Spaces:
Runtime error
Runtime error
import streamlit as st | |
import tensorflow as tf | |
import numpy as np | |
from config import * | |
from transformations import * | |
from rendering import * | |
# Setting random seed to obtain reproducible results. | |
tf.random.set_seed(42) | |
def show_rendered_image(r,theta,phi): | |
# Get the camera to world matrix. | |
c2w = pose_spherical(theta, phi, r) | |
ray_oris, ray_dirs = get_rays(H, W, focal, c2w) | |
rays_flat, t_vals = render_flat_rays( | |
ray_oris, ray_dirs, near=2.0, far=6.0, num_samples=NUM_SAMPLES, rand=False | |
) | |
rgb, depth = render_rgb_depth( | |
nerf_loaded, rays_flat[None, ...], t_vals[None, ...], rand=False, train=False | |
) | |
return(rgb[0], depth[0]) | |
# app.py text matter starts here | |
st.title('3D volumetric rendering with NeRF - A concrete example, Ficus Dataset') | |
import base64 | |
file = open(r'./training(3).gif', 'rb') | |
contents = file.read() | |
data_url = base64.b64encode(contents).decode('utf-8') | |
file.close() | |
# st.markdown( | |
# f'<img src="data:image/gif;base64,{data_url}" alt="cat gif">', | |
# unsafe_allow_html=True, | |
# ) | |
st.markdown("[NeRF](https://arxiv.org/abs/2003.08934) proposes an ingenious way to synthesize novel views of a scene by modelling the volumetric scene function through a neural network. The network learns to model the volumetric scene, thus generating novel views (images) of the 3D scene that the model was not shown at training time.") | |
# st.markdown("![](https://github.com/alesteba/training_NeRF/blob/e89da9448b3993117c78532c14c7142970f0d8df/training(3).gif)") | |
st.markdown( | |
f'<img src="data:image/gif;base64,{data_url}" alt="cat gif" width=100%>', | |
unsafe_allow_html=True, | |
) | |
# st.image(image, caption='Training Steps') | |
st.markdown("## Interactive Demo") | |
# download the model: | |
# from my own model repo | |
from huggingface_hub import from_pretrained_keras | |
nerf_loaded = from_pretrained_keras("Alesteba/NeRF_ficus") | |
# set the values of r theta phi | |
r = 4.0 | |
theta = st.slider("key_1",min_value=0.0, max_value=360.0, label_visibility="hidden") | |
phi = st.slider("key_2", min_value=0.0, max_value=360.0, label_visibility="hidden") | |
# phi = -30.0 | |
color, depth = show_rendered_image(r, theta, phi) | |
col1, col2= st.columns(2) | |
with col1: | |
color = tf.keras.utils.array_to_img(color) | |
st.image(color, caption="Color Image", clamp=True, width=300) | |
with col2: | |
depth = tf.keras.utils.array_to_img(depth[..., None]) | |
st.image(depth, caption="Depth Map", clamp=True, width=300) | |