Spaces:
Sleeping
Sleeping
File size: 6,723 Bytes
6cc94b6 a99513a 6cc94b6 a99513a 6cc94b6 a99513a 6cc94b6 a99513a 6cc94b6 a99513a 6cc94b6 a99513a 6cc94b6 a99513a 6cc94b6 a99513a 6cc94b6 a99513a 6cc94b6 a99513a 6abb81d cdc4636 a99513a 6f8669c a99513a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
import gradio as gr
import os
os.system('pip install dashscope -U')
import tempfile
from pathlib import Path
import secrets
import dashscope
from dashscope import MultiModalConversation, Generation
from PIL import Image
# 设置API密钥
YOUR_API_TOKEN = os.getenv('YOUR_API_TOKEN')
dashscope.api_key = YOUR_API_TOKEN
math_messages = []
def process_image(image, shouldConvert):
# 获取上传文件的目录
global math_messages
math_messages = [] # reset when upload image
uploaded_file_dir = os.environ.get("GRADIO_TEMP_DIR") or str(
Path(tempfile.gettempdir()) / "gradio"
)
os.makedirs(uploaded_file_dir, exist_ok=True)
# 创建临时文件路径
name = f"tmp{secrets.token_hex(20)}.jpg"
filename = os.path.join(uploaded_file_dir, name)
# 保存上传的图片
if shouldConvert:
new_img = Image.new('RGB', size=(image.width, image.height), color=(255, 255, 255))
new_img.paste(image, (0, 0), mask=image)
image = new_img
image.save(filename)
# 调用qwen-vl-max-0809模型处理图片
messages = [{
'role': 'system',
'content': [{'text': 'You are a helpful assistant.'}]
}, {
'role': 'user',
'content': [
{'image': f'file://{filename}'},
{'text': 'Please describe the math-related content in this image, ensuring that any LaTeX formulas are correctly transcribed. Non-mathematical details do not need to be described.'}
]
}]
response = MultiModalConversation.call(model='qwen-vl-max-0809', messages=messages)
# 清理临时文件
os.remove(filename)
return response.output.choices[0]["message"]["content"]
def get_math_response(image_description, user_question):
global math_messages
if not math_messages:
math_messages.append({'role': 'system', 'content': 'You are a helpful math assistant.'})
math_messages = math_messages[:1]
if image_description is not None:
content = f'Image description: {image_description}\n\n'
else:
content = ''
query = f"{content}User question: {user_question}"
math_messages.append({'role': 'user', 'content': query})
response = Generation.call(
model="qwen2-math-72b-instruct",
messages=math_messages,
result_format='message',
stream=True
)
answer = None
for resp in response:
if resp.output is None:
continue
answer = resp.output.choices[0].message.content
yield answer.replace("\\", "\\\\")
print(f'query: {query}\nanswer: {answer}')
if answer is None:
math_messages.pop()
else:
math_messages.append({'role': 'assistant', 'content': answer})
def math_chat_bot(image, sketchpad, question, state):
current_tab_index = state["tab_index"]
image_description = None
# Upload
if current_tab_index == 0:
if image is not None:
image_description = process_image(image)
# Sketch
elif current_tab_index == 1:
print(sketchpad)
if sketchpad and sketchpad["composite"]:
image_description = process_image(sketchpad["composite"], True)
yield from get_math_response(image_description, question)
css = """
#qwen-md .katex-display { display: inline; }
#qwen-md .katex-display>.katex { display: inline; }
#qwen-md .katex-display>.katex>.katex-html { display: inline; }
"""
def tabs_select(e: gr.SelectData, _state):
_state["tab_index"] = e.index
# 创建Gradio接口
with gr.Blocks(css=css) as demo:
gr.HTML("""\
<p align="center"><img src="https://modelscope.oss-cn-beijing.aliyuncs.com/resource/qwen.png" style="height: 60px"/><p>"""
"""<center><font size=8>📖 Qwen2-Math Demo</center>"""
"""\
<center><font size=3>This WebUI is based on Qwen2-VL for OCR and Qwen2-Math for mathematical reasoning. You can input either images or texts of mathematical or arithmetic problems.</center>"""
)
state = gr.State({"tab_index": 0})
with gr.Row():
with gr.Column():
with gr.Tabs() as input_tabs:
with gr.Tab("Upload"):
input_image = gr.Image(type="pil", label="Upload"),
with gr.Tab("Sketch"):
input_sketchpad = gr.Sketchpad(type="pil", label="Sketch", layers=False)
input_tabs.select(fn=tabs_select, inputs=[state])
input_text = gr.Textbox(label="input your question")
with gr.Row():
with gr.Column():
clear_btn = gr.ClearButton(
[*input_image, input_sketchpad, input_text])
with gr.Column():
submit_btn = gr.Button("Submit", variant="primary")
with gr.Column():
output_md = gr.Markdown(label="answer",
latex_delimiters=[{
"left": "\\(",
"right": "\\)",
"display": True
}, {
"left": "\\begin\{equation\}",
"right": "\\end\{equation\}",
"display": True
}, {
"left": "\\begin\{align\}",
"right": "\\end\{align\}",
"display": True
}, {
"left": "\\begin\{alignat\}",
"right": "\\end\{alignat\}",
"display": True
}, {
"left": "\\begin\{gather\}",
"right": "\\end\{gather\}",
"display": True
}, {
"left": "\\begin\{CD\}",
"right": "\\end\{CD\}",
"display": True
}, {
"left": "\\[",
"right": "\\]",
"display": True
}],
elem_id="qwen-md")
submit_btn.click(
fn=math_chat_bot,
inputs=[*input_image, input_sketchpad, input_text, state],
outputs=output_md)
demo.launch() |