Spaces:
Running
on
Zero
Running
on
Zero
AlekseyCalvin
commited on
Commit
•
cd7a2f9
1
Parent(s):
86192c9
Update pipeline.py
Browse files- pipeline.py +3 -5
pipeline.py
CHANGED
@@ -108,7 +108,7 @@ class FluxWithCFGPipeline(DiffusionPipeline, FluxLoraLoaderMixin, FromSingleFile
|
|
108 |
self,
|
109 |
prompt: Union[str, List[str]] = None,
|
110 |
num_images_per_prompt: int = 1,
|
111 |
-
max_sequence_length: int =
|
112 |
device: Optional[torch.device] = None,
|
113 |
dtype: Optional[torch.dtype] = None,
|
114 |
):
|
@@ -154,7 +154,6 @@ class FluxWithCFGPipeline(DiffusionPipeline, FluxLoraLoaderMixin, FromSingleFile
|
|
154 |
self,
|
155 |
prompt: Union[str, List[str]],
|
156 |
num_images_per_prompt: int = 1,
|
157 |
-
max_sequence_length: int = 512,
|
158 |
device: Optional[torch.device] = None,
|
159 |
):
|
160 |
device = device or self._execution_device
|
@@ -180,7 +179,7 @@ class FluxWithCFGPipeline(DiffusionPipeline, FluxLoraLoaderMixin, FromSingleFile
|
|
180 |
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
181 |
f" {self.tokenizer_max_length} tokens: {removed_text}"
|
182 |
)
|
183 |
-
prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=
|
184 |
|
185 |
# Use pooled output of CLIPTextModel
|
186 |
prompt_embeds = prompt_embeds.pooler_output
|
@@ -190,7 +189,7 @@ class FluxWithCFGPipeline(DiffusionPipeline, FluxLoraLoaderMixin, FromSingleFile
|
|
190 |
|
191 |
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
192 |
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt)
|
193 |
-
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)
|
194 |
|
195 |
return prompt_embeds
|
196 |
|
@@ -273,7 +272,6 @@ class FluxWithCFGPipeline(DiffusionPipeline, FluxLoraLoaderMixin, FromSingleFile
|
|
273 |
prompt=negative_prompt,
|
274 |
device=device,
|
275 |
num_images_per_prompt=num_images_per_prompt,
|
276 |
-
max_sequence_length=max_sequence_length,
|
277 |
)
|
278 |
|
279 |
t5_negative_prompt_embed = self._get_t5_prompt_embeds(
|
|
|
108 |
self,
|
109 |
prompt: Union[str, List[str]] = None,
|
110 |
num_images_per_prompt: int = 1,
|
111 |
+
max_sequence_length: int = 256,
|
112 |
device: Optional[torch.device] = None,
|
113 |
dtype: Optional[torch.dtype] = None,
|
114 |
):
|
|
|
154 |
self,
|
155 |
prompt: Union[str, List[str]],
|
156 |
num_images_per_prompt: int = 1,
|
|
|
157 |
device: Optional[torch.device] = None,
|
158 |
):
|
159 |
device = device or self._execution_device
|
|
|
179 |
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
180 |
f" {self.tokenizer_max_length} tokens: {removed_text}"
|
181 |
)
|
182 |
+
prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=True)
|
183 |
|
184 |
# Use pooled output of CLIPTextModel
|
185 |
prompt_embeds = prompt_embeds.pooler_output
|
|
|
189 |
|
190 |
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
191 |
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt)
|
192 |
+
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
193 |
|
194 |
return prompt_embeds
|
195 |
|
|
|
272 |
prompt=negative_prompt,
|
273 |
device=device,
|
274 |
num_images_per_prompt=num_images_per_prompt,
|
|
|
275 |
)
|
276 |
|
277 |
t5_negative_prompt_embed = self._get_t5_prompt_embeds(
|