Spaces:
Running
on
Zero
Running
on
Zero
AlekseyCalvin
commited on
Commit
•
c1b2604
1
Parent(s):
0945218
Update pipeline.py
Browse files- pipeline.py +68 -1
pipeline.py
CHANGED
@@ -56,6 +56,40 @@ def prepare_timesteps(
|
|
56 |
|
57 |
# FLUX pipeline function
|
58 |
class FluxWithCFGPipeline(StableDiffusion3Pipeline):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
def __call__(
|
60 |
self,
|
61 |
prompt: Union[str, List[str]] = None,
|
@@ -208,7 +242,40 @@ class FluxWithCFGPipeline(StableDiffusion3Pipeline):
|
|
208 |
return self.image_processor.postprocess(image, output_type=output_type)[0]
|
209 |
|
210 |
class FluxWithCFGPipeline(StableDiffusion3Pipeline):
|
211 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
212 |
def generate_image(
|
213 |
self,
|
214 |
prompt: Union[str, List[str]] = None,
|
|
|
56 |
|
57 |
# FLUX pipeline function
|
58 |
class FluxWithCFGPipeline(StableDiffusion3Pipeline):
|
59 |
+
def __init__(
|
60 |
+
self,
|
61 |
+
transformer: FluxTransformer2DModel,
|
62 |
+
scheduler: FlowMatchEulerDiscreteScheduler,
|
63 |
+
vae: AutoencoderKL,
|
64 |
+
text_encoder: CLIPTextModelWithProjection,
|
65 |
+
tokenizer: CLIPTokenizer,
|
66 |
+
tokenizer_2: T5TokenizerFast,,
|
67 |
+
text_encoder_2: T5EncoderModel,
|
68 |
+
tokenizer_3: None,
|
69 |
+
):
|
70 |
+
super().__init__()
|
71 |
+
|
72 |
+
self.register_modules(
|
73 |
+
vae=vae,
|
74 |
+
text_encoder=text_encoder,
|
75 |
+
text_encoder_2=text_encoder_2,
|
76 |
+
text_encoder_3=None,
|
77 |
+
tokenizer=tokenizer,
|
78 |
+
tokenizer_2=tokenizer_2,
|
79 |
+
tokenizer_3=None,
|
80 |
+
transformer=transformer,
|
81 |
+
scheduler=scheduler,
|
82 |
+
)
|
83 |
+
self.vae_scale_factor = (
|
84 |
+
2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 16
|
85 |
+
)
|
86 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
87 |
+
self.tokenizer_max_length = (
|
88 |
+
self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77
|
89 |
+
)
|
90 |
+
self.default_sample_size = 64
|
91 |
+
)
|
92 |
+
|
93 |
def __call__(
|
94 |
self,
|
95 |
prompt: Union[str, List[str]] = None,
|
|
|
242 |
return self.image_processor.postprocess(image, output_type=output_type)[0]
|
243 |
|
244 |
class FluxWithCFGPipeline(StableDiffusion3Pipeline):
|
245 |
+
def __init__(
|
246 |
+
self,
|
247 |
+
transformer: FluxTransformer2DModel,
|
248 |
+
scheduler: FlowMatchEulerDiscreteScheduler,
|
249 |
+
vae: AutoencoderKL,
|
250 |
+
text_encoder: CLIPTextModelWithProjection,
|
251 |
+
tokenizer: CLIPTokenizer,
|
252 |
+
tokenizer_2: T5TokenizerFast,,
|
253 |
+
text_encoder_2: T5EncoderModel,
|
254 |
+
tokenizer_3: None,
|
255 |
+
):
|
256 |
+
super().__init__()
|
257 |
+
|
258 |
+
self.register_modules(
|
259 |
+
vae=vae,
|
260 |
+
text_encoder=text_encoder,
|
261 |
+
text_encoder_2=text_encoder_2,
|
262 |
+
text_encoder_3=None,
|
263 |
+
tokenizer=tokenizer,
|
264 |
+
tokenizer_2=tokenizer_2,
|
265 |
+
tokenizer_3=None,
|
266 |
+
transformer=transformer,
|
267 |
+
scheduler=scheduler,
|
268 |
+
)
|
269 |
+
self.vae_scale_factor = (
|
270 |
+
2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 16
|
271 |
+
)
|
272 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
273 |
+
self.tokenizer_max_length = (
|
274 |
+
self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77
|
275 |
+
)
|
276 |
+
self.default_sample_size = 64
|
277 |
+
)
|
278 |
+
@torch.inference_mode()
|
279 |
def generate_image(
|
280 |
self,
|
281 |
prompt: Union[str, List[str]] = None,
|