import streamlit as st
import tensorflow as tf
import numpy as np
from config import *
from transformations import *
from rendering import *
# Setting random seed to obtain reproducible results.
tf.random.set_seed(42)
def show_rendered_image(r,theta,phi):
# Get the camera to world matrix.
c2w = pose_spherical(theta, phi, r)
ray_oris, ray_dirs = get_rays(H, W, focal, c2w)
rays_flat, t_vals = render_flat_rays(
ray_oris, ray_dirs, near=2.0, far=6.0, num_samples=NUM_SAMPLES, rand=False
)
rgb, depth = render_rgb_depth(
nerf_loaded, rays_flat[None, ...], t_vals[None, ...], rand=False, train=False
)
return(rgb[0], depth[0])
# app.py text matter starts here
st.title('3D volumetric rendering with NeRF - A concrete example, Ficus Dataset')
import base64
file = open(r'./training(3).gif', 'rb')
contents = file.read()
data_url = base64.b64encode(contents).decode('utf-8')
file.close()
# st.markdown(
# f'',
# unsafe_allow_html=True,
# )
st.markdown("[NeRF](https://arxiv.org/abs/2003.08934) proposes an ingenious way to synthesize novel views of a scene by modelling the volumetric scene function through a neural network. The network learns to model the volumetric scene, thus generating novel views (images) of the 3D scene that the model was not shown at training time.")
# st.markdown("![](https://github.com/alesteba/training_NeRF/blob/e89da9448b3993117c78532c14c7142970f0d8df/training(3).gif)")
st.markdown(
f'',
unsafe_allow_html=True,
)
# st.image(image, caption='Training Steps')
st.markdown("## Interactive Demo")
# download the model:
# from my own model repo
from huggingface_hub import from_pretrained_keras
nerf_loaded = from_pretrained_keras("Alesteba/NeRF_ficus")
# set the values of r theta phi
r = 4.0
theta = st.slider("key_1",min_value=0.0, max_value=360.0, label_visibility="hidden")
phi = st.slider("key_2", min_value=0.0, max_value=360.0, label_visibility="hidden")
# phi = -30.0
color, depth = show_rendered_image(r, theta, phi)
col1, col2= st.columns(2)
with col1:
color = tf.keras.utils.array_to_img(color)
st.image(color, caption="Color Image", clamp=True, width=300)
with col2:
depth = tf.keras.utils.array_to_img(depth[..., None])
st.image(depth, caption="Depth Map", clamp=True, width=300)