import gradio as gr from langchain.document_loaders import PyMuPDFLoader # for loading the pdf from langchain.embeddings import OpenAIEmbeddings # for creating embeddings from langchain.vectorstores import Chroma # for the vectorization part from langchain.chains import ChatVectorDBChain # for chatting with the pdf from langchain.llms import OpenAI # the LLM model we'll use (CHatGPT) class Chat: def __init__(self, pdf, api_input): self.api = api_input loader = PyMuPDFLoader(pdf) pages = loader.load_and_split() embeddings = OpenAIEmbeddings(openai_api_key=self.api) vectordb = Chroma.from_documents(pages, embedding=embeddings, persist_directory=".") vectordb.persist() self.pdf_qa = ChatVectorDBChain.from_llm(OpenAI(temperature=0.9, model_name="gpt-3.5-turbo", openai_api_key=self.api), vectordb, return_source_documents=True) def question(self, query): result = self.pdf_qa({"question": "请使用中文回答" + query, "chat_history": ""}) print("Answer:") print(result["answer"]) return result["answer"] def analyse(pdf_file, api_input): print(pdf_file.name) session = Chat(pdf_file.name, api_input) return session, "文章分析完成" def ask_question(data, question): if data == "": return "Please upload PDF file first!" return data.question(question) with gr.Blocks() as demo: gr.Markdown( """ # ChatPDF based on Langchain """) data = gr.State() with gr.Tab("Upload PDF File"): pdf_input = gr.File(label="PDF File") api_input = gr.Textbox(label="OpenAI API Key") result = gr.Textbox() upload_button = gr.Button("Start Analyse") question_input = gr.Textbox(label="Your Question", placeholder="Authors of this paper?") answer = gr.Textbox(label="Answer") ask_button = gr.Button("Ask") upload_button.click(fn=analyse, inputs=[pdf_input, api_input], outputs=[data, result]) ask_button.click(ask_question, inputs=[data, question_input], outputs=answer) if __name__ == "__main__": demo.title = "ChatPDF Based on Langchain" demo.launch()