|
|
|
import gradio as gr |
|
|
|
from fastai.basics import * |
|
from fastai.vision import models |
|
from fastai.vision.all import * |
|
from fastai.metrics import * |
|
from fastai.data.all import * |
|
from fastai.callback import * |
|
|
|
import PIL |
|
import torchvision.transforms as transforms |
|
|
|
|
|
|
|
from huggingface_hub import hf_hub_download |
|
hf_hub_download(repo_id="Alesteba/deep_model_03", filename="unet.pth") |
|
|
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
model = torch.jit.load("unet.pth") |
|
model = model.cpu() |
|
|
|
def transform_image(image): |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
my_transforms = transforms.Compose([transforms.ToTensor(), |
|
transforms.Normalize( |
|
[0.485, 0.456, 0.406], |
|
[0.229, 0.224, 0.225])]) |
|
image_aux = image |
|
|
|
return my_transforms(image_aux).unsqueeze(0).to(device) |
|
|
|
|
|
|
|
def predict(img): |
|
img = PIL.Image.fromarray(img, "RGB") |
|
image = transforms.Resize((480,640))(img) |
|
tensor = transform_image(image=image) |
|
|
|
model.to(device) |
|
with torch.no_grad(): |
|
outputs = model(tensor) |
|
|
|
outputs = torch.argmax(outputs,1) |
|
mask = np.array(outputs.cpu()) |
|
mask[mask==1]=255 |
|
mask[mask==2]=150 |
|
mask[mask==3]=76 |
|
mask[mask==4]=29 |
|
mask=np.reshape(mask,(480,640)) |
|
return Image.fromarray(mask.astype('uint8')) |
|
|
|
gr.Interface( |
|
fn=predict, |
|
inputs=gr.inputs.Image(shape=(128, 128)), |
|
outputs=[gr.outputs.Image(type="pil", label="Prediction")], |
|
examples=['color_154.jpg','color_155.jpg'] |
|
).launch(share=False) |
|
|