to_path_dict = {} # {"URL to download": "local filepath", ...}
|
323 |
+
civitai_lora_last_results = {} # {"URL to download": {search results}, ...}
|
324 |
+
all_lora_list = []
|
325 |
+
|
326 |
+
|
327 |
+
private_lora_model_list = []
|
328 |
+
def get_private_lora_model_lists():
|
329 |
+
global private_lora_model_list
|
330 |
+
if len(private_lora_model_list) != 0: return private_lora_model_list
|
331 |
+
models1 = []
|
332 |
+
models2 = []
|
333 |
+
for repo in HF_LORA_PRIVATE_REPOS1:
|
334 |
+
models1.extend(get_private_model_list(repo, directory_loras))
|
335 |
+
for repo in HF_LORA_PRIVATE_REPOS2:
|
336 |
+
models2.extend(get_private_model_list(repo, directory_loras))
|
337 |
+
models = list_uniq(models1 + sorted(models2))
|
338 |
+
private_lora_model_list = models.copy()
|
339 |
+
return models
|
340 |
+
|
341 |
+
|
342 |
+
private_lora_model_list = get_private_lora_model_lists()
|
343 |
+
|
344 |
+
|
345 |
+
def get_civitai_info(path):
|
346 |
+
global civitai_not_exists_list
|
347 |
+
import requests
|
348 |
+
from urllib3.util import Retry
|
349 |
+
from requests.adapters import HTTPAdapter
|
350 |
+
if path in set(civitai_not_exists_list): return ["", "", "", "", ""]
|
351 |
+
if not Path(path).exists(): return None
|
352 |
+
user_agent = get_user_agent()
|
353 |
+
headers = {'User-Agent': user_agent, 'content-type': 'application/json'}
|
354 |
+
base_url = 'https://civitai.com/api/v1/model-versions/by-hash/'
|
355 |
+
params = {}
|
356 |
+
session = requests.Session()
|
357 |
+
retries = Retry(total=5, backoff_factor=1, status_forcelist=[500, 502, 503, 504])
|
358 |
+
session.mount("https://", HTTPAdapter(max_retries=retries))
|
359 |
+
import hashlib
|
360 |
+
with open(path, 'rb') as file:
|
361 |
+
file_data = file.read()
|
362 |
+
hash_sha256 = hashlib.sha256(file_data).hexdigest()
|
363 |
+
url = base_url + hash_sha256
|
364 |
+
try:
|
365 |
+
r = session.get(url, params=params, headers=headers, stream=True, timeout=(3.0, 15))
|
366 |
+
except Exception as e:
|
367 |
+
print(e)
|
368 |
+
return ["", "", "", "", ""]
|
369 |
+
if not r.ok: return None
|
370 |
+
json = r.json()
|
371 |
+
if not 'baseModel' in json:
|
372 |
+
civitai_not_exists_list.append(path)
|
373 |
+
return ["", "", "", "", ""]
|
374 |
+
items = []
|
375 |
+
items.append(" / ".join(json['trainedWords']))
|
376 |
+
items.append(json['baseModel'])
|
377 |
+
items.append(json['model']['name'])
|
378 |
+
items.append(f"https://civitai.com/models/{json['modelId']}")
|
379 |
+
items.append(json['images'][0]['url'])
|
380 |
+
return items
|
381 |
+
|
382 |
+
|
383 |
+
def get_lora_model_list():
|
384 |
+
loras = list_uniq(get_private_lora_model_lists() + get_local_model_list(directory_loras) + DIFFUSERS_FORMAT_LORAS)
|
385 |
+
loras.insert(0, "None")
|
386 |
+
loras.insert(0, "")
|
387 |
+
return loras
|
388 |
+
|
389 |
+
|
390 |
+
def get_all_lora_list():
|
391 |
+
global all_lora_list
|
392 |
+
loras = get_lora_model_list()
|
393 |
+
all_lora_list = loras.copy()
|
394 |
+
return loras
|
395 |
+
|
396 |
+
|
397 |
+
def get_all_lora_tupled_list():
|
398 |
+
global loras_dict
|
399 |
+
models = get_all_lora_list()
|
400 |
+
if not models: return []
|
401 |
+
tupled_list = []
|
402 |
+
for model in models:
|
403 |
+
#if not model: continue # to avoid GUI-related bug
|
404 |
+
basename = Path(model).stem
|
405 |
+
key = to_lora_key(model)
|
406 |
+
items = None
|
407 |
+
if key in loras_dict.keys():
|
408 |
+
items = loras_dict.get(key, None)
|
409 |
+
else:
|
410 |
+
items = get_civitai_info(model)
|
411 |
+
if items != None:
|
412 |
+
loras_dict[key] = items
|
413 |
+
name = basename
|
414 |
+
value = model
|
415 |
+
if items and items[2] != "":
|
416 |
+
if items[1] == "Pony":
|
417 |
+
name = f"{basename} (for {items[1]}🐴, {items[2]})"
|
418 |
+
else:
|
419 |
+
name = f"{basename} (for {items[1]}, {items[2]})"
|
420 |
+
tupled_list.append((name, value))
|
421 |
+
return tupled_list
|
422 |
+
|
423 |
+
|
424 |
+
def update_lora_dict(path):
|
425 |
+
global loras_dict
|
426 |
+
key = escape_lora_basename(Path(path).stem)
|
427 |
+
if key in loras_dict.keys(): return
|
428 |
+
items = get_civitai_info(path)
|
429 |
+
if items == None: return
|
430 |
+
loras_dict[key] = items
|
431 |
+
|
432 |
+
|
433 |
+
def download_lora(dl_urls: str):
|
434 |
+
global loras_url_to_path_dict
|
435 |
+
dl_path = ""
|
436 |
+
before = get_local_model_list(directory_loras)
|
437 |
+
urls = []
|
438 |
+
for url in [url.strip() for url in dl_urls.split(',')]:
|
439 |
+
local_path = f"{directory_loras}/{url.split('/')[-1]}"
|
440 |
+
if not Path(local_path).exists():
|
441 |
+
download_things(directory_loras, url, HF_TOKEN, CIVITAI_API_KEY)
|
442 |
+
urls.append(url)
|
443 |
+
after = get_local_model_list(directory_loras)
|
444 |
+
new_files = list_sub(after, before)
|
445 |
+
i = 0
|
446 |
+
for file in new_files:
|
447 |
+
path = Path(file)
|
448 |
+
if path.exists():
|
449 |
+
new_path = Path(f'{path.parent.name}/{escape_lora_basename(path.stem)}{path.suffix}')
|
450 |
+
path.resolve().rename(new_path.resolve())
|
451 |
+
loras_url_to_path_dict[urls[i]] = str(new_path)
|
452 |
+
update_lora_dict(str(new_path))
|
453 |
+
dl_path = str(new_path)
|
454 |
+
i += 1
|
455 |
+
return dl_path
|
456 |
+
|
457 |
+
|
458 |
+
def copy_lora(path: str, new_path: str):
|
459 |
+
import shutil
|
460 |
+
if path == new_path: return new_path
|
461 |
+
cpath = Path(path)
|
462 |
+
npath = Path(new_path)
|
463 |
+
if cpath.exists():
|
464 |
+
try:
|
465 |
+
shutil.copy(str(cpath.resolve()), str(npath.resolve()))
|
466 |
+
except Exception as e:
|
467 |
+
print(e)
|
468 |
+
return None
|
469 |
+
update_lora_dict(str(npath))
|
470 |
+
return new_path
|
471 |
+
else:
|
472 |
+
return None
|
473 |
+
|
474 |
+
|
475 |
+
def download_my_lora(dl_urls: str, lora1: str, lora2: str, lora3: str, lora4: str, lora5: str):
|
476 |
+
path = download_lora(dl_urls)
|
477 |
+
if path:
|
478 |
+
if not lora1 or lora1 == "None":
|
479 |
+
lora1 = path
|
480 |
+
elif not lora2 or lora2 == "None":
|
481 |
+
lora2 = path
|
482 |
+
elif not lora3 or lora3 == "None":
|
483 |
+
lora3 = path
|
484 |
+
elif not lora4 or lora4 == "None":
|
485 |
+
lora4 = path
|
486 |
+
elif not lora5 or lora5 == "None":
|
487 |
+
lora5 = path
|
488 |
+
choices = get_all_lora_tupled_list()
|
489 |
+
return gr.update(value=lora1, choices=choices), gr.update(value=lora2, choices=choices), gr.update(value=lora3, choices=choices),\
|
490 |
+
gr.update(value=lora4, choices=choices), gr.update(value=lora5, choices=choices)
|
491 |
+
|
492 |
+
|
493 |
+
def get_valid_lora_name(query: str, model_name: str):
|
494 |
+
path = "None"
|
495 |
+
if not query or query == "None": return "None"
|
496 |
+
if to_lora_key(query) in loras_dict.keys(): return query
|
497 |
+
if query in loras_url_to_path_dict.keys():
|
498 |
+
path = loras_url_to_path_dict[query]
|
499 |
+
else:
|
500 |
+
path = to_lora_path(query.strip().split('/')[-1])
|
501 |
+
if Path(path).exists():
|
502 |
+
return path
|
503 |
+
elif "http" in query:
|
504 |
+
dl_file = download_lora(query)
|
505 |
+
if dl_file and Path(dl_file).exists(): return dl_file
|
506 |
+
else:
|
507 |
+
dl_file = find_similar_lora(query, model_name)
|
508 |
+
if dl_file and Path(dl_file).exists(): return dl_file
|
509 |
+
return "None"
|
510 |
+
|
511 |
+
|
512 |
+
def get_valid_lora_path(query: str):
|
513 |
+
path = None
|
514 |
+
if not query or query == "None": return None
|
515 |
+
if to_lora_key(query) in loras_dict.keys(): return query
|
516 |
+
if Path(path).exists():
|
517 |
+
return path
|
518 |
+
else:
|
519 |
+
return None
|
520 |
+
|
521 |
+
|
522 |
+
def get_valid_lora_wt(prompt: str, lora_path: str, lora_wt: float):
|
523 |
+
import re
|
524 |
+
wt = lora_wt
|
525 |
+
result = re.findall(f'<lora:{to_lora_key(lora_path)}:(.+?)>', prompt)
|
526 |
+
if not result: return wt
|
527 |
+
wt = safe_float(result[0][0])
|
528 |
+
return wt
|
529 |
+
|
530 |
+
|
531 |
+
def set_prompt_loras(prompt, prompt_syntax, model_name, lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt):
|
532 |
+
import re
|
533 |
+
if not "Classic" in str(prompt_syntax): return lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt
|
534 |
+
lora1 = get_valid_lora_name(lora1, model_name)
|
535 |
+
lora2 = get_valid_lora_name(lora2, model_name)
|
536 |
+
lora3 = get_valid_lora_name(lora3, model_name)
|
537 |
+
lora4 = get_valid_lora_name(lora4, model_name)
|
538 |
+
lora5 = get_valid_lora_name(lora5, model_name)
|
539 |
+
if not "<lora" in prompt: return lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt
|
540 |
+
lora1_wt = get_valid_lora_wt(prompt, lora1, lora1_wt)
|
541 |
+
lora2_wt = get_valid_lora_wt(prompt, lora2, lora2_wt)
|
542 |
+
lora3_wt = get_valid_lora_wt(prompt, lora3, lora3_wt)
|
543 |
+
lora4_wt = get_valid_lora_wt(prompt, lora4, lora4_wt)
|
544 |
+
lora5_wt = get_valid_lora_wt(prompt, lora5, lora5_wt)
|
545 |
+
on1, label1, tag1, md1 = get_lora_info(lora1)
|
546 |
+
on2, label2, tag2, md2 = get_lora_info(lora2)
|
547 |
+
on3, label3, tag3, md3 = get_lora_info(lora3)
|
548 |
+
on4, label4, tag4, md4 = get_lora_info(lora4)
|
549 |
+
on5, label5, tag5, md5 = get_lora_info(lora5)
|
550 |
+
lora_paths = [lora1, lora2, lora3, lora4, lora5]
|
551 |
+
prompts = prompt.split(",") if prompt else []
|
552 |
+
for p in prompts:
|
553 |
+
p = str(p).strip()
|
554 |
+
if "<lora" in p:
|
555 |
+
result = re.findall(r'<lora:(.+?):(.+?)>', p)
|
556 |
+
if not result: continue
|
557 |
+
key = result[0][0]
|
558 |
+
wt = result[0][1]
|
559 |
+
path = to_lora_path(key)
|
560 |
+
if not key in loras_dict.keys() or not path:
|
561 |
+
path = get_valid_lora_name(path)
|
562 |
+
if not path or path == "None": continue
|
563 |
+
if path in lora_paths:
|
564 |
+
continue
|
565 |
+
elif not on1:
|
566 |
+
lora1 = path
|
567 |
+
lora_paths = [lora1, lora2, lora3, lora4, lora5]
|
568 |
+
lora1_wt = safe_float(wt)
|
569 |
+
on1 = True
|
570 |
+
elif not on2:
|
571 |
+
lora2 = path
|
572 |
+
lora_paths = [lora1, lora2, lora3, lora4, lora5]
|
573 |
+
lora2_wt = safe_float(wt)
|
574 |
+
on2 = True
|
575 |
+
elif not on3:
|
576 |
+
lora3 = path
|
577 |
+
lora_paths = [lora1, lora2, lora3, lora4, lora5]
|
578 |
+
lora3_wt = safe_float(wt)
|
579 |
+
on3 = True
|
580 |
+
elif not on4:
|
581 |
+
lora4 = path
|
582 |
+
lora_paths = [lora1, lora2, lora3, lora4, lora5]
|
583 |
+
lora4_wt = safe_float(wt)
|
584 |
+
on4, label4, tag4, md4 = get_lora_info(lora4)
|
585 |
+
elif not on5:
|
586 |
+
lora5 = path
|
587 |
+
lora_paths = [lora1, lora2, lora3, lora4, lora5]
|
588 |
+
lora5_wt = safe_float(wt)
|
589 |
+
on5 = True
|
590 |
+
return lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt
|
591 |
+
|
592 |
+
|
593 |
+
def get_lora_info(lora_path: str):
|
594 |
+
is_valid = False
|
595 |
+
tag = ""
|
596 |
+
label = ""
|
597 |
+
md = "None"
|
598 |
+
if not lora_path or lora_path == "None":
|
599 |
+
print("LoRA file not found.")
|
600 |
+
return is_valid, label, tag, md
|
601 |
+
path = Path(lora_path)
|
602 |
+
new_path = Path(f'{path.parent.name}/{escape_lora_basename(path.stem)}{path.suffix}')
|
603 |
+
if not to_lora_key(str(new_path)) in loras_dict.keys() and str(path) not in set(get_all_lora_list()):
|
604 |
+
print("LoRA file is not registered.")
|
605 |
+
return tag, label, tag, md
|
606 |
+
if not new_path.exists():
|
607 |
+
download_private_file_from_somewhere(str(path), True)
|
608 |
+
basename = new_path.stem
|
609 |
+
label = f'Name: {basename}'
|
610 |
+
items = loras_dict.get(basename, None)
|
611 |
+
if items == None:
|
612 |
+
items = get_civitai_info(str(new_path))
|
613 |
+
if items != None:
|
614 |
+
loras_dict[basename] = items
|
615 |
+
if items and items[2] != "":
|
616 |
+
tag = items[0]
|
617 |
+
label = f'Name: {basename}'
|
618 |
+
if items[1] == "Pony":
|
619 |
+
label = f'Name: {basename} (for Pony🐴)'
|
620 |
+
if items[4]:
|
621 |
+
md = f'<img src="{items[4]}" alt="thumbnail" width="150" height="240"><br>[LoRA Model URL]({items[3]})'
|
622 |
+
elif items[3]:
|
623 |
+
md = f'[LoRA Model URL]({items[3]})'
|
624 |
+
is_valid = True
|
625 |
+
return is_valid, label, tag, md
|
626 |
+
|
627 |
+
|
628 |
+
def normalize_prompt_list(tags: list[str]):
|
629 |
+
prompts = []
|
630 |
+
for tag in tags:
|
631 |
+
tag = str(tag).strip()
|
632 |
+
if tag:
|
633 |
+
prompts.append(tag)
|
634 |
+
return prompts
|
635 |
+
|
636 |
+
|
637 |
+
def apply_lora_prompt(prompt: str = "", lora_info: str = ""):
|
638 |
+
if lora_info == "None": return gr.update(value=prompt)
|
639 |
+
tags = prompt.split(",") if prompt else []
|
640 |
+
prompts = normalize_prompt_list(tags)
|
641 |
+
|
642 |
+
lora_tag = lora_info.replace("/",",")
|
643 |
+
lora_tags = lora_tag.split(",") if str(lora_info) != "None" else []
|
644 |
+
lora_prompts = normalize_prompt_list(lora_tags)
|
645 |
+
|
646 |
+
empty = [""]
|
647 |
+
prompt = ", ".join(list_uniq(prompts + lora_prompts) + empty)
|
648 |
+
return gr.update(value=prompt)
|
649 |
+
|
650 |
+
|
651 |
+
def update_loras(prompt, prompt_syntax, lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt):
|
652 |
+
import re
|
653 |
+
on1, label1, tag1, md1 = get_lora_info(lora1)
|
654 |
+
on2, label2, tag2, md2 = get_lora_info(lora2)
|
655 |
+
on3, label3, tag3, md3 = get_lora_info(lora3)
|
656 |
+
on4, label4, tag4, md4 = get_lora_info(lora4)
|
657 |
+
on5, label5, tag5, md5 = get_lora_info(lora5)
|
658 |
+
lora_paths = [lora1, lora2, lora3, lora4, lora5]
|
659 |
+
|
660 |
+
output_prompt = prompt
|
661 |
+
if "Classic" in str(prompt_syntax):
|
662 |
+
prompts = prompt.split(",") if prompt else []
|
663 |
+
output_prompts = []
|
664 |
+
for p in prompts:
|
665 |
+
p = str(p).strip()
|
666 |
+
if "<lora" in p:
|
667 |
+
result = re.findall(r'<lora:(.+?):(.+?)>', p)
|
668 |
+
if not result: continue
|
669 |
+
key = result[0][0]
|
670 |
+
wt = result[0][1]
|
671 |
+
path = to_lora_path(key)
|
672 |
+
if not key in loras_dict.keys() or not path: continue
|
673 |
+
if path in lora_paths:
|
674 |
+
output_prompts.append(f"<lora:{to_lora_key(path)}:{safe_float(wt):.2f}>")
|
675 |
+
elif p:
|
676 |
+
output_prompts.append(p)
|
677 |
+
lora_prompts = []
|
678 |
+
if on1: lora_prompts.append(f"<lora:{to_lora_key(lora1)}:{lora1_wt:.2f}>")
|
679 |
+
if on2: lora_prompts.append(f"<lora:{to_lora_key(lora2)}:{lora2_wt:.2f}>")
|
680 |
+
if on3: lora_prompts.append(f"<lora:{to_lora_key(lora3)}:{lora3_wt:.2f}>")
|
681 |
+
if on4: lora_prompts.append(f"<lora:{to_lora_key(lora4)}:{lora4_wt:.2f}>")
|
682 |
+
if on5: lora_prompts.append(f"<lora:{to_lora_key(lora5)}:{lora5_wt:.2f}>")
|
683 |
+
output_prompt = ", ".join(list_uniq(output_prompts + lora_prompts + [""]))
|
684 |
+
choices = get_all_lora_tupled_list()
|
685 |
+
|
686 |
+
return gr.update(value=output_prompt), gr.update(value=lora1, choices=choices), gr.update(value=lora1_wt),\
|
687 |
+
gr.update(value=tag1, label=label1, visible=on1), gr.update(visible=on1), gr.update(value=md1, visible=on1),\
|
688 |
+
gr.update(value=lora2, choices=choices), gr.update(value=lora2_wt),\
|
689 |
+
gr.update(value=tag2, label=label2, visible=on2), gr.update(visible=on2), gr.update(value=md2, visible=on2),\
|
690 |
+
gr.update(value=lora3, choices=choices), gr.update(value=lora3_wt),\
|
691 |
+
gr.update(value=tag3, label=label3, visible=on3), gr.update(visible=on3), gr.update(value=md3, visible=on3),\
|
692 |
+
gr.update(value=lora4, choices=choices), gr.update(value=lora4_wt),\
|
693 |
+
gr.update(value=tag4, label=label4, visible=on4), gr.update(visible=on4), gr.update(value=md4, visible=on4),\
|
694 |
+
gr.update(value=lora5, choices=choices), gr.update(value=lora5_wt),\
|
695 |
+
gr.update(value=tag5, label=label5, visible=on5), gr.update(visible=on5), gr.update(value=md5, visible=on5)
|
696 |
+
|
697 |
+
|
698 |
+
def get_my_lora(link_url):
|
699 |
+
from pathlib import Path
|
700 |
+
before = get_local_model_list(directory_loras)
|
701 |
+
for url in [url.strip() for url in link_url.split(',')]:
|
702 |
+
if not Path(f"{directory_loras}/{url.split('/')[-1]}").exists():
|
703 |
+
download_things(directory_loras, url, HF_TOKEN, CIVITAI_API_KEY)
|
704 |
+
after = get_local_model_list(directory_loras)
|
705 |
+
new_files = list_sub(after, before)
|
706 |
+
for file in new_files:
|
707 |
+
path = Path(file)
|
708 |
+
if path.exists():
|
709 |
+
new_path = Path(f'{path.parent.name}/{escape_lora_basename(path.stem)}{path.suffix}')
|
710 |
+
path.resolve().rename(new_path.resolve())
|
711 |
+
update_lora_dict(str(new_path))
|
712 |
+
new_lora_model_list = get_lora_model_list()
|
713 |
+
new_lora_tupled_list = get_all_lora_tupled_list()
|
714 |
+
|
715 |
+
return gr.update(
|
716 |
+
choices=new_lora_tupled_list, value=new_lora_model_list[-1]
|
717 |
+
), gr.update(
|
718 |
+
choices=new_lora_tupled_list
|
719 |
+
), gr.update(
|
720 |
+
choices=new_lora_tupled_list
|
721 |
+
), gr.update(
|
722 |
+
choices=new_lora_tupled_list
|
723 |
+
), gr.update(
|
724 |
+
choices=new_lora_tupled_list
|
725 |
+
)
|
726 |
+
|
727 |
+
|
728 |
+
def upload_file_lora(files, progress=gr.Progress(track_tqdm=True)):
|
729 |
+
progress(0, desc="Uploading...")
|
730 |
+
file_paths = [file.name for file in files]
|
731 |
+
progress(1, desc="Uploaded.")
|
732 |
+
return gr.update(value=file_paths, visible=True), gr.update(visible=True)
|
733 |
+
|
734 |
+
|
735 |
+
def move_file_lora(filepaths):
|
736 |
+
import shutil
|
737 |
+
for file in filepaths:
|
738 |
+
path = Path(shutil.move(Path(file).resolve(), Path(f"./{directory_loras}").resolve()))
|
739 |
+
newpath = Path(f'{path.parent.name}/{escape_lora_basename(path.stem)}{path.suffix}')
|
740 |
+
path.resolve().rename(newpath.resolve())
|
741 |
+
update_lora_dict(str(newpath))
|
742 |
+
|
743 |
+
new_lora_model_list = get_lora_model_list()
|
744 |
+
new_lora_tupled_list = get_all_lora_tupled_list()
|
745 |
+
|
746 |
+
return gr.update(
|
747 |
+
choices=new_lora_tupled_list, value=new_lora_model_list[-1]
|
748 |
+
), gr.update(
|
749 |
+
choices=new_lora_tupled_list
|
750 |
+
), gr.update(
|
751 |
+
choices=new_lora_tupled_list
|
752 |
+
), gr.update(
|
753 |
+
choices=new_lora_tupled_list
|
754 |
+
), gr.update(
|
755 |
+
choices=new_lora_tupled_list
|
756 |
+
)
|
757 |
+
|
758 |
+
|
759 |
+
def get_civitai_info(path):
|
760 |
+
global civitai_not_exists_list, loras_url_to_path_dict
|
761 |
+
import requests
|
762 |
+
from requests.adapters import HTTPAdapter
|
763 |
+
from urllib3.util import Retry
|
764 |
+
default = ["", "", "", "", ""]
|
765 |
+
if path in set(civitai_not_exists_list): return default
|
766 |
+
if not Path(path).exists(): return None
|
767 |
+
user_agent = get_user_agent()
|
768 |
+
headers = {'User-Agent': user_agent, 'content-type': 'application/json'}
|
769 |
+
base_url = 'https://civitai.com/api/v1/model-versions/by-hash/'
|
770 |
+
params = {}
|
771 |
+
session = requests.Session()
|
772 |
+
retries = Retry(total=5, backoff_factor=1, status_forcelist=[500, 502, 503, 504])
|
773 |
+
session.mount("https://", HTTPAdapter(max_retries=retries))
|
774 |
+
import hashlib
|
775 |
+
with open(path, 'rb') as file:
|
776 |
+
file_data = file.read()
|
777 |
+
hash_sha256 = hashlib.sha256(file_data).hexdigest()
|
778 |
+
url = base_url + hash_sha256
|
779 |
+
try:
|
780 |
+
r = session.get(url, params=params, headers=headers, stream=True, timeout=(3.0, 15))
|
781 |
+
except Exception as e:
|
782 |
+
print(e)
|
783 |
+
return default
|
784 |
+
else:
|
785 |
+
if not r.ok: return None
|
786 |
+
json = r.json()
|
787 |
+
if 'baseModel' not in json:
|
788 |
+
civitai_not_exists_list.append(path)
|
789 |
+
return default
|
790 |
+
items = []
|
791 |
+
items.append(" / ".join(json['trainedWords'])) # The words (prompts) used to trigger the model
|
792 |
+
items.append(json['baseModel']) # Base model (SDXL1.0, Pony, ...)
|
793 |
+
items.append(json['model']['name']) # The name of the model version
|
794 |
+
items.append(f"https://civitai.com/models/{json['modelId']}") # The repo url for the model
|
795 |
+
items.append(json['images'][0]['url']) # The url for a sample image
|
796 |
+
loras_url_to_path_dict[path] = json['downloadUrl'] # The download url to get the model file for this specific version
|
797 |
+
return items
|
798 |
+
|
799 |
+
|
800 |
+
def search_lora_on_civitai(query: str, allow_model: list[str] = ["Pony", "SDXL 1.0"], limit: int = 100,
|
801 |
+
sort: str = "Highest Rated", period: str = "AllTime", tag: str = ""):
|
802 |
+
import requests
|
803 |
+
from requests.adapters import HTTPAdapter
|
804 |
+
from urllib3.util import Retry
|
805 |
+
user_agent = get_user_agent()
|
806 |
+
headers = {'User-Agent': user_agent, 'content-type': 'application/json'}
|
807 |
+
base_url = 'https://civitai.com/api/v1/models'
|
808 |
+
params = {'types': ['LORA'], 'sort': sort, 'period': period, 'limit': limit, 'nsfw': 'true'}
|
809 |
+
if query: params["query"] = query
|
810 |
+
if tag: params["tag"] = tag
|
811 |
+
session = requests.Session()
|
812 |
+
retries = Retry(total=5, backoff_factor=1, status_forcelist=[500, 502, 503, 504])
|
813 |
+
session.mount("https://", HTTPAdapter(max_retries=retries))
|
814 |
+
try:
|
815 |
+
r = session.get(base_url, params=params, headers=headers, stream=True, timeout=(3.0, 30))
|
816 |
+
except Exception as e:
|
817 |
+
print(e)
|
818 |
+
return None
|
819 |
+
else:
|
820 |
+
if not r.ok: return None
|
821 |
+
json = r.json()
|
822 |
+
if 'items' not in json: return None
|
823 |
+
items = []
|
824 |
+
for j in json['items']:
|
825 |
+
for model in j['modelVersions']:
|
826 |
+
item = {}
|
827 |
+
if model['baseModel'] not in set(allow_model): continue
|
828 |
+
item['name'] = j['name']
|
829 |
+
item['creator'] = j['creator']['username']
|
830 |
+
item['tags'] = j['tags']
|
831 |
+
item['model_name'] = model['name']
|
832 |
+
item['base_model'] = model['baseModel']
|
833 |
+
item['dl_url'] = model['downloadUrl']
|
834 |
+
item['md'] = f'<img src="{model["images"][0]["url"]}" alt="thumbnail" width="150" height="240"><br>[LoRA Model URL](https://civitai.com/models/{j["id"]})'
|
835 |
+
items.append(item)
|
836 |
+
return items
|
837 |
+
|
838 |
+
|
839 |
+
def search_civitai_lora(query, base_model, sort="Highest Rated", period="AllTime", tag=""):
|
840 |
+
global civitai_lora_last_results
|
841 |
+
items = search_lora_on_civitai(query, base_model, 100, sort, period, tag)
|
842 |
+
if not items: return gr.update(choices=[("", "")], value="", visible=False),\
|
843 |
+
gr.update(value="", visible=False), gr.update(visible=True), gr.update(visible=True)
|
844 |
+
civitai_lora_last_results = {}
|
845 |
+
choices = []
|
846 |
+
for item in items:
|
847 |
+
base_model_name = "Pony🐴" if item['base_model'] == "Pony" else item['base_model']
|
848 |
+
name = f"{item['name']} (for {base_model_name} / By: {item['creator']} / Tags: {', '.join(item['tags'])})"
|
849 |
+
value = item['dl_url']
|
850 |
+
choices.append((name, value))
|
851 |
+
civitai_lora_last_results[value] = item
|
852 |
+
if not choices: return gr.update(choices=[("", "")], value="", visible=False),\
|
853 |
+
gr.update(value="", visible=False), gr.update(visible=True), gr.update(visible=True)
|
854 |
+
result = civitai_lora_last_results.get(choices[0][1], "None")
|
855 |
+
md = result['md'] if result else ""
|
856 |
+
return gr.update(choices=choices, value=choices[0][1], visible=True), gr.update(value=md, visible=True),\
|
857 |
+
gr.update(visible=True), gr.update(visible=True)
|
858 |
+
|
859 |
+
|
860 |
+
def select_civitai_lora(search_result):
|
861 |
+
if not "http" in search_result: return gr.update(value=""), gr.update(value="None", visible=True)
|
862 |
+
result = civitai_lora_last_results.get(search_result, "None")
|
863 |
+
md = result['md'] if result else ""
|
864 |
+
return gr.update(value=search_result), gr.update(value=md, visible=True)
|
865 |
+
|
866 |
+
|
867 |
+
LORA_BASE_MODEL_DICT = {
|
868 |
+
"diffusers:StableDiffusionPipeline": ["SD 1.5"],
|
869 |
+
"diffusers:StableDiffusionXLPipeline": ["Pony", "SDXL 1.0"],
|
870 |
+
"diffusers:FluxPipeline": ["Flux.1 D", "Flux.1 S"],
|
871 |
+
}
|
872 |
+
|
873 |
+
|
874 |
+
def get_lora_base_model(model_name: str):
|
875 |
+
api = HfApi(token=HF_TOKEN)
|
876 |
+
default = ["Pony", "SDXL 1.0"]
|
877 |
+
try:
|
878 |
+
model = api.model_info(repo_id=model_name, timeout=5.0)
|
879 |
+
tags = model.tags
|
880 |
+
for tag in tags:
|
881 |
+
if tag in LORA_BASE_MODEL_DICT.keys(): return LORA_BASE_MODEL_DICT.get(tag, default)
|
882 |
+
except Exception:
|
883 |
+
return default
|
884 |
+
return default
|
885 |
+
|
886 |
+
|
887 |
+
def find_similar_lora(q: str, model_name: str):
|
888 |
+
from rapidfuzz.process import extractOne
|
889 |
+
from rapidfuzz.utils import default_process
|
890 |
+
query = to_lora_key(q)
|
891 |
+
print(f"Finding <lora:{query}:...>...")
|
892 |
+
keys = list(private_lora_dict.keys())
|
893 |
+
values = [x[2] for x in list(private_lora_dict.values())]
|
894 |
+
s = default_process(query)
|
895 |
+
e1 = extractOne(s, keys + values, processor=default_process, score_cutoff=80.0)
|
896 |
+
key = ""
|
897 |
+
if e1:
|
898 |
+
e = e1[0]
|
899 |
+
if e in set(keys): key = e
|
900 |
+
elif e in set(values): key = keys[values.index(e)]
|
901 |
+
if key:
|
902 |
+
path = to_lora_path(key)
|
903 |
+
new_path = to_lora_path(query)
|
904 |
+
if not Path(path).exists():
|
905 |
+
if not Path(new_path).exists(): download_private_file_from_somewhere(path, True)
|
906 |
+
if Path(path).exists() and copy_lora(path, new_path): return new_path
|
907 |
+
print(f"Finding <lora:{query}:...> on Civitai...")
|
908 |
+
civitai_query = Path(query).stem if Path(query).is_file() else query
|
909 |
+
civitai_query = civitai_query.replace("_", " ").replace("-", " ")
|
910 |
+
base_model = get_lora_base_model(model_name)
|
911 |
+
items = search_lora_on_civitai(civitai_query, base_model, 1)
|
912 |
+
if items:
|
913 |
+
item = items[0]
|
914 |
+
path = download_lora(item['dl_url'])
|
915 |
+
new_path = query if Path(query).is_file() else to_lora_path(query)
|
916 |
+
if path and copy_lora(path, new_path): return new_path
|
917 |
+
return None
|
918 |
+
|
919 |
+
|
920 |
+
def change_interface_mode(mode: str):
|
921 |
+
if mode == "Fast":
|
922 |
+
return gr.update(open=False), gr.update(visible=True), gr.update(open=False), gr.update(open=False),\
|
923 |
+
gr.update(visible=True), gr.update(open=False), gr.update(visible=True), gr.update(open=False),\
|
924 |
+
gr.update(visible=True), gr.update(value="Fast")
|
925 |
+
elif mode == "Simple": # t2i mode
|
926 |
+
return gr.update(open=True), gr.update(visible=True), gr.update(open=False), gr.update(open=False),\
|
927 |
+
gr.update(visible=True), gr.update(open=False), gr.update(visible=False), gr.update(open=True),\
|
928 |
+
gr.update(visible=False), gr.update(value="Standard")
|
929 |
+
elif mode == "LoRA": # t2i LoRA mode
|
930 |
+
return gr.update(open=True), gr.update(visible=True), gr.update(open=True), gr.update(open=False),\
|
931 |
+
gr.update(visible=True), gr.update(open=True), gr.update(visible=True), gr.update(open=False),\
|
932 |
+
gr.update(visible=False), gr.update(value="Standard")
|
933 |
+
else: # Standard
|
934 |
+
return gr.update(open=False), gr.update(visible=True), gr.update(open=False), gr.update(open=False),\
|
935 |
+
gr.update(visible=True), gr.update(open=False), gr.update(visible=True), gr.update(open=False),\
|
936 |
+
gr.update(visible=True), gr.update(value="Standard")
|
937 |
+
|
938 |
+
|
939 |
+
quality_prompt_list = [
|
940 |
+
{
|
941 |
+
"name": "None",
|
942 |
+
"prompt": "",
|
943 |
+
"negative_prompt": "lowres",
|
944 |
+
},
|
945 |
+
{
|
946 |
+
"name": "Animagine Common",
|
947 |
+
"prompt": "anime artwork, anime style, vibrant, studio anime, highly detailed, masterpiece, best quality, very aesthetic, absurdres",
|
948 |
+
"negative_prompt": "lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]",
|
949 |
+
},
|
950 |
+
{
|
951 |
+
"name": "Pony Anime Common",
|
952 |
+
"prompt": "source_anime, score_9, score_8_up, score_7_up, masterpiece, best quality, very aesthetic, absurdres",
|
953 |
+
"negative_prompt": "source_pony, source_furry, source_cartoon, score_6, score_5, score_4, busty, ugly face, mutated hands, low res, blurry face, black and white, the simpsons, overwatch, apex legends",
|
954 |
+
},
|
955 |
+
{
|
956 |
+
"name": "Pony Common",
|
957 |
+
"prompt": "source_anime, score_9, score_8_up, score_7_up",
|
958 |
+
"negative_prompt": "source_pony, source_furry, source_cartoon, score_6, score_5, score_4, busty, ugly face, mutated hands, low res, blurry face, black and white, the simpsons, overwatch, apex legends",
|
959 |
+
},
|
960 |
+
{
|
961 |
+
"name": "Animagine Standard v3.0",
|
962 |
+
"prompt": "masterpiece, best quality",
|
963 |
+
"negative_prompt": "lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, artist name",
|
964 |
+
},
|
965 |
+
{
|
966 |
+
"name": "Animagine Standard v3.1",
|
967 |
+
"prompt": "masterpiece, best quality, very aesthetic, absurdres",
|
968 |
+
"negative_prompt": "lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]",
|
969 |
+
},
|
970 |
+
{
|
971 |
+
"name": "Animagine Light v3.1",
|
972 |
+
"prompt": "(masterpiece), best quality, very aesthetic, perfect face",
|
973 |
+
"negative_prompt": "(low quality, worst quality:1.2), very displeasing, 3d, watermark, signature, ugly, poorly drawn",
|
974 |
+
},
|
975 |
+
{
|
976 |
+
"name": "Animagine Heavy v3.1",
|
977 |
+
"prompt": "(masterpiece), (best quality), (ultra-detailed), very aesthetic, illustration, disheveled hair, perfect composition, moist skin, intricate details",
|
978 |
+
"negative_prompt": "longbody, lowres, bad anatomy, bad hands, missing fingers, pubic hair, extra digit, fewer digits, cropped, worst quality, low quality, very displeasing",
|
979 |
+
},
|
980 |
+
]
|
981 |
+
|
982 |
+
|
983 |
+
style_list = [
|
984 |
+
{
|
985 |
+
"name": "None",
|
986 |
+
"prompt": "",
|
987 |
+
"negative_prompt": "",
|
988 |
+
},
|
989 |
+
{
|
990 |
+
"name": "Cinematic",
|
991 |
+
"prompt": "cinematic still, emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy",
|
992 |
+
"negative_prompt": "cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured",
|
993 |
+
},
|
994 |
+
{
|
995 |
+
"name": "Photographic",
|
996 |
+
"prompt": "cinematic photo, 35mm photograph, film, bokeh, professional, 4k, highly detailed",
|
997 |
+
"negative_prompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly",
|
998 |
+
},
|
999 |
+
{
|
1000 |
+
"name": "Anime",
|
1001 |
+
"prompt": "anime artwork, anime style, vibrant, studio anime, highly detailed",
|
1002 |
+
"negative_prompt": "photo, deformed, black and white, realism, disfigured, low contrast",
|
1003 |
+
},
|
1004 |
+
{
|
1005 |
+
"name": "Manga",
|
1006 |
+
"prompt": "manga style, vibrant, high-energy, detailed, iconic, Japanese comic style",
|
1007 |
+
"negative_prompt": "ugly, deformed, noisy, blurry, low contrast, realism, photorealistic, Western comic style",
|
1008 |
+
},
|
1009 |
+
{
|
1010 |
+
"name": "Digital Art",
|
1011 |
+
"prompt": "concept art, digital artwork, illustrative, painterly, matte painting, highly detailed",
|
1012 |
+
"negative_prompt": "photo, photorealistic, realism, ugly",
|
1013 |
+
},
|
1014 |
+
{
|
1015 |
+
"name": "Pixel art",
|
1016 |
+
"prompt": "pixel-art, low-res, blocky, pixel art style, 8-bit graphics",
|
1017 |
+
"negative_prompt": "sloppy, messy, blurry, noisy, highly detailed, ultra textured, photo, realistic",
|
1018 |
+
},
|
1019 |
+
{
|
1020 |
+
"name": "Fantasy art",
|
1021 |
+
"prompt": "ethereal fantasy concept art, magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy",
|
1022 |
+
"negative_prompt": "photographic, realistic, realism, 35mm film, dslr, cropped, frame, text, deformed, glitch, noise, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, sloppy, duplicate, mutated, black and white",
|
1023 |
+
},
|
1024 |
+
{
|
1025 |
+
"name": "Neonpunk",
|
1026 |
+
"prompt": "neonpunk style, cyberpunk, vaporwave, neon, vibes, vibrant, stunningly beautiful, crisp, detailed, sleek, ultramodern, magenta highlights, dark purple shadows, high contrast, cinematic, ultra detailed, intricate, professional",
|
1027 |
+
"negative_prompt": "painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured",
|
1028 |
+
},
|
1029 |
+
{
|
1030 |
+
"name": "3D Model",
|
1031 |
+
"prompt": "professional 3d model, octane render, highly detailed, volumetric, dramatic lighting",
|
1032 |
+
"negative_prompt": "ugly, deformed, noisy, low poly, blurry, painting",
|
1033 |
+
},
|
1034 |
+
]
|
1035 |
+
|
1036 |
+
|
1037 |
+
optimization_list = {
|
1038 |
+
"None": [28, 7., 'Euler a', False, 'None', 1.],
|
1039 |
+
"Default": [28, 7., 'Euler a', False, 'None', 1.],
|
1040 |
+
"SPO": [28, 7., 'Euler a', True, 'loras/spo_sdxl_10ep_4k-data_lora_diffusers.safetensors', 1.],
|
1041 |
+
"DPO": [28, 7., 'Euler a', True, 'loras/sdxl-DPO-LoRA.safetensors', 1.],
|
1042 |
+
"DPO Turbo": [8, 2.5, 'LCM', True, 'loras/sd_xl_dpo_turbo_lora_v1-128dim.safetensors', 1.],
|
1043 |
+
"SDXL Turbo": [8, 2.5, 'LCM', True, 'loras/sd_xl_turbo_lora_v1.safetensors', 1.],
|
1044 |
+
"Hyper-SDXL 12step": [12, 5., 'TCD', True, 'loras/Hyper-SDXL-12steps-CFG-lora.safetensors', 1.],
|
1045 |
+
"Hyper-SDXL 8step": [8, 5., 'TCD', True, 'loras/Hyper-SDXL-8steps-CFG-lora.safetensors', 1.],
|
1046 |
+
"Hyper-SDXL 4step": [4, 0, 'TCD', True, 'loras/Hyper-SDXL-4steps-lora.safetensors', 1.],
|
1047 |
+
"Hyper-SDXL 2step": [2, 0, 'TCD', True, 'loras/Hyper-SDXL-2steps-lora.safetensors', 1.],
|
1048 |
+
"Hyper-SDXL 1step": [1, 0, 'TCD', True, 'loras/Hyper-SDXL-1steps-lora.safetensors', 1.],
|
1049 |
+
"PCM 16step": [16, 4., 'Euler a trailing', True, 'loras/pcm_sdxl_normalcfg_16step_converted.safetensors', 1.],
|
1050 |
+
"PCM 8step": [8, 4., 'Euler a trailing', True, 'loras/pcm_sdxl_normalcfg_8step_converted.safetensors', 1.],
|
1051 |
+
"PCM 4step": [4, 2., 'Euler a trailing', True, 'loras/pcm_sdxl_smallcfg_4step_converted.safetensors', 1.],
|
1052 |
+
"PCM 2step": [2, 1., 'Euler a trailing', True, 'loras/pcm_sdxl_smallcfg_2step_converted.safetensors', 1.],
|
1053 |
+
}
|
1054 |
+
|
1055 |
+
|
1056 |
+
def set_optimization(opt, steps_gui, cfg_gui, sampler_gui, clip_skip_gui, lora_gui, lora_scale_gui):
|
1057 |
+
if not opt in list(optimization_list.keys()): opt = "None"
|
1058 |
+
def_steps_gui = 28
|
1059 |
+
def_cfg_gui = 7.
|
1060 |
+
steps = optimization_list.get(opt, "None")[0]
|
1061 |
+
cfg = optimization_list.get(opt, "None")[1]
|
1062 |
+
sampler = optimization_list.get(opt, "None")[2]
|
1063 |
+
clip_skip = optimization_list.get(opt, "None")[3]
|
1064 |
+
lora = optimization_list.get(opt, "None")[4]
|
1065 |
+
lora_scale = optimization_list.get(opt, "None")[5]
|
1066 |
+
if opt == "None":
|
1067 |
+
steps = max(steps_gui, def_steps_gui)
|
1068 |
+
cfg = max(cfg_gui, def_cfg_gui)
|
1069 |
+
clip_skip = clip_skip_gui
|
1070 |
+
elif opt == "SPO" or opt == "DPO":
|
1071 |
+
steps = max(steps_gui, def_steps_gui)
|
1072 |
+
cfg = max(cfg_gui, def_cfg_gui)
|
1073 |
+
|
1074 |
+
return gr.update(value=steps), gr.update(value=cfg), gr.update(value=sampler),\
|
1075 |
+
gr.update(value=clip_skip), gr.update(value=lora), gr.update(value=lora_scale),
|
1076 |
+
|
1077 |
+
|
1078 |
+
# [sampler_gui, steps_gui, cfg_gui, clip_skip_gui, img_width_gui, img_height_gui, optimization_gui]
|
1079 |
+
preset_sampler_setting = {
|
1080 |
+
"None": ["Euler a", 28, 7., True, 1024, 1024, "None"],
|
1081 |
+
"Anime 3:4 Fast": ["LCM", 8, 2.5, True, 896, 1152, "DPO Turbo"],
|
1082 |
+
"Anime 3:4 Standard": ["Euler a", 28, 7., True, 896, 1152, "None"],
|
1083 |
+
"Anime 3:4 Heavy": ["Euler a", 40, 7., True, 896, 1152, "None"],
|
1084 |
+
"Anime 1:1 Fast": ["LCM", 8, 2.5, True, 1024, 1024, "DPO Turbo"],
|
1085 |
+
"Anime 1:1 Standard": ["Euler a", 28, 7., True, 1024, 1024, "None"],
|
1086 |
+
"Anime 1:1 Heavy": ["Euler a", 40, 7., True, 1024, 1024, "None"],
|
1087 |
+
"Photo 3:4 Fast": ["LCM", 8, 2.5, False, 896, 1152, "DPO Turbo"],
|
1088 |
+
"Photo 3:4 Standard": ["DPM++ 2M Karras", 28, 7., False, 896, 1152, "None"],
|
1089 |
+
"Photo 3:4 Heavy": ["DPM++ 2M Karras", 40, 7., False, 896, 1152, "None"],
|
1090 |
+
"Photo 1:1 Fast": ["LCM", 8, 2.5, False, 1024, 1024, "DPO Turbo"],
|
1091 |
+
"Photo 1:1 Standard": ["DPM++ 2M Karras", 28, 7., False, 1024, 1024, "None"],
|
1092 |
+
"Photo 1:1 Heavy": ["DPM++ 2M Karras", 40, 7., False, 1024, 1024, "None"],
|
1093 |
+
}
|
1094 |
+
|
1095 |
+
|
1096 |
+
def set_sampler_settings(sampler_setting):
|
1097 |
+
if not sampler_setting in list(preset_sampler_setting.keys()) or sampler_setting == "None":
|
1098 |
+
return gr.update(value="Euler a"), gr.update(value=28), gr.update(value=7.), gr.update(value=True),\
|
1099 |
+
gr.update(value=1024), gr.update(value=1024), gr.update(value="None")
|
1100 |
+
v = preset_sampler_setting.get(sampler_setting, ["Euler a", 28, 7., True, 1024, 1024])
|
1101 |
+
# sampler, steps, cfg, clip_skip, width, height, optimization
|
1102 |
+
return gr.update(value=v[0]), gr.update(value=v[1]), gr.update(value=v[2]), gr.update(value=v[3]),\
|
1103 |
+
gr.update(value=v[4]), gr.update(value=v[5]), gr.update(value=v[6])
|
1104 |
+
|
1105 |
+
|
1106 |
+
preset_styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
|
1107 |
+
preset_quality = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in quality_prompt_list}
|
1108 |
+
|
1109 |
+
|
1110 |
+
def process_style_prompt(prompt: str, neg_prompt: str, styles_key: str = "None", quality_key: str = "None", type: str = "Auto"):
|
1111 |
+
def to_list(s):
|
1112 |
+
return [x.strip() for x in s.split(",") if not s == ""]
|
1113 |
+
|
1114 |
+
def list_sub(a, b):
|
1115 |
+
return [e for e in a if e not in b]
|
1116 |
+
|
1117 |
+
def list_uniq(l):
|
1118 |
+
return sorted(set(l), key=l.index)
|
1119 |
+
|
1120 |
+
animagine_ps = to_list("anime artwork, anime style, vibrant, studio anime, highly detailed, masterpiece, best quality, very aesthetic, absurdres")
|
1121 |
+
animagine_nps = to_list("lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]")
|
1122 |
+
pony_ps = to_list("source_anime, score_9, score_8_up, score_7_up, masterpiece, best quality, very aesthetic, absurdres")
|
1123 |
+
pony_nps = to_list("source_pony, source_furry, source_cartoon, score_6, score_5, score_4, busty, ugly face, mutated hands, low res, blurry face, black and white, the simpsons, overwatch, apex legends")
|
1124 |
+
prompts = to_list(prompt)
|
1125 |
+
neg_prompts = to_list(neg_prompt)
|
1126 |
+
|
1127 |
+
all_styles_ps = []
|
1128 |
+
all_styles_nps = []
|
1129 |
+
for d in style_list:
|
1130 |
+
all_styles_ps.extend(to_list(str(d.get("prompt", ""))))
|
1131 |
+
all_styles_nps.extend(to_list(str(d.get("negative_prompt", ""))))
|
1132 |
+
|
1133 |
+
all_quality_ps = []
|
1134 |
+
all_quality_nps = []
|
1135 |
+
for d in quality_prompt_list:
|
1136 |
+
all_quality_ps.extend(to_list(str(d.get("prompt", ""))))
|
1137 |
+
all_quality_nps.extend(to_list(str(d.get("negative_prompt", ""))))
|
1138 |
+
|
1139 |
+
quality_ps = to_list(preset_quality[quality_key][0])
|
1140 |
+
quality_nps = to_list(preset_quality[quality_key][1])
|
1141 |
+
styles_ps = to_list(preset_styles[styles_key][0])
|
1142 |
+
styles_nps = to_list(preset_styles[styles_key][1])
|
1143 |
+
|
1144 |
+
prompts = list_sub(prompts, animagine_ps + pony_ps + all_styles_ps + all_quality_ps)
|
1145 |
+
neg_prompts = list_sub(neg_prompts, animagine_nps + pony_nps + all_styles_nps + all_quality_nps)
|
1146 |
+
|
1147 |
+
last_empty_p = [""] if not prompts and type != "None" and type != "Auto" and styles_key != "None" and quality_key != "None" else []
|
1148 |
+
last_empty_np = [""] if not neg_prompts and type != "None" and type != "Auto" and styles_key != "None" and quality_key != "None" else []
|
1149 |
+
|
1150 |
+
if type == "Animagine":
|
1151 |
+
prompts = prompts + animagine_ps
|
1152 |
+
neg_prompts = neg_prompts + animagine_nps
|
1153 |
+
elif type == "Pony":
|
1154 |
+
prompts = prompts + pony_ps
|
1155 |
+
neg_prompts = neg_prompts + pony_nps
|
1156 |
+
|
1157 |
+
prompts = prompts + styles_ps + quality_ps
|
1158 |
+
neg_prompts = neg_prompts + styles_nps + quality_nps
|
1159 |
+
|
1160 |
+
prompt = ", ".join(list_uniq(prompts) + last_empty_p)
|
1161 |
+
neg_prompt = ", ".join(list_uniq(neg_prompts) + last_empty_np)
|
1162 |
+
|
1163 |
+
return gr.update(value=prompt), gr.update(value=neg_prompt), gr.update(value=type)
|
1164 |
+
|
1165 |
+
|
1166 |
+
def set_quick_presets(genre:str = "None", type:str = "Auto", speed:str = "None", aspect:str = "None"):
|
1167 |
+
quality = "None"
|
1168 |
+
style = "None"
|
1169 |
+
sampler = "None"
|
1170 |
+
opt = "None"
|
1171 |
+
|
1172 |
+
if genre == "Anime":
|
1173 |
+
if type != "None" and type != "Auto": style = "Anime"
|
1174 |
+
if aspect == "1:1":
|
1175 |
+
if speed == "Heavy":
|
1176 |
+
sampler = "Anime 1:1 Heavy"
|
1177 |
+
elif speed == "Fast":
|
1178 |
+
sampler = "Anime 1:1 Fast"
|
1179 |
+
else:
|
1180 |
+
sampler = "Anime 1:1 Standard"
|
1181 |
+
elif aspect == "3:4":
|
1182 |
+
if speed == "Heavy":
|
1183 |
+
sampler = "Anime 3:4 Heavy"
|
1184 |
+
elif speed == "Fast":
|
1185 |
+
sampler = "Anime 3:4 Fast"
|
1186 |
+
else:
|
1187 |
+
sampler = "Anime 3:4 Standard"
|
1188 |
+
if type == "Pony":
|
1189 |
+
quality = "Pony Anime Common"
|
1190 |
+
elif type == "Animagine":
|
1191 |
+
quality = "Animagine Common"
|
1192 |
+
else:
|
1193 |
+
quality = "None"
|
1194 |
+
elif genre == "Photo":
|
1195 |
+
if type != "None" and type != "Auto": style = "Photographic"
|
1196 |
+
if aspect == "1:1":
|
1197 |
+
if speed == "Heavy":
|
1198 |
+
sampler = "Photo 1:1 Heavy"
|
1199 |
+
elif speed == "Fast":
|
1200 |
+
sampler = "Photo 1:1 Fast"
|
1201 |
+
else:
|
1202 |
+
sampler = "Photo 1:1 Standard"
|
1203 |
+
elif aspect == "3:4":
|
1204 |
+
if speed == "Heavy":
|
1205 |
+
sampler = "Photo 3:4 Heavy"
|
1206 |
+
elif speed == "Fast":
|
1207 |
+
sampler = "Photo 3:4 Fast"
|
1208 |
+
else:
|
1209 |
+
sampler = "Photo 3:4 Standard"
|
1210 |
+
if type == "Pony":
|
1211 |
+
quality = "Pony Common"
|
1212 |
+
else:
|
1213 |
+
quality = "None"
|
1214 |
+
|
1215 |
+
if speed == "Fast":
|
1216 |
+
opt = "DPO Turbo"
|
1217 |
+
if genre == "Anime" and type != "Pony" and type != "Auto": quality = "Animagine Light v3.1"
|
1218 |
+
|
1219 |
+
return gr.update(value=quality), gr.update(value=style), gr.update(value=sampler), gr.update(value=opt), gr.update(value=type)
|
1220 |
+
|
1221 |
+
|
1222 |
+
textual_inversion_dict = {}
|
1223 |
+
try:
|
1224 |
+
with open('textual_inversion_dict.json', encoding='utf-8') as f:
|
1225 |
+
textual_inversion_dict = json.load(f)
|
1226 |
+
except Exception:
|
1227 |
+
pass
|
1228 |
+
textual_inversion_file_token_list = []
|
1229 |
+
|
1230 |
+
|
1231 |
+
def get_tupled_embed_list(embed_list):
|
1232 |
+
global textual_inversion_file_list
|
1233 |
+
tupled_list = []
|
1234 |
+
for file in embed_list:
|
1235 |
+
token = textual_inversion_dict.get(Path(file).name, [Path(file).stem.replace(",",""), False])[0]
|
1236 |
+
tupled_list.append((token, file))
|
1237 |
+
textual_inversion_file_token_list.append(token)
|
1238 |
+
return tupled_list
|
1239 |
+
|
1240 |
+
|
1241 |
+
def set_textual_inversion_prompt(textual_inversion_gui, prompt_gui, neg_prompt_gui, prompt_syntax_gui):
|
1242 |
+
ti_tags = list(textual_inversion_dict.values()) + textual_inversion_file_token_list
|
1243 |
+
tags = prompt_gui.split(",") if prompt_gui else []
|
1244 |
+
prompts = []
|
1245 |
+
for tag in tags:
|
1246 |
+
tag = str(tag).strip()
|
1247 |
+
if tag and not tag in ti_tags:
|
1248 |
+
prompts.append(tag)
|
1249 |
+
ntags = neg_prompt_gui.split(",") if neg_prompt_gui else []
|
1250 |
+
neg_prompts = []
|
1251 |
+
for tag in ntags:
|
1252 |
+
tag = str(tag).strip()
|
1253 |
+
if tag and not tag in ti_tags:
|
1254 |
+
neg_prompts.append(tag)
|
1255 |
+
ti_prompts = []
|
1256 |
+
ti_neg_prompts = []
|
1257 |
+
for ti in textual_inversion_gui:
|
1258 |
+
tokens = textual_inversion_dict.get(Path(ti).name, [Path(ti).stem.replace(",",""), False])
|
1259 |
+
is_positive = tokens[1] == True or "positive" in Path(ti).parent.name
|
1260 |
+
if is_positive: # positive prompt
|
1261 |
+
ti_prompts.append(tokens[0])
|
1262 |
+
else: # negative prompt (default)
|
1263 |
+
ti_neg_prompts.append(tokens[0])
|
1264 |
+
empty = [""]
|
1265 |
+
prompt = ", ".join(prompts + ti_prompts + empty)
|
1266 |
+
neg_prompt = ", ".join(neg_prompts + ti_neg_prompts + empty)
|
1267 |
+
return gr.update(value=prompt), gr.update(value=neg_prompt),
|
1268 |
+
|
1269 |
+
|
1270 |
+
def get_model_pipeline(repo_id: str):
|
1271 |
+
from huggingface_hub import HfApi
|
1272 |
+
api = HfApi(token=HF_TOKEN)
|
1273 |
+
default = "StableDiffusionPipeline"
|
1274 |
+
try:
|
1275 |
+
if not is_repo_name(repo_id): return default
|
1276 |
+
model = api.model_info(repo_id=repo_id, timeout=5.0)
|
1277 |
+
except Exception:
|
1278 |
+
return default
|
1279 |
+
if model.private or model.gated: return default
|
1280 |
+
tags = model.tags
|
1281 |
+
if not 'diffusers' in tags: return default
|
1282 |
+
if 'diffusers:FluxPipeline' in tags:
|
1283 |
+
return "FluxPipeline"
|
1284 |
+
if 'diffusers:StableDiffusionXLPipeline' in tags:
|
1285 |
+
return "StableDiffusionXLPipeline"
|
1286 |
+
elif 'diffusers:StableDiffusionPipeline' in tags:
|
1287 |
+
return "StableDiffusionPipeline"
|
1288 |
+
else:
|
1289 |
+
return default
|
1290 |
+
|