Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
from langchain.document_loaders import PyPDFLoader # for loading the pdf
|
4 |
+
from langchain.embeddings import OpenAIEmbeddings # for creating embeddings
|
5 |
+
from langchain.vectorstores import Chroma # for the vectorization part
|
6 |
+
from langchain.chains import ChatVectorDBChain # for chatting with the pdf
|
7 |
+
from langchain.llms import OpenAI # the LLM model we'll use (CHatGPT)
|
8 |
+
|
9 |
+
|
10 |
+
class Chat:
|
11 |
+
def __init__(self, pdf, api_input):
|
12 |
+
self.api = api_input
|
13 |
+
loader = PyPDFLoader(pdf)
|
14 |
+
pages = loader.load_and_split()
|
15 |
+
|
16 |
+
embeddings = OpenAIEmbeddings(openai_api_key=self.api)
|
17 |
+
vectordb = Chroma.from_documents(pages, embedding=embeddings, persist_directory=".")
|
18 |
+
vectordb.persist()
|
19 |
+
|
20 |
+
self.pdf_qa = ChatVectorDBChain.from_llm(OpenAI(temperature=0.9, model_name="gpt-3.5-turbo",
|
21 |
+
openai_api_key=self.api),
|
22 |
+
vectordb, return_source_documents=True)
|
23 |
+
|
24 |
+
def question(self, query):
|
25 |
+
result = self.pdf_qa({"question": "请使用中文回答" + query, "chat_history": ""})
|
26 |
+
print("Answer:")
|
27 |
+
print(result["answer"])
|
28 |
+
|
29 |
+
return result["answer"]
|
30 |
+
|
31 |
+
|
32 |
+
def analyse(pdf_file, api_input):
|
33 |
+
session = Chat(pdf_file.name, api_input)
|
34 |
+
return session, "文章分析完成"
|
35 |
+
|
36 |
+
|
37 |
+
def ask_question(data, question):
|
38 |
+
if data == "":
|
39 |
+
return "Please upload PDF file first!"
|
40 |
+
return data.question(question)
|
41 |
+
|
42 |
+
|
43 |
+
with gr.Blocks() as demo:
|
44 |
+
gr.Markdown(
|
45 |
+
"""
|
46 |
+
# ChatPDF based on Langchain
|
47 |
+
""")
|
48 |
+
data = gr.State()
|
49 |
+
with gr.Tab("Upload PDF File"):
|
50 |
+
pdf_input = gr.File(label="PDF File")
|
51 |
+
api_input = gr.Textbox(label="OpenAI API Key")
|
52 |
+
result = gr.Textbox()
|
53 |
+
upload_button = gr.Button("Start Analyse")
|
54 |
+
question_input = gr.Textbox(label="Your Question", placeholder="Authors of this paper?")
|
55 |
+
answer = gr.Textbox(label="Answer")
|
56 |
+
ask_button = gr.Button("Ask")
|
57 |
+
|
58 |
+
upload_button.click(fn=analyse, inputs=[pdf_input, api_input], outputs=[data, result])
|
59 |
+
ask_button.click(ask_question, inputs=[data, question_input], outputs=answer)
|
60 |
+
|
61 |
+
if __name__ == "__main__":
|
62 |
+
demo.title = "ChatPDF Based on Langchain"
|
63 |
+
demo.launch()
|