Spaces:
Sleeping
Sleeping
File size: 24,383 Bytes
387f7f6 92e5d3a e7be081 bcdfb7c 079e255 660f700 f26ef33 660f700 396839f 387f7f6 b6d3aa2 387f7f6 396839f b6d3aa2 712d149 b6d3aa2 387f7f6 b6d3aa2 387f7f6 396839f 0226df2 b6d3aa2 387f7f6 396839f 387f7f6 0226df2 396839f 387f7f6 b6d3aa2 0226df2 396839f b6d3aa2 387f7f6 749ae87 387f7f6 4f012ae 396839f 387f7f6 396839f 387f7f6 396839f 387f7f6 396839f 387f7f6 396839f 387f7f6 396839f 387f7f6 4f012ae 387f7f6 b6d3aa2 92701ab b6d3aa2 396839f 0226df2 396839f 749ae87 387f7f6 749ae87 387f7f6 749ae87 387f7f6 4f012ae 396839f 4f012ae 387f7f6 0226df2 387f7f6 b6d3aa2 396839f 387f7f6 b6d3aa2 0226df2 387f7f6 b6d3aa2 387f7f6 b6d3aa2 92701ab b6d3aa2 387f7f6 8ac0165 0226df2 b6d3aa2 387f7f6 b6d3aa2 92701ab 387f7f6 81011d1 387f7f6 749ae87 396839f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 |
import os
import requests
from bs4 import BeautifulSoup
from urllib.parse import urljoin
import pandas as pd
import numpy as np
import zipfile
import textract
import gradio as gr
import shutil
def browse_folder(url):
if url.lower().endswith(('docs', 'docs/')):
return gr.update(choices=[])
response = requests.get(url)
response.raise_for_status() # This will raise an exception if there's an error
soup = BeautifulSoup(response.text, 'html.parser')
excel_links = [a['href'] + '/' for a in soup.find_all('a', href=True) if a['href'].startswith(url)]
return gr.update(choices=excel_links)
def extract_statuses(url):
# Send a GET request to the webpage
response = requests.get(url)
# Parse the webpage content
soup = BeautifulSoup(response.content, 'html.parser')
# Find all links in the webpage
links = soup.find_all('a')
# Identify and download the Excel file
for link in links:
href = link.get('href')
if href and (href.endswith('.xls') or href.endswith('.xlsx')):
excel_url = href if href.startswith('http') else url + href
excel_response = requests.get(excel_url)
file_name = 'guide_status.xlsx' #excel_url.split('/')[-1]
# Save the file
with open(file_name, 'wb') as f:
f.write(excel_response.content)
# Read the Excel file
df = pd.read_excel(file_name)
# Check if 'TDoc Status' column exists and extract unique statuses
if 'TDoc Status' in df.columns:
unique_statuses = df['TDoc Status'].unique().tolist()
print(f'Downloaded {file_name} and extracted statuses: {unique_statuses}')
if 'withdrawn' in unique_statuses:
unique_statuses.remove('withdrawn')
return gr.update(choices=unique_statuses, value=unique_statuses)
else:
print(f"'TDoc Status' column not found in {file_name}")
return []
def scrape(url, excel_file, folder_name, status_list, progress=gr.Progress()):
filenames = []
status_filenames = []
# Check if the excel_file argument is provided and if the file exists.
excel_file_path = "guide_status.xlsx" # Hardcoded path to the Excel file
if os.path.exists(excel_file_path):
try:
df = pd.read_excel(excel_file_path)
print(f"Initial DataFrame size: {len(df)}")
if 'TDoc Status' in df.columns:
df = df[df['TDoc Status'].isin(status_list)]
print(f"Filtered DataFrame size: {len(df)}")
if df.empty:
print("No files match the specified 'TDoc Status'.")
else:
if 'TDoc' in df.columns and not df['TDoc'].isnull().all():
status_filenames = [f"{url}{row['TDoc']}.zip" for index, row in df.iterrows()]
elif 'URL' in df.columns and not df['URL'].isnull().all():
status_filenames = df['URL'].tolist()
else:
print("No valid 'File' or 'URL' entries found for the filtered statuses.")
print(f"Filenames: {status_filenames}")
else:
print("'TDoc Status' column not found in the Excel file.")
except Exception as e:
print(f"Error reading Excel file: {e}")
if excel_file and os.path.exists(excel_file):
try:
df = pd.read_excel(excel_file)
# If 'Actions' in df.columns and filter based on it, and construct URLs from 'TDoc' or 'URL' columns
if 'Actions' in df.columns:
df = df[df['Actions'] == 'x']
elif 'File' in df.columns:
filenames = [f"{url}{row['File']}.zip" for index, row in df.iterrows()]
elif 'URL' in df.columns:
filenames = df['URL'].tolist()
except Exception as e:
print(f"Error reading Excel file: {e}")
# Optionally, handle the error or return a message if needed
# If no Excel file is provided or found, or if it lacks 'TDoc'/'URL', the function can still continue with predefined URLs or other logic
download_directory = folder_name
if not os.path.exists(download_directory):
os.makedirs(download_directory)
pourcentss = 0.05
print(f'filenames: {status_filenames}')
if not filenames and not status_filenames:
print("No Excel file provided, or no valid URLs found in the file.")
# You can either return here or continue with other predefined logic
response = requests.get(url)
# Analyser le contenu HTML de la page
soup = BeautifulSoup(response.content, "html.parser")
# Trouver tous les balises <a> avec des attributs href (liens)
links = soup.find_all("a", href=True)
# Filtrer les liens se terminant par ".zip"
zip_links = [link['href'] for link in links if link['href'].endswith('.zip')]
# Télécharger chaque fichier zip
for zip_link in zip_links:
progress(pourcentss,desc='Downloading')
pourcentss+=0.4/len(df)
# Construire l'URL absolue du fichier zip
absolute_url = urljoin(url, zip_link)
# Extraire le nom de fichier de l'URL
filename = os.path.basename(absolute_url)
# Chemin où le fichier sera enregistré
save_path = os.path.join(download_directory, filename)
# Envoyer une requête GET pour télécharger le fichier
with requests.get(absolute_url, stream=True) as r:
r.raise_for_status()
with open(save_path, 'wb') as f:
for chunk in r.iter_content(chunk_size=8192):
f.write(chunk)
elif not filenames:
# Proceed with downloading files using the filenames list
for file_url in status_filenames:
filename = os.path.basename(file_url)
save_path = os.path.join(download_directory, filename)
progress(pourcentss,desc='Downloading')
pourcentss+=0.4/len(df)
try:
with requests.get(file_url, stream=True) as r:
r.raise_for_status()
with open(save_path, 'wb') as f:
for chunk in r.iter_content(chunk_size=8192):
f.write(chunk)
except requests.exceptions.HTTPError as e:
print(f"skipped file: {file_url}: {e}")
else:
# Proceed with downloading files using the filenames list
for file_url in filenames:
filename = os.path.basename(file_url)
save_path = os.path.join(download_directory, filename)
try:
with requests.get(file_url, stream=True) as r:
r.raise_for_status()
with open(save_path, 'wb') as f:
for chunk in r.iter_content(chunk_size=8192):
f.write(chunk)
except requests.exceptions.HTTPError as e:
print(f"HTTP error occurred: {file_url}: {e}")
return False, "Il n'y a pas de colonne action ou alors celle ci n'est pas bien écrite, format attendu: 'Actions'"
return True, len(df)
def extractZip(url):
# Répertoire où les fichiers zip sont déjà téléchargés
nom_extract = url.split("/")[-3] + "_extraction"
if os.path.exists(nom_extract):
shutil.rmtree(nom_extract)
extract_directory = nom_extract
download_directory = url.split("/")[-3] + "_downloads"
# Répertoire où le contenu des fichiers zip sera extrait
# Extraire le contenu de tous les fichiers zip dans le répertoire de téléchargement
for zip_file in os.listdir(download_directory):
zip_path = os.path.join(download_directory, zip_file)
# Vérifier si le fichier est un fichier zip
if zip_file.endswith(".zip"):
extract_dir = os.path.join(extract_directory, os.path.splitext(zip_file)[0]) # Supprimer l'extension .zip
# Vérifier si le fichier zip existe
if os.path.exists(zip_path):
# Créer un répertoire pour extraire le contenu s'il n'existe pas
if not os.path.exists(extract_dir):
os.makedirs(extract_dir)
# Extraire le contenu du fichier zip
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
zip_ref.extractall(extract_dir)
print(f"Extraction terminée pour {zip_file}")
else:
print(f"Fichier zip {zip_file} introuvable")
print("Toutes les extractions sont terminées !")
def excel3gpp(url):
response = requests.get(url)
response.raise_for_status() # This will raise an exception if there's an error
# Use BeautifulSoup to parse the HTML content
soup = BeautifulSoup(response.text, 'html.parser')
# Look for Excel file links; assuming they have .xlsx or .xls extensions
excel_links = [a['href'] for a in soup.find_all('a', href=True) if a['href'].endswith(('.xlsx', '.xls'))]
# Download the first Excel file found (if any)
if excel_links:
excel_url = excel_links[0] # Assuming you want the first Excel file
if not excel_url.startswith('http'):
excel_url = os.path.join(url, excel_url) # Handle relative URLs
# Download the Excel file
excel_response = requests.get(excel_url)
excel_response.raise_for_status()
# Define the path where you want to save the file
# Replace 'path_to_save_directory' with your desired path
# Write the content of the Excel file to a local file
# Write the content of the Excel file to a local file named 'guide.xlsx'
nom_guide = 'guide.xlsx' # Directly specify the filename
if os.path.exists(nom_guide):
os.remove(nom_guide)
filepath = nom_guide
with open(filepath, 'wb') as f:
f.write(excel_response.content)
print(f'Excel file downloaded and saved as: {filepath}')
def replace_line_breaks(text):
return text.replace("\n", "/n")
def remod_text(text):
return text.replace("/n", "\n")
def update_excel(data, excel_file, url):
new_df_columns = ["URL", "File", "Type", "Title", "Source", "Status", "Content"]
temp_df = pd.DataFrame(data, columns=new_df_columns)
try:
# Check if the Excel file already exists and append data to it
if os.path.exists(excel_file):
old_df = pd.read_excel(excel_file)
df = pd.concat([old_df, temp_df], axis=0, ignore_index=True)
else:
df = temp_df
# Save the updated data back to the Excel file
df.to_excel(excel_file, index=False)
except Exception as e:
print(f"Error updating Excel file: {e}")
def extractionPrincipale(url, excel_file=None, status_list=None, progress=gr.Progress()):
nom_download = url.split("/")[-3] + "_downloads"
if os.path.exists(nom_download):
shutil.rmtree(nom_download)
folder_name = nom_download
nom_status = url.split("/")[-3] + "_status.xlsx"
if os.path.exists(nom_status):
os.remove(nom_status)
temp_excel = nom_status
progress(0.0,desc='Downloading')
result, count = scrape(url, excel_file, folder_name, status_list)
if result:
print("Success")
else:
return(None)
progress(0.4,desc='Extraction')
extractZip(url)
progress(0.5,desc='Extraction 2')
excel3gpp(url)
progress(0.6,desc='Creating Excel File')
extract_directory = url.split("/")[-3] + "_extraction"
categories = {
"Other": ["URL", "File", "Type", "Title", "Source", "Content"],
"CR": ["URL", "File", "Type", "Title", "Source", "Content"],
"pCR":["URL", "File", "Type", "Title", "Source", "Content"],
"LS": ["URL", "File", "Type", "Title", "Source", "Content"],
"WID": ["URL", "File", "Type", "Title", "Source", "Content"],
"SID": ["URL", "File", "Type", "Title", "Source", "Content"],
"DISCUSSION": ["URL", "File", "Type", "Title", "Source", "Content"],
"pdf": ["URL", "File", "Type", "Title", "Source", "Content"],
"ppt": ["URL", "File", "Type", "Title", "Source", "Content"],
"pptx": ["URL", "File", "Type", "Title", "Source", "Content"]
}
pourcents2=0.6
data = []
errors_count = 0
processed_count = 0 # Counter for processed files
pre_title_section = None
try:
df = pd.read_excel(temp_excel)
except Exception as e:
print(f"Initializing a new DataFrame because: {e}")
df = pd.DataFrame(columns=["URL", "File", "Type", "Title", "Source", "Status", "Content"])
for folder in os.listdir(extract_directory):
folder_path = os.path.join(extract_directory, folder)
if os.path.isdir(folder_path):
for file in os.listdir(folder_path):
progress(min(pourcents2,0.99),desc='Creating Excel File')
pourcents2+=0.4/count
if file == "__MACOSX":
continue
file_path = os.path.join(folder_path, file)
if file.endswith((".pptx", ".ppt", ".pdf", ".docx", ".doc", ".DOCX")):
try:
text = textract.process(file_path).decode('utf-8')
except Exception as e:
print(f"Error processing {file_path}: {e}")
errors_count += 1
continue
cleaned_text_lines = text.split('\n')
cleaned_text = '\n'.join([line.strip('|').strip() for line in cleaned_text_lines if line.strip()])
title = ""
debut = ""
sections = cleaned_text.split("Title:")
if len(sections) > 1:
pre_title_section = sections[0].strip().split()
title = sections[1].strip().split("\n")[0].strip()
debut = sections[0].strip()
category = "Other"
if file.endswith(".pdf"):
category = "pdf"
elif file.endswith((".ppt", ".pptx")):
category = "ppt" # assuming all ppt and pptx files go into the same category
elif "CHANGE REQUEST" in debut:
category = "CR"
elif "Discussion" in title:
category = "DISCUSSION"
elif "WID" in title:
category = "WID"
elif "SID" in title:
category = "SID"
elif "LS" in title:
category = "LS"
elif pre_title_section and pre_title_section[-1] == 'pCR':
category = "pCR"
elif "Pseudo-CR" in title:
category = "pCR"
contenu = "" # This will hold the concatenated content for 'Contenu' column
if category in categories:
columns = categories[category]
extracted_content = []
if category == "CR":
reason_for_change = ""
summary_of_change = ""
if len(sections) > 1:
reason_for_change = sections[1].split("Reason for change", 1)[-1].split("Summary of change")[0].strip()
summary_of_change = sections[1].split("Summary of change", 1)[-1].split("Consequences if not")[0].strip()
extracted_content.append(f"Reason for change: {reason_for_change}")
extracted_content.append(f"Summary of change: {summary_of_change}")
elif category == "pCR":
if len(sections) > 1:# Handle 'pCR' category-specific content extraction
pcr_specific_content = sections[1].split("Introduction", 1)[-1].split("First Change")[0].strip()
extracted_content.append(f"Introduction: {pcr_specific_content}")
elif category == "LS":
overall_review = ""
if len(sections) > 1:
overall_review = sections[1].split("Overall description", 1)[-1].strip()
extracted_content.append(f"Overall review: {overall_review}")
elif category in ["WID", "SID"]:
objective = ""
start_index = cleaned_text.find("Objective")
end_index = cleaned_text.find("Expected Output and Time scale")
if start_index != -1 and end_index != -1:
objective = cleaned_text[start_index + len("Objective"):end_index].strip()
extracted_content.append(f"Objective: {objective}")
elif category == "DISCUSSION":
Discussion = ""
extracted_text = replace_line_breaks(cleaned_text)
start_index_doc_for = extracted_text.find("Document for:")
if start_index_doc_for != -1:
start_index_word_after_doc_for = start_index_doc_for + len("Document for:")
end_index_word_after_doc_for = start_index_word_after_doc_for + extracted_text[start_index_word_after_doc_for:].find("/n")
word_after_doc_for = extracted_text[start_index_word_after_doc_for:end_index_word_after_doc_for].strip()
result_intro = ''
result_conclusion = ''
result_info = ''
if word_after_doc_for.lower() == "discussion":
start_index_intro = extracted_text.find("Introduction")
end_index_intro = extracted_text.find("Discussion", start_index_intro)
intro_text = ""
if start_index_intro != -1 and end_index_intro != -1:
intro_text = extracted_text[start_index_intro + len("Introduction"):end_index_intro].strip()
result_intro = remod_text(intro_text) # Convert back line breaks
else:
result_intro = "Introduction section not found."
# Attempt to find "Conclusion"
start_index_conclusion = extracted_text.find("Conclusion", end_index_intro)
end_index_conclusion = extracted_text.find("Proposal", start_index_conclusion if start_index_conclusion != -1 else end_index_intro)
conclusion_text = ""
if start_index_conclusion != -1 and end_index_conclusion != -1:
conclusion_text = extracted_text[start_index_conclusion + len("Conclusion"):end_index_conclusion].strip()
result_conclusion = remod_text(conclusion_text)
elif start_index_conclusion == -1: # Conclusion not found, look for Proposal directly
start_index_proposal = extracted_text.find("Proposal", end_index_intro)
if start_index_proposal != -1:
end_index_proposal = len(extracted_text) # Assuming "Proposal" section goes till the end if present
proposal_text = extracted_text[start_index_proposal + len("Proposal"):end_index_proposal].strip()
result_conclusion = remod_text(proposal_text) # Using "Proposal" content as "Conclusion"
else:
result_conclusion = "Conclusion/Proposal section not found."
else:
# Handle case where "Conclusion" exists but no "Proposal" to mark its end
conclusion_text = extracted_text[start_index_conclusion + len("Conclusion"):].strip()
result_conclusion = remod_text(conclusion_text)
Discussion=f"Introduction: {result_intro}\nConclusion/Proposal: {result_conclusion}"
elif word_after_doc_for.lower() == "information":
start_index_info = extracted_text.find(word_after_doc_for)
if start_index_info != -1:
info_to_end = extracted_text[start_index_info + len("Information"):].strip()
result_info = remod_text(info_to_end)
Discussion = f"Discussion:{result_info}"
else:
Discussion = "The word after 'Document for:' is not 'Discussion', 'DISCUSSION', 'Information', or 'INFORMATION'."
else:
Discussion = "The phrase 'Document for:' was not found."
# Since DISCUSSION category handling requires more specific processing, adapt as necessary
# Here's a simplified example
discussion_details = Discussion
extracted_content.append(discussion_details)
# Add more categories as needed
contenu = "\n".join(extracted_content)
# Assuming 'source' needs to be filled from the guide.xlsx mapping
# Placeholder for source value calculation
source = "" # Update this with actual source determination logic
status = ""
data.append([url+ "/" + folder + '.zip', folder , category, title, source,status, contenu])
# After processing all files and directories
# Read the guide.xlsx file into a DataFrame to map 'TDoc' to 'Source'
guide_df = pd.read_excel('guide.xlsx', usecols=['Source', 'TDoc','TDoc Status'])
tdoc_source_map = {row['TDoc']: row['Source'] for index, row in guide_df.iterrows()}
tdoc_status_map = {row['TDoc']: row['TDoc Status'] for index, row in guide_df.iterrows()}
# Update the 'Source' in your data based on matching 'Nom du fichier' with 'TDoc'
for item in data:
nom_du_fichier = item[1] # Assuming 'Nom du fichier' is the first item in your data list
if nom_du_fichier in tdoc_source_map:
item[4] = tdoc_source_map[nom_du_fichier] # Update the 'Source' field, assuming it's the fourth item
item[5] = tdoc_status_map[nom_du_fichier]
processed_count += 1
# Check if it's time to update the Excel file
if processed_count % 20 == 0:
update_excel(data, temp_excel, url)
print(f"Updated after processing {processed_count} files.")
data = [] # Clear the data list after updating
if data:
# This final call ensures that any remaining data is processed and saved.
update_excel(data, temp_excel, url)
print(f"Final update after processing all files.")
file_name = temp_excel
# Save the updated DataFrame to Excel
return file_name
|