fixed cleaning text bugs
Browse files- app.py +9 -2
- src/utils.py +3 -0
app.py
CHANGED
@@ -28,11 +28,13 @@ if __name__ == "__main__":
|
|
28 |
"Summarization type", options=["Extractive", "Abstractive"]
|
29 |
)
|
30 |
# ---------------------------
|
31 |
-
# SETUP
|
32 |
nltk.download("punkt")
|
33 |
abs_tokenizer_name = "t5-base"
|
34 |
abs_model_name = "t5-base"
|
35 |
abs_tokenizer = T5Tokenizer.from_pretrained(abs_tokenizer_name)
|
|
|
|
|
36 |
# ---------------------------
|
37 |
|
38 |
inp_text = st.text_input("Enter text or a url here")
|
@@ -81,7 +83,12 @@ if __name__ == "__main__":
|
|
81 |
tokenizer=abs_tokenizer, text=clean_txt
|
82 |
)
|
83 |
print(text_to_summarize)
|
84 |
-
tmp_sum = abs_summarizer(
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
summarized_text = " ".join([summ["summary_text"] for summ in tmp_sum])
|
87 |
|
|
|
28 |
"Summarization type", options=["Extractive", "Abstractive"]
|
29 |
)
|
30 |
# ---------------------------
|
31 |
+
# SETUP & Constants
|
32 |
nltk.download("punkt")
|
33 |
abs_tokenizer_name = "t5-base"
|
34 |
abs_model_name = "t5-base"
|
35 |
abs_tokenizer = T5Tokenizer.from_pretrained(abs_tokenizer_name)
|
36 |
+
abs_max_length = 80
|
37 |
+
abs_min_length = 30
|
38 |
# ---------------------------
|
39 |
|
40 |
inp_text = st.text_input("Enter text or a url here")
|
|
|
83 |
tokenizer=abs_tokenizer, text=clean_txt
|
84 |
)
|
85 |
print(text_to_summarize)
|
86 |
+
tmp_sum = abs_summarizer(
|
87 |
+
text_to_summarize,
|
88 |
+
max_length=abs_max_length,
|
89 |
+
min_length=abs_min_length,
|
90 |
+
do_sample=False,
|
91 |
+
)
|
92 |
|
93 |
summarized_text = " ".join([summ["summary_text"] for summ in tmp_sum])
|
94 |
|
src/utils.py
CHANGED
@@ -38,6 +38,9 @@ def fetch_article_text(url: str):
|
|
38 |
results = soup.find_all(["h1", "p"])
|
39 |
text = [result.text for result in results]
|
40 |
ARTICLE = " ".join(text)
|
|
|
|
|
|
|
41 |
sentences = ARTICLE.split("<eos>")
|
42 |
current_chunk = 0
|
43 |
chunks = []
|
|
|
38 |
results = soup.find_all(["h1", "p"])
|
39 |
text = [result.text for result in results]
|
40 |
ARTICLE = " ".join(text)
|
41 |
+
ARTICLE = ARTICLE.replace(".", ".<eos>")
|
42 |
+
ARTICLE = ARTICLE.replace("!", "!<eos>")
|
43 |
+
ARTICLE = ARTICLE.replace("?", "?<eos>")
|
44 |
sentences = ARTICLE.split("<eos>")
|
45 |
current_chunk = 0
|
46 |
chunks = []
|