taskswithcode
Fixes
b60cda7
import time
import sys
import streamlit as st
import string
import os
from io import StringIO
import pdb
import json
import torch
import requests
import socket
from streamlit_image_select import image_select
use_case = {"1":"Image background removal - (upload any picture and remove background)","2":"Masking foreground for downstream inpainting task"}
mask_types = {
"rgba - makes background white":"rgba",
"green - makes the background green":"green",
"blur - blurs background":"blur",
"map - makes the foreground white and rest black ":"map"
}
APP_NAME = "hf/salient_object_detection"
INFO_URL = "https://www.taskswithcode.com/stats/"
TMP_DIR="tmp_dir"
TMP_SEED = 1
def get_views(action):
ret_val = 0
#return "{:,}".format(ret_val)
hostname = socket.gethostname()
ip_address = socket.gethostbyname(hostname)
if ("view_count" not in st.session_state):
try:
app_info = {'name': APP_NAME,"action":action,"host":hostname,"ip":ip_address}
res = requests.post(INFO_URL, json = app_info).json()
print(res)
data = res["count"]
except Exception as e:
data = 0
print(f"Exception in get_views - uncached case. view count not cached: {str(e)}")
ret_val = data
st.session_state["view_count"] = data
else:
ret_val = st.session_state["view_count"]
if (action != "init"):
try:
app_info = {'name': APP_NAME,"action":action,"host":hostname,"ip":ip_address}
print(app_info)
res = requests.post(INFO_URL, json = app_info).json()
except Exception as e:
print(f"Exception in get_views - Non init case. view count not cached: {str(e)}")
return "{:,}".format(ret_val)
def construct_model_info_for_display(model_names,api_info):
options_arr = []
#markdown_str = f"<div style=\"font-size:16px; color: #2f2f2f; text-align: left\"><br/><b>Models evaluated ({len(model_names)})</b><br/></div>"
markdown_str = f"<div style=\"font-size:16px; color: #2f2f2f; text-align: left\"><br/><b>Model evaluated </b><br/></div>"
markdown_str += f"<div style=\"font-size:2px; color: #2f2f2f; text-align: left\"><br/></div>"
for node in model_names:
options_arr .append(node["name"])
if (node["mark"] == "True"):
markdown_str += f"<div style=\"font-size:16px; color: #5f5f5f; text-align: left\">&nbsp;•&nbsp;Model:&nbsp;<a href=\'{node['paper_url']}\' target='_blank'>{node['name']}</a><br/>&nbsp;&nbsp;&nbsp;&nbsp;Code released by:&nbsp;<a href=\'{node['orig_author_url']}\' target='_blank'>{node['orig_author']}</a><br/>&nbsp;&nbsp;&nbsp;&nbsp;Model info:&nbsp;<a href=\'{node['sota_info']['sota_link']}\' target='_blank'>{node['sota_info']['task']}</a></div>"
if ("Note" in node):
markdown_str += f"<div style=\"font-size:16px; color: #a91212; text-align: left\">&nbsp;&nbsp;&nbsp;&nbsp;{node['Note']}<a href=\'{node['alt_url']}\' target='_blank'>link</a></div>"
markdown_str += "<div style=\"font-size:16px; color: #5f5f5f; text-align: left\"><br/></div>"
markdown_str += f"<div style=\"font-size:16px; color: #2f2f2f; text-align: left\"><b>{api_info['desc']}</b><br/></div>"
for method in api_info["methods"]:
lang = method["lang"]
example = open(method["usage"]).read()
markdown_str += f"<div style=\"font-size:16px; color: #5f5f5f; text-align: center\"><b>{lang} usage</b></div>"
markdown_str += f"<div style=\"font-size:14px; color: #bfbfbf; text-align: left\">{example}<br/></div>"
markdown_str += "<div style=\"font-size:12px; color: #9f9f9f; text-align: left\"><b><br/>Note:</b><br/>•&nbsp;Uploaded files are loaded into non-persistent memory for the duration of the computation. They are not cached</div>"
markdown_str += "<div style=\"font-size:12px; color: #9f9f9f; text-align: left\"><br/><a href=\'https://github.com/taskswithcode/salient_object_detection_app.git\' target='_blank'>Github code</a> for this app</div>"
return options_arr,markdown_str
def init_page():
st.set_page_config(page_title='TWC - Image foreground masking or background removal with state-of-the-art models', page_icon="logo.jpg", layout='centered', initial_sidebar_state='auto',
menu_items={
'About': 'This app was created by taskswithcode. http://taskswithcode.com'
})
col,pad = st.columns([85,15])
with col:
st.image("long_form_logo_with_icon.png")
def run_test(config,input_file_name,display_area,uploaded_file,mask_type):
global TMP_SEED
display_area.text("Processing request...")
try:
if (uploaded_file is None):
file_data = open(input_file_name, "rb")
r = requests.post(config["SERVER_ADDRESS"], data={"mask":mask_type}, files={"test":file_data})
else:
file_data = uploaded_file.read()
file_name = f"{TMP_DIR}/{TMP_SEED}_{str(time.time()).replace('.','_')}_{uploaded_file.name}"
TMP_SEED += 1
with open(file_name,"wb") as fp:
fp.write(file_data)
file_data = open(file_name, "rb")
r = requests.post(config["SERVER_ADDRESS"], data={"mask":mask_type}, files={"test":file_data})
os.remove(file_name)
print("Servers response:",r.status_code,len(r.content))
if (r.status_code == 200):
size = "{:,}".format(len(r.content))
return {"response":r.content,"size":size}
else:
return {"error":f"API request failed {r.status_code}"}
except Exception as e:
st.error("Some error occurred during prediction" + str(e))
#st.stop()
return {"error":f"Exception in performing image masking: {str(e)}"}
return {}
def display_results(results,response_info,mask):
main_sent = f"<div style=\"font-size:14px; color: #2f2f2f; text-align: left\">{response_info}<br/><br/></div>"
body_sent = []
download_data = {}
main_sent = main_sent + "\n" + '\n'.join(body_sent)
st.markdown(main_sent,unsafe_allow_html=True)
st.image(results["response"], caption=f'Output of Image background removal with mask: {mask}')
st.session_state["download_ready"] = results["response"]
get_views("submit")
def init_session():
init_page()
st.session_state["model_name"] = "insprynet"
st.session_state["download_ready"] = None
st.session_state["model_name"] = "ss_test"
st.session_state["file_name"] = "default"
st.session_state["mask_type"] = "rgba"
def app_main(app_mode,example_files,model_name_files,api_info_files,config_file):
init_session()
with open(example_files) as fp:
example_file_names = json.load(fp)
with open(model_name_files) as fp:
model_names = json.load(fp)
with open(config_file) as fp:
config = json.load(fp)
with open(api_info_files) as fp:
api_info = json.load(fp)
curr_use_case = use_case[app_mode].split(".")[0]
curr_use_case = use_case[app_mode].split(".")[0]
st.markdown("<h5 style='text-align: center;'>Image foreground masking or background removal</h5>", unsafe_allow_html=True)
st.markdown(f"<div style='color: #4f4f4f; text-align: left'>Image masking using state-of-the-art models for salient object detection(SOD). SOD use cases are<br/>&nbsp;&nbsp;&nbsp;•&nbsp;&nbsp;{use_case['1']}<br/>&nbsp;&nbsp;&nbsp;•&nbsp;&nbsp;{use_case['2']}</div>", unsafe_allow_html=True)
st.markdown(f"<div style='color: #9f9f9f; text-align: right'>views:&nbsp;{get_views('init')}</div>", unsafe_allow_html=True)
try:
with st.form('twc_form'):
step1_line = "Upload an image or choose an example image below"
uploaded_file = st.file_uploader(step1_line, type=["png","jpg","jpeg"])
selected_file_name = image_select("Select image", ["twc_samples/sample1.jpg", "twc_samples/sample2.jpg", "twc_samples/sample3.jpg", "twc_samples/sample4.jpg"])
st.write("")
mask_type = st.selectbox(label=f'Select type of masking',
options = list(dict.keys(mask_types)), index=0, key = "twc_mask_types")
mask_type = mask_types[mask_type]
st.write("")
submit_button = st.form_submit_button('Run')
options_arr,markdown_str = construct_model_info_for_display(model_names,api_info)
input_status_area = st.empty()
display_area = st.empty()
if submit_button:
start = time.time()
if uploaded_file is not None:
st.session_state["file_name"] = uploaded_file.name
else:
st.session_state["file_name"] = selected_file_name
st.session_state["mask_type"] = mask_type
display_area.empty()
results = run_test(config,st.session_state["file_name"],display_area,uploaded_file,mask_type)
with display_area.container():
if ("error" in results):
st.error(results["error"])
else:
device = 'GPU' if torch.cuda.is_available() else 'CPU'
response_info = f"Computation time on {device}: {time.time() - start:.2f} secs for image size: {results['size']} bytes"
display_results(results,response_info,mask_type)
#st.json(results)
st.download_button(
label="Download results as png",
data= st.session_state["download_ready"] if st.session_state["download_ready"] != None else "",
disabled = False if st.session_state["download_ready"] != None else True,
file_name= (st.session_state["model_name"] + "_" + st.session_state["mask_type"] + "_" + '_'.join(st.session_state["file_name"].split(".")[:-1]) + ".png").replace("/","_"),
mime='image/png',
key ="download"
)
except Exception as e:
st.error("Some error occurred during loading" + str(e))
#st.stop()
st.markdown(markdown_str, unsafe_allow_html=True)
if __name__ == "__main__":
app_main("1","sod_app_examples.json","sod_app_models.json","sod_apis.json","config.json")