Spaces:
Running
on
Zero
Running
on
Zero
AlekseyCalvin
commited on
Commit
•
e14aae1
1
Parent(s):
e40b201
Update app.py
Browse files
app.py
CHANGED
@@ -1,51 +1,36 @@
|
|
1 |
-
import os
|
2 |
import gradio as gr
|
3 |
-
import numpy as np
|
4 |
import json
|
5 |
-
|
6 |
-
|
7 |
-
from torch.cuda.amp import autocast
|
8 |
import torch
|
9 |
-
import
|
|
|
|
|
|
|
|
|
10 |
import random
|
11 |
import time
|
12 |
-
from
|
13 |
-
from diffusers import
|
14 |
-
|
|
|
|
|
15 |
|
16 |
-
|
17 |
-
|
|
|
|
|
18 |
|
19 |
-
|
20 |
-
if not hf_token:
|
21 |
-
raise ValueError("Hugging Face API token not found. Please set the 'waffles' environment variable.")
|
22 |
|
23 |
-
|
24 |
-
dtype
|
25 |
-
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
26 |
-
|
27 |
-
if torch.cuda.is_available():
|
28 |
-
device = torch.device("cuda")
|
29 |
-
n_gpu = torch.cuda.device_count()
|
30 |
-
torch.cuda.get_device_name(0)
|
31 |
-
else:
|
32 |
-
device = torch.device("cpu")
|
33 |
-
|
34 |
-
count0 = torch.zeros(1).to(device)
|
35 |
-
count1 = torch.zeros(1).to(device)
|
36 |
-
count2 = torch.zeros(1).to(device)
|
37 |
|
38 |
# Load LoRAs from JSON file
|
39 |
with open('loras.json', 'r') as f:
|
40 |
loras = json.load(f)
|
41 |
-
|
42 |
-
|
43 |
-
# Initialize the base model with authentication and specify the device
|
44 |
-
pipe = DiffusionPipeline.from_pretrained("sayakpaul/FLUX.1-merged", torch_dtype=dtype, token=hf_token).to(device)
|
45 |
-
|
46 |
-
MAX_SEED = 2**32 - 1
|
47 |
-
MAX_IMAGE_SIZE = 2048
|
48 |
-
|
49 |
|
50 |
class calculateDuration:
|
51 |
def __init__(self, activity_name=""):
|
@@ -63,36 +48,62 @@ class calculateDuration:
|
|
63 |
else:
|
64 |
print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
|
65 |
|
66 |
-
|
67 |
-
def
|
68 |
-
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
-
with calculateDuration("Generating
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
def run_lora(prompt, cfg_scale, steps, selected_repo, randomize_seed, seed, width, height, lora_scale, num_images, progress=gr.Progress(track_tqdm=True)):
|
87 |
-
if not selected_repo:
|
88 |
raise gr.Error("You must select a LoRA before proceeding.")
|
89 |
|
90 |
-
selected_lora =
|
91 |
-
if not selected_lora:
|
92 |
-
raise gr.Error("Selected LoRA not found.")
|
93 |
-
|
94 |
lora_path = selected_lora["repo"]
|
95 |
trigger_word = selected_lora["trigger_word"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
# Load LoRA weights
|
98 |
with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"):
|
@@ -106,15 +117,10 @@ def run_lora(prompt, cfg_scale, steps, selected_repo, randomize_seed, seed, widt
|
|
106 |
if randomize_seed:
|
107 |
seed = random.randint(0, MAX_SEED)
|
108 |
|
109 |
-
|
110 |
-
pipe.to("
|
111 |
pipe.unload_lora_weights()
|
112 |
-
return
|
113 |
-
|
114 |
-
def update_selection(evt: gr.SelectData):
|
115 |
-
index = evt.index
|
116 |
-
selected_lora = loras[index]
|
117 |
-
return f"Selected LoRA: {selected_lora['title']}", selected_lora["repo"]
|
118 |
|
119 |
run_lora.zerogpu = True
|
120 |
|
@@ -123,78 +129,70 @@ css = '''
|
|
123 |
#title{text-align: center}
|
124 |
#title h1{font-size: 3em; display:inline-flex; align-items:center}
|
125 |
#title img{width: 100px; margin-right: 0.5em}
|
126 |
-
#gallery .grid-wrap{height:
|
127 |
-
#gallery .gallery-item{width: 50px; height: 50px; margin: 0px;} /* Make buttons 50% height and width */
|
128 |
-
#gallery img{width: 100%; height: 100%; object-fit: cover;} /* Resize images to fit buttons */
|
129 |
-
#info_blob {
|
130 |
-
background-color: #f0f0f0;
|
131 |
-
border: 2px solid #ccc;
|
132 |
-
padding: 10px;
|
133 |
-
margin: 10px 0;
|
134 |
-
text-align: center;
|
135 |
-
font-size: 1.2em;
|
136 |
-
font-weight: bold;
|
137 |
-
color: #333;
|
138 |
-
border-radius: 8px;
|
139 |
-
}
|
140 |
'''
|
141 |
with gr.Blocks(theme=gr.themes.Soft(), css=css) as app:
|
142 |
title = gr.HTML(
|
143 |
-
"""<h1><img src="https://huggingface.co/spaces/multimodalart/flux-lora-the-explorer/resolve/main/flux_lora.png" alt="LoRA"> SOONfactory
|
144 |
elem_id="title",
|
145 |
)
|
146 |
-
|
147 |
-
# Info blob stating what the app is running
|
148 |
info_blob = gr.HTML(
|
149 |
-
"""<div id="info_blob"> Activist
|
150 |
)
|
151 |
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
with gr.Row():
|
159 |
-
with gr.Column(scale=
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
gallery = gr.Gallery(
|
161 |
[(item["image"], item["title"]) for item in loras],
|
162 |
-
label="LoRA
|
163 |
allow_preview=False,
|
164 |
columns=3,
|
165 |
elem_id="gallery"
|
166 |
)
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
with gr.
|
172 |
-
with gr.
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
|
|
185 |
|
186 |
gallery.select(
|
187 |
-
|
188 |
-
inputs=[],
|
189 |
-
outputs=[
|
190 |
)
|
191 |
|
192 |
-
|
193 |
-
|
194 |
-
run_lora,
|
195 |
-
inputs=[prompt, cfg_scale, steps,
|
196 |
outputs=[result, seed]
|
197 |
)
|
198 |
|
199 |
-
app.queue()
|
200 |
-
app.launch()
|
|
|
|
|
1 |
import gradio as gr
|
|
|
2 |
import json
|
3 |
+
import logging
|
4 |
+
import argparse
|
|
|
5 |
import torch
|
6 |
+
import os
|
7 |
+
from os import path
|
8 |
+
from PIL import Image
|
9 |
+
import spaces
|
10 |
+
import copy
|
11 |
import random
|
12 |
import time
|
13 |
+
from huggingface_hub import hf_hub_download
|
14 |
+
from diffusers import FluxTransformer2DModel, FluxPipeline
|
15 |
+
import safetensors.torch
|
16 |
+
from safetensors.torch import load_file
|
17 |
+
import gc
|
18 |
|
19 |
+
cache_path = path.join(path.dirname(path.abspath(__file__)), "models")
|
20 |
+
os.environ["TRANSFORMERS_CACHE"] = cache_path
|
21 |
+
os.environ["HF_HUB_CACHE"] = cache_path
|
22 |
+
os.environ["HF_HOME"] = cache_path
|
23 |
|
24 |
+
torch.backends.cuda.matmul.allow_tf32 = True
|
|
|
|
|
25 |
|
26 |
+
pipe = FluxPipeline.from_pretrained("John6666/nsfw-master-flux-lora-merged-with-flux1-dev-fp16-v10-fp8-flux", torch_dtype=torch.bfloat16)
|
27 |
+
pipe.to(device="cuda", dtype=torch.bfloat16)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
# Load LoRAs from JSON file
|
30 |
with open('loras.json', 'r') as f:
|
31 |
loras = json.load(f)
|
32 |
+
|
33 |
+
MAX_SEED = 2**32-1
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
class calculateDuration:
|
36 |
def __init__(self, activity_name=""):
|
|
|
48 |
else:
|
49 |
print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
|
50 |
|
51 |
+
|
52 |
+
def update_selection(evt: gr.SelectData, width, height):
|
53 |
+
selected_lora = loras[evt.index]
|
54 |
+
new_placeholder = f"Type a prompt for {selected_lora['title']}"
|
55 |
+
lora_repo = selected_lora["repo"]
|
56 |
+
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨"
|
57 |
+
if "aspect" in selected_lora:
|
58 |
+
if selected_lora["aspect"] == "portrait":
|
59 |
+
width = 768
|
60 |
+
height = 1024
|
61 |
+
elif selected_lora["aspect"] == "landscape":
|
62 |
+
width = 1024
|
63 |
+
height = 768
|
64 |
+
return (
|
65 |
+
gr.update(placeholder=new_placeholder),
|
66 |
+
updated_text,
|
67 |
+
evt.index,
|
68 |
+
width,
|
69 |
+
height,
|
70 |
+
)
|
71 |
+
|
72 |
+
@spaces.GPU(duration=70)
|
73 |
+
def generate_image(prompt, trigger_word, steps, seed, cfg_scale, width, height, lora_scale, progress):
|
74 |
+
pipe.to("cuda")
|
75 |
+
generator = torch.Generator(device="cuda").manual_seed(seed)
|
76 |
|
77 |
+
with calculateDuration("Generating image"):
|
78 |
+
# Generate image
|
79 |
+
image = pipe(
|
80 |
+
prompt=f"{prompt} {trigger_word}",
|
81 |
+
num_inference_steps=steps,
|
82 |
+
guidance_scale=cfg_scale,
|
83 |
+
width=width,
|
84 |
+
height=height,
|
85 |
+
generator=generator,
|
86 |
+
joint_attention_kwargs={"scale": lora_scale},
|
87 |
+
).images[0]
|
88 |
+
return image
|
89 |
+
|
90 |
+
def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
|
91 |
+
if selected_index is None:
|
|
|
|
|
92 |
raise gr.Error("You must select a LoRA before proceeding.")
|
93 |
|
94 |
+
selected_lora = loras[selected_index]
|
|
|
|
|
|
|
95 |
lora_path = selected_lora["repo"]
|
96 |
trigger_word = selected_lora["trigger_word"]
|
97 |
+
if(trigger_word):
|
98 |
+
if "trigger_position" in selected_lora:
|
99 |
+
if selected_lora["trigger_position"] == "prepend":
|
100 |
+
prompt_mash = f"{trigger_word} {prompt}"
|
101 |
+
else:
|
102 |
+
prompt_mash = f"{prompt} {trigger_word}"
|
103 |
+
else:
|
104 |
+
prompt_mash = f"{trigger_word} {prompt}"
|
105 |
+
else:
|
106 |
+
prompt_mash = prompt
|
107 |
|
108 |
# Load LoRA weights
|
109 |
with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"):
|
|
|
117 |
if randomize_seed:
|
118 |
seed = random.randint(0, MAX_SEED)
|
119 |
|
120 |
+
image = generate_image(prompt, trigger_word, steps, seed, cfg_scale, width, height, lora_scale, progress)
|
121 |
+
pipe.to("cpu")
|
122 |
pipe.unload_lora_weights()
|
123 |
+
return image, seed
|
|
|
|
|
|
|
|
|
|
|
124 |
|
125 |
run_lora.zerogpu = True
|
126 |
|
|
|
129 |
#title{text-align: center}
|
130 |
#title h1{font-size: 3em; display:inline-flex; align-items:center}
|
131 |
#title img{width: 100px; margin-right: 0.5em}
|
132 |
+
#gallery .grid-wrap{height: 10vh}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
'''
|
134 |
with gr.Blocks(theme=gr.themes.Soft(), css=css) as app:
|
135 |
title = gr.HTML(
|
136 |
+
"""<h1><img src="https://huggingface.co/spaces/multimodalart/flux-lora-the-explorer/resolve/main/flux_lora.png" alt="LoRA"> SOONfactory </h1>""",
|
137 |
elem_id="title",
|
138 |
)
|
139 |
+
# Info blob stating what the app is running
|
|
|
140 |
info_blob = gr.HTML(
|
141 |
+
"""<div id="info_blob"> Activist & Futurealist LoRa-stocked Img Manufactory (on Flux Dev HYPER (8-Step))</div>"""
|
142 |
)
|
143 |
|
144 |
+
# Info blob stating what the app is running
|
145 |
+
info_blob = gr.HTML(
|
146 |
+
"""<div id="info_blob">Prephrase prompts w/: 1.RCA style 2. HST style autochrome 3. HST style 4.TOK hybrid 5.2004 photo 6.HST style 7.LEN Vladimir Lenin 8.TOK portra 9.HST portrait 10.flmft 11.HST in Peterhof 12.HST Soviet kodachrome 13. SOTS art 14.HST 15.photo 16.pficonics 17.wh3r3sw4ld0 18.retrofuturism 19-24.HST style photo 25.vintage cover </div>"""
|
147 |
+
)
|
148 |
+
selected_index = gr.State(None)
|
|
|
149 |
with gr.Row():
|
150 |
+
with gr.Column(scale=3):
|
151 |
+
prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Select LoRa/Style & type prompt!")
|
152 |
+
with gr.Column(scale=1, elem_id="gen_column"):
|
153 |
+
generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn")
|
154 |
+
with gr.Row():
|
155 |
+
with gr.Column(scale=3):
|
156 |
+
selected_info = gr.Markdown("")
|
157 |
gallery = gr.Gallery(
|
158 |
[(item["image"], item["title"]) for item in loras],
|
159 |
+
label="LoRA Inventory",
|
160 |
allow_preview=False,
|
161 |
columns=3,
|
162 |
elem_id="gallery"
|
163 |
)
|
164 |
+
|
165 |
+
with gr.Column(scale=4):
|
166 |
+
result = gr.Image(label="Generated Image")
|
167 |
+
|
168 |
+
with gr.Row():
|
169 |
+
with gr.Accordion("Advanced Settings", open=True):
|
170 |
+
with gr.Column():
|
171 |
+
with gr.Row():
|
172 |
+
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5)
|
173 |
+
steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=6)
|
174 |
+
|
175 |
+
with gr.Row():
|
176 |
+
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024)
|
177 |
+
height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)
|
178 |
+
|
179 |
+
with gr.Row():
|
180 |
+
randomize_seed = gr.Checkbox(True, label="Randomize seed")
|
181 |
+
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
|
182 |
+
lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=1.5, step=0.01, value=0.9)
|
183 |
|
184 |
gallery.select(
|
185 |
+
update_selection,
|
186 |
+
inputs=[width, height],
|
187 |
+
outputs=[prompt, selected_info, selected_index, width, height]
|
188 |
)
|
189 |
|
190 |
+
gr.on(
|
191 |
+
triggers=[generate_button.click, prompt.submit],
|
192 |
+
fn=run_lora,
|
193 |
+
inputs=[prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale],
|
194 |
outputs=[result, seed]
|
195 |
)
|
196 |
|
197 |
+
app.queue(default_concurrency_limit=2).launch(show_error=True)
|
198 |
+
app.launch()
|