Spaces:
Build error
Build error
File size: 3,513 Bytes
589d4a0 199a869 fd9ff9b 399b64e fd9ff9b 199a869 399b64e fd9ff9b 589d4a0 2363d79 589d4a0 5984405 8defe88 199a869 8defe88 5984405 589d4a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
import whisper
from pytube import YouTube
from transformers import pipeline
import gradio as gr
import os
import re
model = whisper.load_model("base")
# model = pipeline(model="AlexMo/FIFA_WC22_WINNER_LANGUAGE_MODEL")
summarizer = pipeline("summarization")
def transcribe_inp(microphone, file_upload):
warn_output = ""
if (microphone is not None) and (file_upload is not None):
warn_output = (
"NOTE: The audio file will be discarded after this run.\n"
)
elif (microphone is None) and (file_upload is None):
return "ERROR: You have to either use the microphone or upload an audio file"
file = microphone if microphone is not None else file_upload
text = model.transcribe(file)["text"]
return warn_output + text
def getAudio(url):
link = YouTube(url)
video = link.streams.filter(only_audio=True).first()
file = video.download(output_path=".")
base, ext = os.path.splitext(file)
file_ext = base + '.mp3'
os.rename(file, file_ext)
return file_ext
def getText(url):
if url != '':
output_text_transcribe = ''
res = model.transcribe(getAudio(url))
return res['text'].strip()
def getSummary(article):
# header = ' '.join(re.split(r'(?<=[.:;])\s', article)[:5])
b = summarizer(article, min_length=15, max_length=120, do_sample=False)
b = b[0]['summary_text'].replace(' .', '.').strip()
return b
with gr.Blocks() as demo:
gr.HTML(
"""
<div style="text-align: center; max-width: 500px; margin: 0 auto;">
<div>
<h1>Dutch whisperer</h1>
</div>
<p style="margin-bottom: 10px; font-size: 94%">
Summarize audio files, mic input or Youtube videos using OpenAI's Whisper
</p>
</div>
"""
)
with gr.Tab('Get a summary from your own mic or audio file'):
input_audio = [
gr.inputs.Audio(source="microphone", type="filepath", optional=True),
gr.inputs.Audio(source="upload", type="filepath", optional=True),
]
result_button_transcribe_audio = gr.Button('1. Transcribe')
output_text_transcribe_audio = gr.Textbox(placeholder='Transcript of the audio file.', label='Transcript')
result_button_summary_audio = gr.Button('2. Get a summary')
output_text_summary_audio = gr.Textbox(placeholder='Summary of the audio file.', label='Summary')
result_button_transcribe_audio.click(transcribe_inp, inputs=input_audio, outputs=output_text_transcribe_audio)
result_button_summary_audio.click(getSummary, inputs=output_text_transcribe_audio, outputs=output_text_summary_audio)
with gr.Tab('Summary of Youtube video'):
input_text_url = gr.Textbox(placeholder='Youtube video URL', label='URL')
result_button_transcribe = gr.Button('1. Transcribe')
output_text_transcribe = gr.Textbox(placeholder='Transcript of the YouTube video.', label='Transcript')
result_button_summary = gr.Button('2. Create Summary')
output_text_summary = gr.Textbox(placeholder='Summary of the YouTube video transcript.', label='Summary')
result_button_transcribe.click(getText, inputs=input_text_url, outputs=output_text_transcribe)
result_button_summary.click(getSummary, inputs=output_text_transcribe, outputs=output_text_summary)
demo.launch(debug=True) |