Alesteba commited on
Commit
63015c6
1 Parent(s): cb2d5dc

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +51 -8
app.py CHANGED
@@ -1,18 +1,61 @@
1
  from huggingface_hub import from_pretrained_fastai
2
  import gradio as gr
 
 
3
  from fastai.vision.all import *
 
 
 
 
 
4
 
5
- # repo_id = "YOUR_USERNAME/YOUR_LEARNER_NAME"
6
- repo_id = "Alesteba/deep_model_03"
 
7
 
8
- learner = from_pretrained_fastai(repo_id)
9
- labels = learner.dls.vocab
 
 
 
 
 
 
 
 
 
10
 
11
- # Definimos una función que se encarga de llevar a cabo las predicciones
12
  def predict(img):
13
- #img = PILImage.create(img)
14
- pred,pred_idx,probs = learner.predict(img)
15
- return {labels[i]: float(probs[i]) for i in range(len(labels))}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
 
17
  # Creamos la interfaz y la lanzamos.
18
  gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(128, 128)), outputs=gr.outputs.Label(num_top_classes=3),examples=['color_154.jpg','color_155.jpg']).launch(share=False)
 
1
  from huggingface_hub import from_pretrained_fastai
2
  import gradio as gr
3
+ from fastai.basics import *
4
+ from fastai.vision import models
5
  from fastai.vision.all import *
6
+ from fastai.metrics import *
7
+ from fastai.data.all import *
8
+ from fastai.callback import *
9
+ import PIL
10
+ import torchvision.transforms as transforms
11
 
12
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
13
+ model = torch.jit.load("pract3.pth")
14
+ model = model.cpu()
15
 
16
+ def transform_image(image):
17
+
18
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
19
+
20
+ my_transforms = transforms.Compose([transforms.ToTensor(),
21
+ transforms.Normalize(
22
+ [0.485, 0.456, 0.406],
23
+ [0.229, 0.224, 0.225])])
24
+ image_aux = image
25
+
26
+ return my_transforms(image_aux).unsqueeze(0).to(device)
27
 
 
28
  def predict(img):
29
+ img = PIL.Image.fromarray(img, "RGB")
30
+ image = transforms.Resize((480,640))(img)
31
+ tensor = transform_image(image=image)
32
+
33
+ model.to(device)
34
+ with torch.no_grad():
35
+ outputs = model(tensor)
36
+
37
+ outputs = torch.argmax(outputs,1)
38
+ mask = np.array(outputs.cpu())
39
+ mask[mask==1]=255
40
+ mask[mask==2]=150
41
+ mask[mask==3]=76
42
+ mask[mask==4]=29
43
+ mask=np.reshape(mask,(480,640))
44
+ return Image.fromarray(mask.astype('uint8'))
45
+
46
+ # repo_id = "YOUR_USERNAME/YOUR_LEARNER_NAME"
47
+ # repo_id = "Alesteba/deep_model_03"
48
+
49
+ # learner = from_pretrained_fastai(repo_id)
50
+ # labels = learner.dls.vocab
51
+
52
+
53
+
54
+ # # Definimos una función que se encarga de llevar a cabo las predicciones
55
+ # def predict(img):
56
+ # #img = PILImage.create(img)
57
+ # pred,pred_idx,probs = learner.predict(img)
58
+ # return {labels[i]: float(probs[i]) for i in range(len(labels))}
59
 
60
  # Creamos la interfaz y la lanzamos.
61
  gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(128, 128)), outputs=gr.outputs.Label(num_top_classes=3),examples=['color_154.jpg','color_155.jpg']).launch(share=False)