Spaces:
Sleeping
Sleeping
import gradio as gr | |
from mistralai.client import MistralClient | |
from mistralai.models.chat_completion import ChatMessage | |
import os | |
import pandas as pd | |
import numpy as np | |
def chat_with_mistral(source_cols, dest_col, prompt, tdoc_name, excel_file, url): | |
df = pd.read_excel(excel_file) | |
api_key = os.environ["MISTRAL_API_KEY"] | |
model = "mistral-small" # Use "Mistral-7B-v0.2" for "mistral-tiny" | |
client = MistralClient(api_key=api_key) | |
source_columns = source_cols#.split(", ") # Split input into multiple variables | |
df[dest_col] = "" | |
try: | |
file_name = url.split("/")[-2] + ".xlsx" | |
except: | |
file_name = excel_file | |
if tdoc_name != '': | |
filtered_df = df[df['File'] == tdoc_name] | |
if not filtered_df.empty: | |
concatenated_content = "\n\n".join(f"{column_name}: {filtered_df[column_name].iloc[0]}" for column_name in source_columns) | |
messages = [ChatMessage(role="user", content=f"Using the following content: {concatenated_content}"), ChatMessage(role="user", content=prompt)] | |
chat_response = client.chat(model=model, messages=messages) | |
filtered_df.loc[filtered_df.index[0], dest_col] = chat_response.choices[0].message.content | |
# Update the DataFrame with the modified row | |
df.update(filtered_df) | |
# Write the updated DataFrame to the Excel file | |
df.to_excel(file_name, index=False) | |
return file_name, df.head(5) | |
else: | |
return file_name, df.head(5) | |
else: | |
for index, row in df.iterrows(): | |
concatenated_content = "\n\n".join(f"{column_name}: {row[column_name]}" for column_name in source_columns) | |
# Check if the concatenated content is not empty | |
print('test') | |
if not concatenated_content == "\n\n".join(f"{column_name}: nan" for column_name in source_columns): | |
print('c bon') | |
messages = [ChatMessage(role="user", content=f"Using the following content: {concatenated_content}"), ChatMessage(role="user", content=prompt)] | |
chat_response = client.chat(model=model, messages=messages) | |
df.at[index, dest_col] = chat_response.choices[0].message.content | |
df.to_excel(file_name, index=False) | |
return file_name, df.head(5) | |
def get_columns(file): | |
if file is not None: | |
df = pd.read_excel(file) | |
return gr.update(choices=list(df.columns)), df.head(5) | |
else: | |
return gr.update(choices=[]), pd.DataFrame() |