Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import gradio as gr | |
import numpy as np | |
import json | |
from accelerate import dispatch_model, infer_auto_device_map | |
from accelerate.utils import get_balanced_memory | |
from torch.cuda.amp import autocast | |
import torch | |
import spaces # Import this first to avoid CUDA initialization issues | |
import random | |
import time | |
from PIL import Image | |
from diffusers import DiffusionPipeline, FlowMatchEulerDiscreteScheduler, FluxTransformer2DModel | |
from transformers import CLIPTextModel, CLIPTokenizer,T5EncoderModel, T5TokenizerFast | |
# Use the 'waffles' environment variable as the access token | |
hf_token = os.getenv('waffles') | |
# Ensure the token is loaded correctly | |
if not hf_token: | |
raise ValueError("Hugging Face API token not found. Please set the 'waffles' environment variable.") | |
# Define the device | |
dtype = torch.bfloat16 | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
if torch.cuda.is_available(): | |
device = torch.device("cuda") | |
n_gpu = torch.cuda.device_count() | |
torch.cuda.get_device_name(0) | |
else: | |
device = torch.device("cpu") | |
count0 = torch.zeros(1).to(device) | |
count1 = torch.zeros(1).to(device) | |
count2 = torch.zeros(1).to(device) | |
# Load LoRAs from JSON file | |
with open('loras.json', 'r') as f: | |
loras = json.load(f) | |
# Initialize the base model with authentication and specify the device | |
# Initialize the base model with authentication and specify the device | |
pipe = DiffusionPipeline.from_pretrained("sayakpaul/FLUX.1-merged", torch_dtype=dtype, token=hf_token).to(device) | |
MAX_SEED = 2**32 - 1 | |
MAX_IMAGE_SIZE = 2048 | |
class calculateDuration: | |
def __init__(self, activity_name=""): | |
self.activity_name = activity_name | |
def __enter__(self): | |
self.start_time = time.time() | |
return self | |
def __exit__(self, exc_type, exc_value, traceback): | |
self.end_time = time.time() | |
self.elapsed_time = self.end_time - self.start_time | |
if self.activity_name: | |
print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds") | |
else: | |
print(f"Elapsed time: {self.elapsed_time:.6f} seconds") | |
def generate_images(prompt, trigger_word, steps, seed, cfg_scale, width, height, lora_scale, num_images, progress): | |
generator = torch.Generator(device=device).manual_seed(seed) | |
images = [] | |
with calculateDuration("Generating images"): | |
for _ in range(num_images): | |
# Generate each image | |
image = pipe( | |
prompt=f"{prompt} {trigger_word}", | |
num_inference_steps=steps, | |
guidance_scale=cfg_scale, | |
width=width, | |
height=height, | |
generator=generator, | |
joint_attention_kwargs={"scale": lora_scale}, | |
).images[0] | |
images.append(image) | |
return images | |
def run_lora(prompt, cfg_scale, steps, selected_repo, randomize_seed, seed, width, height, lora_scale, num_images, progress=gr.Progress(track_tqdm=True)): | |
if not selected_repo: | |
raise gr.Error("You must select a LoRA before proceeding.") | |
selected_lora = next((lora for lora in loras if lora["repo"] == selected_repo), None) | |
if not selected_lora: | |
raise gr.Error("Selected LoRA not found.") | |
lora_path = selected_lora["repo"] | |
trigger_word = selected_lora["trigger_word"] | |
# Load LoRA weights | |
with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"): | |
if "weights" in selected_lora: | |
pipe.load_lora_weights(lora_path, weight_name=selected_lora["weights"]) | |
else: | |
pipe.load_lora_weights(lora_path) | |
# Set random seed for reproducibility | |
with calculateDuration("Randomizing seed"): | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
images = generate_images(prompt, trigger_word, steps, seed, cfg_scale, width, height, lora_scale, num_images, progress) | |
pipe.to("cuda") | |
pipe.unload_lora_weights() | |
return images, seed | |
def update_selection(evt: gr.SelectData): | |
index = evt.index | |
selected_lora = loras[index] | |
return f"Selected LoRA: {selected_lora['title']}", selected_lora["repo"] | |
run_lora.zerogpu = True | |
css = ''' | |
#gen_btn{height: 100%} | |
#title{text-align: center} | |
#title h1{font-size: 3em; display:inline-flex; align-items:center} | |
#title img{width: 100px; margin-right: 0.5em} | |
#gallery .grid-wrap{height: auto; width: auto;} | |
#gallery .gallery-item{width: 50px; height: 50px; margin: 0px;} /* Make buttons 50% height and width */ | |
#gallery img{width: 100%; height: 100%; object-fit: cover;} /* Resize images to fit buttons */ | |
#info_blob { | |
background-color: #f0f0f0; | |
border: 2px solid #ccc; | |
padding: 10px; | |
margin: 10px 0; | |
text-align: center; | |
font-size: 1.2em; | |
font-weight: bold; | |
color: #333; | |
border-radius: 8px; | |
} | |
''' | |
with gr.Blocks(theme=gr.themes.Soft(), css=css) as app: | |
title = gr.HTML( | |
"""<h1><img src="https://huggingface.co/spaces/multimodalart/flux-lora-the-explorer/resolve/main/flux_lora.png" alt="LoRA"> SOONfactory on Schnell LoRas </h1>""", | |
elem_id="title", | |
) | |
# Info blob stating what the app is running | |
info_blob = gr.HTML( | |
"""<div id="info_blob"> Activist, Futurist, and Realist LoRa-stocked Quick-Use Image Manufactory (over Flux Schnell)</div>""" | |
) | |
selected_lora_text = gr.Markdown("Selected LoRA: None") | |
selected_repo = gr.State(value="") | |
# Prompt takes the full line | |
prompt = gr.Textbox(label="Prompt", lines=5, placeholder="Type a prompt after selecting a LoRA", elem_id="full_line_prompt") | |
with gr.Row(): | |
with gr.Column(scale=1): # LoRA collection on the left | |
gallery = gr.Gallery( | |
[(item["image"], item["title"]) for item in loras], | |
label="LoRA Gallery", | |
allow_preview=False, | |
columns=3, | |
elem_id="gallery" | |
) | |
with gr.Column(scale=1): # Generated images on the right | |
result = gr.Gallery(label="Generated Images") | |
seed = gr.Number(label="Seed", value=0, interactive=False) | |
with gr.Column(): | |
with gr.Row(): | |
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=1) | |
steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=4) | |
with gr.Row(): | |
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024) | |
height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024) | |
with gr.Row(): | |
randomize_seed = gr.Checkbox(True, label="Randomize seed") | |
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0) | |
lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=1, step=0.01, value=0.95) | |
num_images = gr.Slider(label="Number of Images", minimum=1, maximum=4, step=1, value=1) | |
gallery.select( | |
fn=update_selection, | |
inputs=[], | |
outputs=[selected_lora_text, selected_repo] | |
) | |
generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn") | |
generate_button.click( | |
run_lora, | |
inputs=[prompt, cfg_scale, steps, selected_repo, randomize_seed, seed, width, height, lora_scale, num_images], | |
outputs=[result, seed] | |
) | |
app.queue() | |
app.launch() |