Spaces:
Sleeping
Sleeping
Update excel_chat.py
Browse files- excel_chat.py +48 -58
excel_chat.py
CHANGED
@@ -10,76 +10,66 @@ from users_management import update_json, users
|
|
10 |
|
11 |
#users = ['maksG', 'AlmaA', 'YchK']
|
12 |
|
13 |
-
def ask_llm(query, input, client_index
|
14 |
messages = [
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
{
|
20 |
-
"role": "user",
|
21 |
-
"content": f"{input}",
|
22 |
-
}
|
23 |
-
]
|
24 |
-
systemC = f"You are a helpful assistant. Only show your final response to the **User Query**! Do not provide any explanations or details: \n# User Query:\n{query}."
|
25 |
-
messageC=[
|
26 |
{
|
27 |
"role": "user",
|
28 |
-
"content":
|
29 |
-
{
|
30 |
-
"type": "text",
|
31 |
-
"text": f"{input}"
|
32 |
-
}
|
33 |
-
]
|
34 |
}
|
35 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
-
if
|
38 |
-
client =
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
model=
|
54 |
-
)
|
55 |
-
elif client_index == "Mistral Medium":
|
56 |
-
client = MistralClient(api_key=os.environ[user['api_keys']['mistral']])
|
57 |
-
chat_completion = client.chat(
|
58 |
-
messages=messages,
|
59 |
-
model='mistral-medium',
|
60 |
-
)
|
61 |
-
elif client_index == "Claude Opus":
|
62 |
-
client = anthropic.Anthropic(api_key=os.environ[user['api_keys']['claude']])
|
63 |
-
chat_completion = client.messages.create(
|
64 |
-
model="claude-3-opus-20240229",
|
65 |
max_tokens=350,
|
66 |
temperature=0,
|
67 |
system=systemC,
|
68 |
messages=messageC
|
69 |
-
)
|
70 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
else:
|
72 |
-
client
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
messages=messageC
|
79 |
-
).content[0].text
|
80 |
-
return chat_completion
|
81 |
|
82 |
-
return chat_completion.choices[0].message.content
|
83 |
|
84 |
def filter_df(df, column_name, keywords):
|
85 |
if len(keywords)>0:
|
|
|
10 |
|
11 |
#users = ['maksG', 'AlmaA', 'YchK']
|
12 |
|
13 |
+
def ask_llm(query, input, client_index):
|
14 |
messages = [
|
15 |
+
{
|
16 |
+
"role": "system",
|
17 |
+
"content": f"You are a helpful assistant. Only show your final response to the **User Query**! Do not provide any explanations or details: \n# User Query:\n{query}."
|
18 |
+
},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
{
|
20 |
"role": "user",
|
21 |
+
"content": input,
|
|
|
|
|
|
|
|
|
|
|
22 |
}
|
23 |
]
|
24 |
+
|
25 |
+
systemC = messages[0]["content"]
|
26 |
+
messageC = [{
|
27 |
+
"role": "user",
|
28 |
+
"content": [{
|
29 |
+
"type": "text",
|
30 |
+
"text": input
|
31 |
+
}]
|
32 |
+
}]
|
33 |
|
34 |
+
if "Mistral" in client_index:
|
35 |
+
client = MistralClient(api_key=os.environ['MISTRAL_API_KEY'])
|
36 |
+
model_map = {
|
37 |
+
"Mistral Tiny": "mistral-tiny",
|
38 |
+
"Mistral Small": "mistral-small-latest",
|
39 |
+
"Mistral Medium": "mistral-medium",
|
40 |
+
}
|
41 |
+
chat_completion = client.chat(messages=messages, model=model_map[client_index])
|
42 |
+
|
43 |
+
elif "Claude" in client_index:
|
44 |
+
client = anthropic.Anthropic(api_key=os.environ['CLAUDE_API_KEY'])
|
45 |
+
model_map = {
|
46 |
+
"Claude Sonnet": "claude-3-sonnet-20240229",
|
47 |
+
"Claude Opus": "claude-3-opus-20240229",
|
48 |
+
}
|
49 |
+
response = client.messages.create(
|
50 |
+
model=model_map[client_index],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
max_tokens=350,
|
52 |
temperature=0,
|
53 |
system=systemC,
|
54 |
messages=messageC
|
55 |
+
)
|
56 |
+
return response.content[0].text
|
57 |
+
|
58 |
+
elif client_index == "Groq (mixtral)":
|
59 |
+
client = Groq(api_key=os.environ["GROQ_API_KEY"])
|
60 |
+
chat_completion = client.chat.completions.create(
|
61 |
+
messages=messages,
|
62 |
+
model='mixtral-8x7b-32768',
|
63 |
+
)
|
64 |
+
|
65 |
else:
|
66 |
+
raise ValueError("Unsupported client index provided")
|
67 |
+
|
68 |
+
# Return the response, handling the structure specific to Groq and Mistral clients.
|
69 |
+
return chat_completion.choices[0].message.content if client_index != "Claude" else chat_completion
|
70 |
+
|
71 |
+
|
|
|
|
|
|
|
72 |
|
|
|
73 |
|
74 |
def filter_df(df, column_name, keywords):
|
75 |
if len(keywords)>0:
|