Standard_Intelligence_Dev / split_files_to_excel.py
YchKhan's picture
Update split_files_to_excel.py
888ebbf verified
raw
history blame
24.2 kB
import numpy as np
import io
import os
import zipfile
import logging
import collections
import tempfile
from langchain.document_loaders import UnstructuredFileLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import FAISS
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.document_loaders import PDFMinerPDFasHTMLLoader
from bs4 import BeautifulSoup
import re
from langchain.docstore.document import Document
import unstructured
from unstructured.partition.docx import partition_docx
from unstructured.partition.auto import partition
from transformers import AutoTokenizer
import pandas as pd
MODEL = "thenlper/gte-base"
CHUNK_SIZE = 1000
CHUNK_OVERLAP = 200
embeddings = HuggingFaceEmbeddings(
model_name=MODEL,
cache_folder=os.getenv("SENTENCE_TRANSFORMERS_HOME")
)
model_id = "mistralai/Mistral-7B-Instruct-v0.1"
tokenizer = AutoTokenizer.from_pretrained(
model_id,
padding_side="left"
)
text_splitter = CharacterTextSplitter(
separator = "\n",
chunk_size = CHUNK_SIZE,
chunk_overlap = CHUNK_OVERLAP,
length_function = len,
)
## PDF Functions
def group_text_by_font_size(content):
cur_fs = []
cur_text = ''
cur_page = -1
cur_c = content[0]
multi_fs = False
snippets = [] # first collect all snippets that have the same font size
for c in content:
# print(f"c={c}\n\n")
if c.find('a') != None and c.find('a').get('name'):
cur_page = int(c.find('a').get('name'))
sp_list = c.find_all('span')
if not sp_list:
continue
for sp in sp_list:
# print(f"sp={sp}\n\n")
if not sp:
continue
st = sp.get('style')
if not st:
continue
fs = re.findall('font-size:(\d+)px',st)
# print(f"fs={fs}\n\n")
if not fs:
continue
fs = [int(fs[0])]
if len(cur_fs)==0:
cur_fs = fs
if fs == cur_fs:
cur_text += sp.text
elif not sp.find('br') and cur_c==c:
cur_text += sp.text
cur_fs.extend(fs)
multi_fs = True
elif sp.find('br') and multi_fs == True: # if a br tag is found and the text is in a different fs, it is the last part of the multifontsize line
cur_fs.extend(fs)
snippets.append((cur_text+sp.text,max(cur_fs), cur_page))
cur_fs = []
cur_text = ''
cur_c = c
multi_fs = False
else:
snippets.append((cur_text,max(cur_fs), cur_page))
cur_fs = fs
cur_text = sp.text
cur_c = c
multi_fs = False
snippets.append((cur_text,max(cur_fs), cur_page))
return snippets
def get_titles_fs(fs_list):
filtered_fs_list = [item[0] for item in fs_list if item[0] > fs_list[0][0]]
return sorted(filtered_fs_list, reverse=True)
def calculate_total_characters(snippets):
font_sizes = {} #dictionary to store font-size and total characters
for text, font_size, _ in snippets:
#remove newline# and digits
cleaned_text = text.replace('\n', '')
#cleaned_text = re.sub(r'\d+', '', cleaned_text)
total_characters = len(cleaned_text)
#update the dictionary
if font_size in font_sizes:
font_sizes[font_size] += total_characters
else:
font_sizes[font_size] = total_characters
#convert the dictionary into a sorted list of tuples
size_charac_list = sorted(font_sizes.items(), key=lambda x: x[1], reverse=True)
return size_charac_list
def create_documents(source, snippets, font_sizes):
docs = []
titles_fs = get_titles_fs(font_sizes)
for snippet in snippets:
cur_fs = snippet[1]
if cur_fs>font_sizes[0][0] and len(snippet[0])>2:
content = min((titles_fs.index(cur_fs)+1), 3)*"#" + " " + snippet[0].replace(" ", " ")
category = "Title"
else:
content = snippet[0].replace(" ", " ")
category = "Paragraph"
metadata={"source":source, "filename":source.split("/")[-1], "file_directory": "/".join(source.split("/")[:-1]), "file_category":"", "file_sub-cat":"", "file_sub2-cat":"", "category":category, "filetype":source.split(".")[-1], "page_number":snippet[2]}
categories = source.split("/")
cat_update=""
if len(categories)>4:
cat_update = {"file_category":categories[1], "file_sub-cat":categories[2], "file_sub2-cat":categories[3]}
elif len(categories)>3:
cat_update = {"file_category":categories[1], "file_sub-cat":categories[2]}
elif len(categories)>2:
cat_update = {"file_category":categories[1]}
metadata.update(cat_update)
docs.append(Document(page_content=content, metadata=metadata))
return docs
## Group Chunks docx or pdf
# -------------------------------------------------------------------------------- NOTEBOOK-CELL: CODE
def group_chunks_by_section(chunks, min_chunk_size=512):
filtered_chunks = [chunk for chunk in chunks if chunk.metadata['category'] != 'PageBreak']# Add more filters if needed
#print(f"filtered = {len(filtered_chunks)} - before = {len(chunks)}")
new_chunks = []
seen_paragraph = False
new_title = True #switches when there is a new paragraph to create a new chunk
for i, chunk in enumerate(filtered_chunks):
# print(f"\n\n\n#{i}:METADATA: {chunk.metadata['category']}")
if new_title:
#print(f"<-- NEW title DETECTED -->")
new_chunk = chunk
new_title = False
add_content = False
new_chunk.metadata['titles'] = ""
#print(f"CONTENT: {new_chunk.page_content}\nMETADATA: {new_chunk.metadata['category']} \n title: {new_chunk.metadata['title']}")
if chunk.metadata['category'].lower() =='title':
new_chunk.metadata['titles'] += f"{chunk.page_content} ~~ "
else:
#Activates when a paragraph is seen after one or more titles
seen_paragraph = True
#Avoid adding the title 2 times to the page content
if add_content:#and chunk.page_content not in new_chunk.page_content
new_chunk.page_content += f"\n{chunk.page_content}"
#edit the end_page number, the last one keeps its place
try:
new_chunk.metadata['end_page'] = chunk.metadata['page_number']
except:
print("", end="")
#print("Exception: No page number in metadata")
add_content = True
#If filtered_chunks[i+1] raises an error, this is probably because this is the last chunk
try:
#If the next chunk is a title and we have already seen a paragraph and the current chunk content is long enough, we create a new document
if filtered_chunks[i+1].metadata['category'].lower() =="title" and seen_paragraph and len(new_chunk.page_content)>min_chunk_size:
if 'category' in new_chunk.metadata:
new_chunk.metadata.pop('category')
new_chunks.append(new_chunk)
new_title = True
seen_paragraph = False
#index out of range
except:
new_chunks.append(new_chunk)
#print('🆘 Gone through all chunks 🆘')
break
return new_chunks
# -------------------------------------------------------------------------------- NOTEBOOK-CELL: CODE
## Split documents by font
def split_pdf(file_path, folder):
loader = PDFMinerPDFasHTMLLoader(file_path)
data = loader.load()[0] # entire pdf is loaded as a single Document
soup = BeautifulSoup(data.page_content,'html.parser')
content = soup.find_all('div')#List of all elements in div tags
try:
snippets = group_text_by_font_size(content)
except Exception as e:
print("ERROR WHILE GROUPING BY FONT SIZE", e)
snippets = [("ERROR WHILE GROUPING BY FONT SIZE", 0, -1)]
font_sizes = calculate_total_characters(snippets)#get the amount of characters for each font_size
chunks = create_documents(file_path, snippets, font_sizes)
return chunks
# -------------------------------------------------------------------------------- NOTEBOOK-CELL: CODE
def split_docx(file_path, folder):
chunks_elms = partition_docx(filename=file_path)
chunks = []
file_categories = file_path.split("/")
for chunk_elm in chunks_elms:
category = chunk_elm.category
if category == "Title":
chunk = Document(page_content= min(chunk_elm.metadata.to_dict()['category_depth']+1, 3)*"#" + ' ' + chunk_elm.text, metadata=chunk_elm.metadata.to_dict())
else:
chunk = Document(page_content=chunk_elm.text, metadata=chunk_elm.metadata.to_dict())
metadata={"source":file_path, "filename":file_path.split("/")[-1], "file_category":"", "file_sub-cat":"", "file_sub2-cat":"", "category":category, "filetype":file_path.split(".")[-1]}
cat_update=""
if len(file_categories)>4:
cat_update = {"file_category":file_categories[1], "file_sub-cat":file_categories[2], "file_sub2-cat":file_categories[3]}
elif len(file_categories)>3:
cat_update = {"file_category":file_categories[1], "file_sub-cat":file_categories[2]}
elif len(file_categories)>2:
cat_update = {"file_category":file_categories[1]}
metadata.update(cat_update)
chunk.metadata.update(metadata)
chunks.append(chunk)
return chunks
# Load the index of documents (if it has already been built)
def rebuild_index(input_folder, output_folder):
paths_time = []
to_keep = set()
print(f'number of files {len(paths_time)}')
if len(output_folder.list_paths_in_partition()) > 0:
with tempfile.TemporaryDirectory() as temp_dir:
for f in output_folder.list_paths_in_partition():
with output_folder.get_download_stream(f) as stream:
with open(os.path.join(temp_dir, os.path.basename(f)), "wb") as f2:
f2.write(stream.read())
index = FAISS.load_local(temp_dir, embeddings)
to_remove = []
logging.info(f"{len(index.docstore._dict)} vectors loaded")
for idx, doc in index.docstore._dict.items():
source = (doc.metadata["source"], doc.metadata["last_modified"])
if source in paths_time:
# Identify documents already indexed and still present in the source folder
to_keep.add(source)
else:
# Identify documents removed from the source folder
to_remove.append(idx)
docstore_id_to_index = {v: k for k, v in index.index_to_docstore_id.items()}
# Remove documents that have been deleted from the source folder
vectors_to_remove = []
for idx in to_remove:
del index.docstore._dict[idx]
ind = docstore_id_to_index[idx]
del index.index_to_docstore_id[ind]
vectors_to_remove.append(ind)
index.index.remove_ids(np.array(vectors_to_remove, dtype=np.int64))
index.index_to_docstore_id = {
i: ind
for i, ind in enumerate(index.index_to_docstore_id.values())
}
logging.info(f"{len(to_remove)} vectors removed")
else:
index = None
to_add = [path[0] for path in paths_time if path not in to_keep]
print(f'to_keep: {to_keep}')
print(f'to_add: {to_add}')
return index, to_add
# -------------------------------------------------------------------------------- NOTEBOOK-CELL: CODE
def split_chunks_by_tokens(documents, max_length=170, overlap=10):
# Create an empty list to store the resized documents
resized = []
# Iterate through the original documents list
for doc in documents:
encoded = tokenizer.encode(doc.page_content)
if len(encoded) > max_length:
remaining_encoded = tokenizer.encode(doc.page_content)
while len(remaining_encoded) > 0:
split_doc = Document(page_content=tokenizer.decode(remaining_encoded[:max(10, max_length)]), metadata=doc.metadata.copy())
resized.append(split_doc)
remaining_encoded = remaining_encoded[max(10, max_length - overlap):]
else:
resized.append(doc)
print(f"Number of chunks before resplitting: {len(documents)} \nAfter splitting: {len(resized)}")
return resized
# -------------------------------------------------------------------------------- NOTEBOOK-CELL: CODE
def split_chunks_by_tokens_period(documents, max_length=170, overlap=10, min_chunk_size=20):
# Create an empty list to store the resized documents
resized = []
previous_file=""
# Iterate through the original documents list
for doc in documents:
current_file = doc.metadata['source']
if current_file != previous_file: #chunk counting
previous_file = current_file
chunk_counter = 0
is_first_chunk = True # Keep track of the first chunk in the document
encoded = tokenizer.encode(doc.page_content)#encode the current document
if len(encoded) > max_length:
remaining_encoded = encoded
is_last_chunk = False
while len(remaining_encoded) > 1 and not is_last_chunk:
# Check for a period in the first 'overlap' tokens
overlap_text = tokenizer.decode(remaining_encoded[:overlap])# Index by token
period_index_b = overlap_text.find('.')# Index by character
if len(remaining_encoded)>max_length + min_chunk_size:
current_encoded = remaining_encoded[:max(10, max_length)]
else:
current_encoded = remaining_encoded[:max(10, max_length + min_chunk_size)] #if the last chunk is to small, concatenate it with the previous one
is_last_chunk = True
period_index_e = len(doc.page_content) # an amount of character that I am sure will be greater or equal to the max lengh of a chunk, could have done len(tokenizer.decode(current_encoded))
if len(remaining_encoded)>max_length+min_chunk_size:# If it is not the last sub chunk
overlap_text_last = tokenizer.decode(current_encoded[-overlap:])
period_index_last = overlap_text_last.find('.')
if period_index_last != -1 and period_index_last < len(overlap_text_last) - 1:
#print(f"period index last found at {period_index_last}")
period_index_e = period_index_last - len(overlap_text_last) + 1
#print(f"period_index_e :{period_index_e}")
#print(f"last :{overlap_text_last}")
if not is_first_chunk:#starting after the period in overlap
if period_index_b == -1:# Period not found in overlap
#print(". not found in overlap")
split_doc = Document(page_content=tokenizer.decode(current_encoded)[:period_index_e], metadata=doc.metadata.copy()) # Keep regular splitting
else:
if is_last_chunk : #not the first but the last
split_doc = Document(page_content=tokenizer.decode(current_encoded)[period_index_b+1:], metadata=doc.metadata.copy())
#print("Should start after \".\"")
else:
split_doc = Document(page_content=tokenizer.decode(current_encoded)[period_index_b+1:period_index_e], metadata=doc.metadata.copy()) # Split at the begining and the end
else:#first chunk
split_doc = Document(page_content=tokenizer.decode(current_encoded)[:period_index_e], metadata=doc.metadata.copy()) # split only at the end if its first chunk
if 'titles' in split_doc.metadata:
chunk_counter += 1
split_doc.metadata['chunk_id'] = chunk_counter
#A1 We could round chunk length in token if we ignore the '.' position in the overlap and save time of computation
split_doc.metadata['token_length'] = len(tokenizer.encode(split_doc.page_content))
resized.append(split_doc)
remaining_encoded = remaining_encoded[max(10, max_length - overlap):]
is_first_chunk = False
#print(len(tokenizer.encode(split_doc.page_content)), split_doc.page_content, "\n-----------------")
elif len(encoded)>min_chunk_size:#ignore the chunks that are too small
#print(f"◀Document:{{ {doc.page_content} }} was not added because to short▶")
if 'titles' in doc.metadata:#check if it was splitted by or split_docx
chunk_counter += 1
doc.metadata['chunk_id'] = chunk_counter
doc.metadata['token_length'] = len(encoded)
resized.append(doc)
print(f"Number of chunks before resplitting: {len(documents)} \nAfter splitting: {len(resized)}")
return resized
# -------------------------------------------------------------------------------- NOTEBOOK-CELL: CODE
def split_doc_in_chunks(input_folder):
docs = []
for i, filename in enumerate(input_folder):
path = filename#os.path.join(input_folder, filename)
print(f"Treating file {i}/{len(input_folder)}")
# Select the appropriate document loader
chunks=[]
if path.endswith(".pdf"):
try:
print("Treatment of pdf file", path)
raw_chuncks = split_pdf(path, input_folder)
chunks = group_chunks_by_section(raw_chuncks)
print(f"Document splitted in {len(chunks)} chunks")
# for chunk in chunks:
# print(f"\n\n____\n\n\nPDF CONTENT: \n{chunk.page_content}\ntitle: {chunk.metadata['title']}\nFile Name: {chunk.metadata['filename']}\n\n")
except Exception as e:
print("Error while splitting the pdf file: ", e)
elif path.endswith(".docx"):
try:
print ("Treatment of docx file", path)
raw_chuncks = split_docx(path, input_folder)
#print(f"RAW :\n***\n{raw_chuncks}")
chunks = group_chunks_by_section(raw_chuncks)
print(f"Document splitted in {len(chunks)} chunks")
#if "cards-Jan 2022-SP.docx" in path:
#for chunk in chunks:
#print(f"\n\n____\n\n\nDOCX CONTENT: \n{chunk.page_content}\ntitle: {chunk.metadata['title']}\nFile Name: {chunk.metadata['filename']}\n\n")
except Exception as e:
print("Error while splitting the docx file: ", e)
elif path.endswith(".doc"):
try:
loader = UnstructuredFileLoader(path)
# Load the documents and split them in chunks
chunks = loader.load_and_split(text_splitter=text_splitter)
counter, counter2 = collections.Counter(), collections.Counter()
filename = os.path.basename(path)
# Define a unique id for each chunk
for chunk in chunks:
chunk.metadata["filename"] = filename.split("/")[-1]
chunk.metadata["file_directory"] = filename.split("/")[:-1]
chunk.metadata["filetype"] = filename.split(".")[-1]
if "page" in chunk.metadata:
counter[chunk.metadata['page']] += 1
for i in range(len(chunks)):
counter2[chunks[i].metadata['page']] += 1
chunks[i].metadata['source'] = filename
else:
if len(chunks) == 1:
chunks[0].metadata['source'] = filename
#The file type is not supported (e.g. .xlsx)
except Exception as e:
print(f"An error occurred: {e}")
try:
if len(chunks)>0:
docs += chunks
except NameError as e:
print(f"An error has occured: {e}")
return docs
# -------------------------------------------------------------------------------- NOTEBOOK-CELL: CODE
def resplit_by_end_of_sentence(docs):
print("❌❌\nResplitting docs by end of sentence\n❌❌")
resized_docs = split_chunks_by_tokens_period(docs, max_length=200, overlap=40, min_chunk_size=20)
try:
# add chunk title to all resplitted chunks #todo move this to split_chunks_by_tokens_period(inject_title = True) with a boolean parameter
cur_source = ""
cpt_chunk = 1
for resized_doc in resized_docs:
try:
title = resized_doc.metadata['titles'].split(' ~~ ')[-2] #Getting the last title of the chunk and adding it to the content if it is not the case
if title not in resized_doc.page_content:
resized_doc.page_content = title + "\n" + resized_doc.page_content
if cur_source == resized_doc.metadata["source"]:
resized_doc.metadata['chunk_number'] = cpt_chunk
else:
cpt_chunk = 1
cur_source = resized_doc.metadata["source"]
resized_doc.metadata['chunk_number'] = cpt_chunk
except Exception as e:#either the title was notfound or title absent in metadata
print("An error occured: ", e)
#print(f"METADATA:\n{resized_doc.metadata}")
cpt_chunk += 1
except Exception as e:
print('AN ERROR OCCURRED: ', e)
return resized_docs
# -------------------------------------------------------------------------------- NOTEBOOK-CELL: CODE
def build_index(docs, index, output_folder):
if len(docs) > 0:
if index is not None:
# Compute the embedding of each chunk and index these chunks
new_index = FAISS.from_documents(docs, embeddings)
index.merge_from(new_index)
else:
index = FAISS.from_documents(docs, embeddings)
with tempfile.TemporaryDirectory() as temp_dir:
index.save_local(temp_dir)
for f in os.listdir(temp_dir):
output_folder.upload_file(f, os.path.join(temp_dir, f))
def extract_zip(zip_path):
extracted_files = []
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
for file_info in zip_ref.infolist():
extracted_files.append(file_info.filename)
zip_ref.extract(file_info.filename)
return extracted_files
def split_in_df(files):
processed_files = []
print("Processing zip files...")
for file_path in files:
if file_path.endswith('.zip'):
extracted_files = extract_zip(file_path)
processed_files.extend(extracted_files)
else:
processed_files.append(file_path)
print("Finished processing zip files\Splitting files into chunks...")
documents = split_doc_in_chunks(processed_files)
print("Finished splitting")
df = pd.DataFrame()
for document in documents:
filename = document.metadata['filename']
content = document.page_content
# metadata = document.metadata
# metadata_keys = list(metadata.keys())
# metadata_values = list(metadata.values())
doc_data = {'Filename': filename, 'Content': content}
# for key, value in zip(metadata_keys, metadata_values):
# doc_data[key] = value
df = pd.concat([df, pd.DataFrame([doc_data])], ignore_index=True)
df.to_excel("dataframe.xlsx", index=False)
return "dataframe.xlsx"