Spaces:
Sleeping
Sleeping
from transformers import pipeline, set_seed | |
from transformers import AutoTokenizer | |
import re | |
from utils import ext | |
from utils.ext import pure_comma_separation | |
from decouple import config | |
import os | |
from utils.api import generate_cook_image | |
from utils.translators.translate_recepie import translate_recepie | |
from utils.translators.translate_input import translate_input | |
os.environ['TRANSFORMERS_CACHE'] = './cache' | |
model_name_or_path = "flax-community/t5-recipe-generation" | |
task = "text2text-generation" | |
tokenizer = AutoTokenizer.from_pretrained( | |
model_name_or_path) | |
generator = pipeline(task, model=model_name_or_path, | |
tokenizer=model_name_or_path) | |
prefix = "items: " | |
chef_top = { | |
"max_length": 512, | |
"min_length": 64, | |
"no_repeat_ngram_size": 3, | |
"do_sample": True, | |
"top_k": 60, | |
"top_p": 0.95, | |
"num_return_sequences": 1, | |
"return_tensors": True, | |
"return_text": False | |
} | |
chef_beam = { | |
"max_length": 512, | |
"min_length": 64, | |
"no_repeat_ngram_size": 3, | |
"early_stopping": True, | |
"num_beams": 5, | |
"length_penalty": 1.5, | |
"num_return_sequences": 1 | |
} | |
generation_kwargs = { | |
"max_length": 512, | |
"min_length": 64, | |
"no_repeat_ngram_size": 3, | |
"do_sample": True, | |
"top_k": 60, | |
"top_p": 0.95 | |
} | |
def load_api(): | |
api_key = config("API_KEY") | |
api_id = config("API_ID") | |
return {"KEY": api_key, "ID": api_id} | |
def skip_special_tokens_and_prettify(text): | |
data = {"title": "", "ingredients": [], "directions": []} | |
text = text + '$' | |
pattern = r"(\w+:)(.+?(?=\w+:|\$))" | |
for match in re.findall(pattern, text): | |
if match[0] == 'title:': | |
data["title"] = match[1] | |
elif match[0] == 'ingredients:': | |
data["ingredients"] = [ing.strip() for ing in match[1].split(',')] | |
elif match[0] == 'directions:': | |
data["directions"] = [d.strip() for d in match[1].split('.')] | |
else: | |
pass | |
data["ingredients"] = ext.ingredients( | |
data["ingredients"]) | |
data["directions"] = ext.directions(data["directions"]) | |
data["title"] = ext.title(data["title"]) | |
return data | |
def generation_function(texts, lang="en"): | |
langs = ['ru', 'en'] | |
api_credentials = load_api() | |
if lang != "en" and lang in langs: | |
texts = translate_input(texts, lang) | |
output_ids = generator( | |
texts, | |
** chef_top | |
)[0]["generated_token_ids"] | |
recepie = tokenizer.decode(output_ids, skip_special_tokens=False) | |
generated_recipe = skip_special_tokens_and_prettify(recepie) | |
if lang != "en" and lang in langs: | |
generated_recipe = translate_recepie(generated_recipe, lang) | |
cook_image = generate_cook_image( | |
generated_recipe['title'], app_id=api_credentials['ID'], app_key=api_credentials['KEY']) | |
generated_recipe["image"] = cook_image | |
return generated_recipe | |
items = [ | |
"macaroni, butter, salt, bacon, milk, flour, pepper, cream corn", | |
"provolone cheese, bacon, bread, ginger" | |
] | |