Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import pipeline
|
2 |
+
import gradio as gr
|
3 |
+
|
4 |
+
# Load the model using the pipeline
|
5 |
+
pipe = pipeline("text-classification", model="AliArshad/Severity_Predictor")
|
6 |
+
from transformers import pipeline
|
7 |
+
import gradio as gr
|
8 |
+
|
9 |
+
# Load the model using the pipeline
|
10 |
+
pipe = pipeline("text-classification", model="AliArshad/Severity_Predictor")
|
11 |
+
|
12 |
+
# Function to predict severity and return confidence score
|
13 |
+
def predict_severity(text):
|
14 |
+
# Get prediction from the pipeline
|
15 |
+
prediction = pipe(text)
|
16 |
+
|
17 |
+
# Interpret the label and get the confidence score
|
18 |
+
label = prediction[0]['label']
|
19 |
+
confidence = prediction[0]['score']
|
20 |
+
severity = "Severe" if label == "LABEL_1" else "Non-Severe"
|
21 |
+
|
22 |
+
# Return severity and confidence as separate outputs
|
23 |
+
return severity, confidence
|
24 |
+
|
25 |
+
# Define the Gradio interface with a title, specific placeholder message, and a progress bar for confidence
|
26 |
+
iface = gr.Interface(
|
27 |
+
fn=predict_severity,
|
28 |
+
inputs=gr.Textbox(lines=2, placeholder="Please Enter Bug Report Summary"),
|
29 |
+
outputs=[
|
30 |
+
gr.Textbox(label="Prediction"),
|
31 |
+
gr.Number(label="Confidence", precision=2)
|
32 |
+
],
|
33 |
+
title="GPT-2 Based Severity Prediction"
|
34 |
+
)
|
35 |
+
|
36 |
+
# Launch the interface
|
37 |
+
iface.launch()
|