Spaces:
Runtime error
Runtime error
File size: 34,860 Bytes
04d341d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 |
# https://huggingface.co/DragGan/DragGan-Models
# https://arxiv.org/abs/2305.10973
import os
import os.path as osp
from argparse import ArgumentParser
from functools import partial
from pathlib import Path
import time
import psutil
import gradio as gr
import numpy as np
import torch
from PIL import Image
import dnnlib
from gradio_utils import (ImageMask, draw_mask_on_image, draw_points_on_image,
get_latest_points_pair, get_valid_mask,
on_change_single_global_state)
from viz.renderer import Renderer, add_watermark_np
# download models from Hugging Face hub
from huggingface_hub import snapshot_download
model_dir = Path('./checkpoints')
snapshot_download('DragGan/DragGan-Models',
repo_type='model', local_dir=model_dir)
cache_dir = model_dir
device = 'cuda'
IS_SPACE = "DragGan/DragGan" in os.environ.get('SPACE_ID', '')
TIMEOUT = 80
def reverse_point_pairs(points):
new_points = []
for p in points:
new_points.append([p[1], p[0]])
return new_points
def clear_state(global_state, target=None):
"""Clear target history state from global_state
If target is not defined, points and mask will be both removed.
1. set global_state['points'] as empty dict
2. set global_state['mask'] as full-one mask.
"""
if target is None:
target = ['point', 'mask']
if not isinstance(target, list):
target = [target]
if 'point' in target:
global_state['points'] = dict()
print('Clear Points State!')
if 'mask' in target:
image_raw = global_state["images"]["image_raw"]
global_state['mask'] = np.ones((image_raw.size[1], image_raw.size[0]),
dtype=np.uint8)
print('Clear mask State!')
return global_state
def init_images(global_state):
"""This function is called only ones with Gradio App is started.
0. pre-process global_state, unpack value from global_state of need
1. Re-init renderer
2. run `renderer._render_drag_impl` with `is_drag=False` to generate
new image
3. Assign images to global state and re-generate mask
"""
if isinstance(global_state, gr.State):
state = global_state.value
else:
state = global_state
state['renderer'].init_network(
state['generator_params'], # res
valid_checkpoints_dict[state['pretrained_weight']], # pkl
state['params']['seed'], # w0_seed,
None, # w_load
state['params']['latent_space'] == 'w+', # w_plus
'const',
state['params']['trunc_psi'], # trunc_psi,
state['params']['trunc_cutoff'], # trunc_cutoff,
None, # input_transform
state['params']['lr'] # lr,
)
state['renderer']._render_drag_impl(state['generator_params'],
is_drag=False,
to_pil=True)
init_image = state['generator_params'].image
state['images']['image_orig'] = init_image
state['images']['image_raw'] = init_image
state['images']['image_show'] = Image.fromarray(
add_watermark_np(np.array(init_image)))
state['mask'] = np.ones((init_image.size[1], init_image.size[0]),
dtype=np.uint8)
return global_state
def update_image_draw(image, points, mask, show_mask, global_state=None):
image_draw = draw_points_on_image(image, points)
if show_mask and mask is not None and not (mask == 0).all() and not (
mask == 1).all():
image_draw = draw_mask_on_image(image_draw, mask)
image_draw = Image.fromarray(add_watermark_np(np.array(image_draw)))
if global_state is not None:
global_state['images']['image_show'] = image_draw
return image_draw
def preprocess_mask_info(global_state, image):
"""Function to handle mask information.
1. last_mask is None: Do not need to change mask, return mask
2. last_mask is not None:
2.1 global_state is remove_mask:
2.2 global_state is add_mask:
"""
if isinstance(image, dict):
last_mask = get_valid_mask(image['mask'])
else:
last_mask = None
mask = global_state['mask']
# mask in global state is a placeholder with all 1.
if (mask == 1).all():
mask = last_mask
# last_mask = global_state['last_mask']
editing_mode = global_state['editing_state']
if last_mask is None:
return global_state
if editing_mode == 'remove_mask':
updated_mask = np.clip(mask - last_mask, 0, 1)
print(f'Last editing_state is {editing_mode}, do remove.')
elif editing_mode == 'add_mask':
updated_mask = np.clip(mask + last_mask, 0, 1)
print(f'Last editing_state is {editing_mode}, do add.')
else:
updated_mask = mask
print(f'Last editing_state is {editing_mode}, '
'do nothing to mask.')
global_state['mask'] = updated_mask
# global_state['last_mask'] = None # clear buffer
return global_state
def print_memory_usage():
# Print system memory usage
print(f"System memory usage: {psutil.virtual_memory().percent}%")
# Print GPU memory usage
if torch.cuda.is_available():
device = torch.device("cuda")
print(f"GPU memory usage: {torch.cuda.memory_allocated() / 1e9} GB")
print(
f"Max GPU memory usage: {torch.cuda.max_memory_allocated() / 1e9} GB")
device_properties = torch.cuda.get_device_properties(device)
available_memory = device_properties.total_memory - \
torch.cuda.max_memory_allocated()
print(f"Available GPU memory: {available_memory / 1e9} GB")
else:
print("No GPU available")
# filter large models running on SPACES
allowed_checkpoints = [] # all checkpoints
if IS_SPACE:
allowed_checkpoints = ["stylegan_human_v2_512.pkl",
"stylegan2_dogs_1024_pytorch.pkl"]
valid_checkpoints_dict = {
f.name.split('.')[0]: str(f)
for f in Path(cache_dir).glob('*.pkl')
if f.name in allowed_checkpoints or not IS_SPACE
}
print('Valid checkpoint file:')
print(valid_checkpoints_dict)
init_pkl = 'stylegan_human_v2_512'
with gr.Blocks() as app:
gr.Markdown("""
# DragGAN - Drag Your GAN
## Interactive Point-based Manipulation on the Generative Image Manifold
### Unofficial Gradio Demo
**Due to high demand, only one model can be run at a time, or you can duplicate the space and run your own copy.**
<a href="https://huggingface.co/spaces/radames/DragGan?duplicate=true" style="display: inline-block;margin-top: .5em;margin-right: .25em;" target="_blank">
<img style="margin-bottom: 0em;display: inline;margin-top: -.25em;" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a> for no queue on your own hardware.</p>
* Official Repo: [XingangPan](https://github.com/XingangPan/DragGAN)
* Gradio Demo by: [LeoXing1996](https://github.com/LeoXing1996) © [OpenMMLab MMagic](https://github.com/open-mmlab/mmagic)
""")
# renderer = Renderer()
global_state = gr.State({
"images": {
# image_orig: the original image, change with seed/model is changed
# image_raw: image with mask and points, change durning optimization
# image_show: image showed on screen
},
"temporal_params": {
# stop
},
'mask':
None, # mask for visualization, 1 for editing and 0 for unchange
'last_mask': None, # last edited mask
'show_mask': True, # add button
"generator_params": dnnlib.EasyDict(),
"params": {
"seed": int(np.random.randint(0, 2**32 - 1)),
"motion_lambda": 20,
"r1_in_pixels": 3,
"r2_in_pixels": 12,
"magnitude_direction_in_pixels": 1.0,
"latent_space": "w+",
"trunc_psi": 0.7,
"trunc_cutoff": None,
"lr": 0.001,
},
"device": device,
"draw_interval": 1,
"renderer": Renderer(disable_timing=True),
"points": {},
"curr_point": None,
"curr_type_point": "start",
'editing_state': 'add_points',
'pretrained_weight': init_pkl
})
# init image
global_state = init_images(global_state)
with gr.Row():
with gr.Row():
# Left --> tools
with gr.Column(scale=3):
# Pickle
with gr.Row():
with gr.Column(scale=1, min_width=10):
gr.Markdown(value='Pickle', show_label=False)
with gr.Column(scale=4, min_width=10):
form_pretrained_dropdown = gr.Dropdown(
choices=list(valid_checkpoints_dict.keys()),
label="Pretrained Model",
value=init_pkl,
)
# Latent
with gr.Row():
with gr.Column(scale=1, min_width=10):
gr.Markdown(value='Latent', show_label=False)
with gr.Column(scale=4, min_width=10):
form_seed_number = gr.Slider(
mininium=0,
maximum=2**32-1,
step=1,
value=global_state.value['params']['seed'],
interactive=True,
# randomize=True,
label="Seed",
)
form_lr_number = gr.Number(
value=global_state.value["params"]["lr"],
interactive=True,
label="Step Size")
with gr.Row():
with gr.Column(scale=2, min_width=10):
form_reset_image = gr.Button("Reset Image")
with gr.Column(scale=3, min_width=10):
form_latent_space = gr.Radio(
['w', 'w+'],
value=global_state.value['params']
['latent_space'],
interactive=True,
label='Latent space to optimize',
show_label=False,
)
# Drag
with gr.Row():
with gr.Column(scale=1, min_width=10):
gr.Markdown(value='Drag', show_label=False)
with gr.Column(scale=4, min_width=10):
with gr.Row():
with gr.Column(scale=1, min_width=10):
enable_add_points = gr.Button('Add Points')
with gr.Column(scale=1, min_width=10):
undo_points = gr.Button('Reset Points')
with gr.Row():
with gr.Column(scale=1, min_width=10):
form_start_btn = gr.Button("Start")
with gr.Column(scale=1, min_width=10):
form_stop_btn = gr.Button("Stop")
form_steps_number = gr.Number(value=0,
label="Steps",
interactive=False)
# Mask
with gr.Row():
with gr.Column(scale=1, min_width=10):
gr.Markdown(value='Mask', show_label=False)
with gr.Column(scale=4, min_width=10):
enable_add_mask = gr.Button('Edit Flexible Area')
with gr.Row():
with gr.Column(scale=1, min_width=10):
form_reset_mask_btn = gr.Button("Reset mask")
with gr.Column(scale=1, min_width=10):
show_mask = gr.Checkbox(
label='Show Mask',
value=global_state.value['show_mask'],
show_label=False)
with gr.Row():
form_lambda_number = gr.Number(
value=global_state.value["params"]
["motion_lambda"],
interactive=True,
label="Lambda",
)
form_draw_interval_number = gr.Number(
value=global_state.value["draw_interval"],
label="Draw Interval (steps)",
interactive=True,
visible=False)
# Right --> Image
with gr.Column(scale=8):
form_image = ImageMask(
value=global_state.value['images']['image_show'],
brush_radius=20).style(
width=768,
height=768) # NOTE: hard image size code here.
gr.Markdown("""
## Quick Start
1. Select desired `Pretrained Model` and adjust `Seed` to generate an
initial image.
2. Click on image to add control points.
3. Click `Start` and enjoy it!
## Advance Usage
1. Change `Step Size` to adjust learning rate in drag optimization.
2. Select `w` or `w+` to change latent space to optimize:
* Optimize on `w` space may cause greater influence to the image.
* Optimize on `w+` space may work slower than `w`, but usually achieve
better results.
* Note that changing the latent space will reset the image, points and
mask (this has the same effect as `Reset Image` button).
3. Click `Edit Flexible Area` to create a mask and constrain the
unmasked region to remain unchanged.
""")
gr.HTML("""
<style>
.container {
position: absolute;
height: 50px;
text-align: center;
line-height: 50px;
width: 100%;
}
</style>
<div class="container">
Gradio demo supported by
<img src="https://avatars.githubusercontent.com/u/10245193?s=200&v=4" height="20" width="20" style="display:inline;">
<a href="https://github.com/open-mmlab/mmagic">OpenMMLab MMagic</a>
</div>
""")
# Network & latents tab listeners
def on_change_pretrained_dropdown(pretrained_value, global_state):
"""Function to handle model change.
1. Set pretrained value to global_state
2. Re-init images and clear all states
"""
global_state['pretrained_weight'] = pretrained_value
init_images(global_state)
clear_state(global_state)
return global_state, global_state["images"]['image_show']
form_pretrained_dropdown.change(
on_change_pretrained_dropdown,
inputs=[form_pretrained_dropdown, global_state],
outputs=[global_state, form_image],
queue=True,
)
def on_click_reset_image(global_state):
"""Reset image to the original one and clear all states
1. Re-init images
2. Clear all states
"""
init_images(global_state)
clear_state(global_state)
return global_state, global_state['images']['image_show']
form_reset_image.click(
on_click_reset_image,
inputs=[global_state],
outputs=[global_state, form_image],
queue=False,
)
# Update parameters
def on_change_update_image_seed(seed, global_state):
"""Function to handle generation seed change.
1. Set seed to global_state
2. Re-init images and clear all states
"""
global_state["params"]["seed"] = int(seed)
init_images(global_state)
clear_state(global_state)
return global_state, global_state['images']['image_show']
form_seed_number.change(
on_change_update_image_seed,
inputs=[form_seed_number, global_state],
outputs=[global_state, form_image],
)
def on_click_latent_space(latent_space, global_state):
"""Function to reset latent space to optimize.
NOTE: this function we reset the image and all controls
1. Set latent-space to global_state
2. Re-init images and clear all state
"""
global_state['params']['latent_space'] = latent_space
init_images(global_state)
clear_state(global_state)
return global_state, global_state['images']['image_show']
form_latent_space.change(on_click_latent_space,
inputs=[form_latent_space, global_state],
outputs=[global_state, form_image])
# ==== Params
form_lambda_number.change(
partial(on_change_single_global_state, ["params", "motion_lambda"]),
inputs=[form_lambda_number, global_state],
outputs=[global_state],
)
def on_change_lr(lr, global_state):
if lr == 0:
print('lr is 0, do nothing.')
return global_state
else:
global_state["params"]["lr"] = lr
renderer = global_state['renderer']
renderer.update_lr(lr)
print('New optimizer: ')
print(renderer.w_optim)
return global_state
form_lr_number.change(
on_change_lr,
inputs=[form_lr_number, global_state],
outputs=[global_state],
queue=False,
)
def on_click_start(global_state, image):
p_in_pixels = []
t_in_pixels = []
valid_points = []
# handle of start drag in mask editing mode
global_state = preprocess_mask_info(global_state, image)
# Prepare the points for the inference
if len(global_state["points"]) == 0:
# yield on_click_start_wo_points(global_state, image)
image_raw = global_state['images']['image_raw']
update_image_draw(
image_raw,
global_state['points'],
global_state['mask'],
global_state['show_mask'],
global_state,
)
yield (
global_state,
0,
global_state['images']['image_show'],
# gr.File.update(visible=False),
gr.Button.update(interactive=True),
gr.Button.update(interactive=True),
gr.Button.update(interactive=True),
gr.Button.update(interactive=True),
gr.Button.update(interactive=True),
# latent space
gr.Radio.update(interactive=True),
gr.Button.update(interactive=True),
# NOTE: disable stop button
gr.Button.update(interactive=False),
# update other comps
gr.Dropdown.update(interactive=True),
gr.Number.update(interactive=True),
gr.Number.update(interactive=True),
gr.Button.update(interactive=True),
gr.Button.update(interactive=True),
gr.Checkbox.update(interactive=True),
# gr.Number.update(interactive=True),
gr.Number.update(interactive=True),
)
else:
# Transform the points into torch tensors
for key_point, point in global_state["points"].items():
try:
p_start = point.get("start_temp", point["start"])
p_end = point["target"]
if p_start is None or p_end is None:
continue
except KeyError:
continue
p_in_pixels.append(p_start)
t_in_pixels.append(p_end)
valid_points.append(key_point)
mask = torch.tensor(global_state['mask']).float()
drag_mask = 1 - mask
renderer: Renderer = global_state["renderer"]
global_state['temporal_params']['stop'] = False
global_state['editing_state'] = 'running'
# reverse points order
p_to_opt = reverse_point_pairs(p_in_pixels)
t_to_opt = reverse_point_pairs(t_in_pixels)
print('Running with:')
print(f' Source: {p_in_pixels}')
print(f' Target: {t_in_pixels}')
step_idx = 0
last_time = time.time()
while True:
print_memory_usage()
# add a TIMEOUT break
print(f'Running time: {time.time() - last_time}')
if IS_SPACE and time.time() - last_time > TIMEOUT:
print('Timeout break!')
break
if global_state["temporal_params"]["stop"] or global_state['generator_params']["stop"]:
break
# do drage here!
renderer._render_drag_impl(
global_state['generator_params'],
p_to_opt, # point
t_to_opt, # target
drag_mask, # mask,
global_state['params']['motion_lambda'], # lambda_mask
reg=0,
feature_idx=5, # NOTE: do not support change for now
r1=global_state['params']['r1_in_pixels'], # r1
r2=global_state['params']['r2_in_pixels'], # r2
# random_seed = 0,
# noise_mode = 'const',
trunc_psi=global_state['params']['trunc_psi'],
# force_fp32 = False,
# layer_name = None,
# sel_channels = 3,
# base_channel = 0,
# img_scale_db = 0,
# img_normalize = False,
# untransform = False,
is_drag=True,
to_pil=True)
if step_idx % global_state['draw_interval'] == 0:
print('Current Source:')
for key_point, p_i, t_i in zip(valid_points, p_to_opt,
t_to_opt):
global_state["points"][key_point]["start_temp"] = [
p_i[1],
p_i[0],
]
global_state["points"][key_point]["target"] = [
t_i[1],
t_i[0],
]
start_temp = global_state["points"][key_point][
"start_temp"]
print(f' {start_temp}')
image_result = global_state['generator_params']['image']
image_draw = update_image_draw(
image_result,
global_state['points'],
global_state['mask'],
global_state['show_mask'],
global_state,
)
global_state['images']['image_raw'] = image_result
yield (
global_state,
step_idx,
global_state['images']['image_show'],
# gr.File.update(visible=False),
gr.Button.update(interactive=False),
gr.Button.update(interactive=False),
gr.Button.update(interactive=False),
gr.Button.update(interactive=False),
gr.Button.update(interactive=False),
# latent space
gr.Radio.update(interactive=False),
gr.Button.update(interactive=False),
# enable stop button in loop
gr.Button.update(interactive=True),
# update other comps
gr.Dropdown.update(interactive=False),
gr.Number.update(interactive=False),
gr.Number.update(interactive=False),
gr.Button.update(interactive=False),
gr.Button.update(interactive=False),
gr.Checkbox.update(interactive=False),
# gr.Number.update(interactive=False),
gr.Number.update(interactive=False),
)
# increate step
step_idx += 1
image_result = global_state['generator_params']['image']
global_state['images']['image_raw'] = image_result
image_draw = update_image_draw(image_result,
global_state['points'],
global_state['mask'],
global_state['show_mask'],
global_state)
# fp = NamedTemporaryFile(suffix=".png", delete=False)
# image_result.save(fp, "PNG")
global_state['editing_state'] = 'add_points'
yield (
global_state,
0, # reset step to 0 after stop.
global_state['images']['image_show'],
# gr.File.update(visible=True, value=fp.name),
gr.Button.update(interactive=True),
gr.Button.update(interactive=True),
gr.Button.update(interactive=True),
gr.Button.update(interactive=True),
gr.Button.update(interactive=True),
# latent space
gr.Radio.update(interactive=True),
gr.Button.update(interactive=True),
# NOTE: disable stop button with loop finish
gr.Button.update(interactive=False),
# update other comps
gr.Dropdown.update(interactive=True),
gr.Number.update(interactive=True),
gr.Number.update(interactive=True),
gr.Checkbox.update(interactive=True),
gr.Number.update(interactive=True),
)
form_start_btn.click(
on_click_start,
inputs=[global_state, form_image],
outputs=[
global_state,
form_steps_number,
form_image,
# form_download_result_file,
# >>> buttons
form_reset_image,
enable_add_points,
enable_add_mask,
undo_points,
form_reset_mask_btn,
form_latent_space,
form_start_btn,
form_stop_btn,
# <<< buttonm
# >>> inputs comps
form_pretrained_dropdown,
form_seed_number,
form_lr_number,
show_mask,
form_lambda_number,
],
)
def on_click_stop(global_state):
"""Function to handle stop button is clicked.
1. send a stop signal by set global_state["temporal_params"]["stop"] as True
2. Disable Stop button
"""
global_state["temporal_params"]["stop"] = True
return global_state, gr.Button.update(interactive=False)
form_stop_btn.click(on_click_stop,
inputs=[global_state],
outputs=[global_state, form_stop_btn],
queue=False)
form_draw_interval_number.change(
partial(
on_change_single_global_state,
"draw_interval",
map_transform=lambda x: int(x),
),
inputs=[form_draw_interval_number, global_state],
outputs=[global_state],
queue=False,
)
def on_click_remove_point(global_state):
choice = global_state["curr_point"]
del global_state["points"][choice]
choices = list(global_state["points"].keys())
if len(choices) > 0:
global_state["curr_point"] = choices[0]
return (
gr.Dropdown.update(choices=choices, value=choices[0]),
global_state,
)
# Mask
def on_click_reset_mask(global_state):
global_state['mask'] = np.ones(
(
global_state["images"]["image_raw"].size[1],
global_state["images"]["image_raw"].size[0],
),
dtype=np.uint8,
)
image_draw = update_image_draw(global_state['images']['image_raw'],
global_state['points'],
global_state['mask'],
global_state['show_mask'], global_state)
return global_state, image_draw
form_reset_mask_btn.click(
on_click_reset_mask,
inputs=[global_state],
outputs=[global_state, form_image],
)
# Image
def on_click_enable_draw(global_state, image):
"""Function to start add mask mode.
1. Preprocess mask info from last state
2. Change editing state to add_mask
3. Set curr image with points and mask
"""
global_state = preprocess_mask_info(global_state, image)
global_state['editing_state'] = 'add_mask'
image_raw = global_state['images']['image_raw']
image_draw = update_image_draw(image_raw, global_state['points'],
global_state['mask'], True,
global_state)
return (global_state,
gr.Image.update(value=image_draw, interactive=True))
def on_click_remove_draw(global_state, image):
"""Function to start remove mask mode.
1. Preprocess mask info from last state
2. Change editing state to remove_mask
3. Set curr image with points and mask
"""
global_state = preprocess_mask_info(global_state, image)
global_state['edinting_state'] = 'remove_mask'
image_raw = global_state['images']['image_raw']
image_draw = update_image_draw(image_raw, global_state['points'],
global_state['mask'], True,
global_state)
return (global_state,
gr.Image.update(value=image_draw, interactive=True))
enable_add_mask.click(on_click_enable_draw,
inputs=[global_state, form_image],
outputs=[
global_state,
form_image,
],
queue=False)
def on_click_add_point(global_state, image: dict):
"""Function switch from add mask mode to add points mode.
1. Updaste mask buffer if need
2. Change global_state['editing_state'] to 'add_points'
3. Set current image with mask
"""
global_state = preprocess_mask_info(global_state, image)
global_state['editing_state'] = 'add_points'
mask = global_state['mask']
image_raw = global_state['images']['image_raw']
image_draw = update_image_draw(image_raw, global_state['points'], mask,
global_state['show_mask'], global_state)
return (global_state,
gr.Image.update(value=image_draw, interactive=False))
enable_add_points.click(on_click_add_point,
inputs=[global_state, form_image],
outputs=[global_state, form_image],
queue=False)
def on_click_image(global_state, evt: gr.SelectData):
"""This function only support click for point selection
"""
xy = evt.index
if global_state['editing_state'] != 'add_points':
print(f'In {global_state["editing_state"]} state. '
'Do not add points.')
return global_state, global_state['images']['image_show']
points = global_state["points"]
point_idx = get_latest_points_pair(points)
if point_idx is None:
points[0] = {'start': xy, 'target': None}
print(f'Click Image - Start - {xy}')
elif points[point_idx].get('target', None) is None:
points[point_idx]['target'] = xy
print(f'Click Image - Target - {xy}')
else:
points[point_idx + 1] = {'start': xy, 'target': None}
print(f'Click Image - Start - {xy}')
image_raw = global_state['images']['image_raw']
image_draw = update_image_draw(
image_raw,
global_state['points'],
global_state['mask'],
global_state['show_mask'],
global_state,
)
return global_state, image_draw
form_image.select(
on_click_image,
inputs=[global_state],
outputs=[global_state, form_image],
queue=False,
)
def on_click_clear_points(global_state):
"""Function to handle clear all control points
1. clear global_state['points'] (clear_state)
2. re-init network
2. re-draw image
"""
clear_state(global_state, target='point')
renderer: Renderer = global_state["renderer"]
renderer.feat_refs = None
image_raw = global_state['images']['image_raw']
image_draw = update_image_draw(image_raw, {}, global_state['mask'],
global_state['show_mask'], global_state)
return global_state, image_draw
undo_points.click(on_click_clear_points,
inputs=[global_state],
outputs=[global_state, form_image],
queue=False)
def on_click_show_mask(global_state, show_mask):
"""Function to control whether show mask on image."""
global_state['show_mask'] = show_mask
image_raw = global_state['images']['image_raw']
image_draw = update_image_draw(
image_raw,
global_state['points'],
global_state['mask'],
global_state['show_mask'],
global_state,
)
return global_state, image_draw
show_mask.change(
on_click_show_mask,
inputs=[global_state, show_mask],
outputs=[global_state, form_image],
queue=False,
)
gr.close_all()
app.queue(concurrency_count=1, max_size=200, api_open=False)
app.launch(show_api=False)
|