Spaces:
Build error
Build error
File size: 7,574 Bytes
cdfecf8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
# Copyright (c) 2019 Western Digital Corporation or its affiliates.
import logging
import torch.nn as nn
from mmcv.cnn import ConvModule, constant_init, kaiming_init
from mmcv.runner import load_checkpoint
from torch.nn.modules.batchnorm import _BatchNorm
from ..builder import BACKBONES
class ResBlock(nn.Module):
"""The basic residual block used in Darknet. Each ResBlock consists of two
ConvModules and the input is added to the final output. Each ConvModule is
composed of Conv, BN, and LeakyReLU. In YoloV3 paper, the first convLayer
has half of the number of the filters as much as the second convLayer. The
first convLayer has filter size of 1x1 and the second one has the filter
size of 3x3.
Args:
in_channels (int): The input channels. Must be even.
conv_cfg (dict): Config dict for convolution layer. Default: None.
norm_cfg (dict): Dictionary to construct and config norm layer.
Default: dict(type='BN', requires_grad=True)
act_cfg (dict): Config dict for activation layer.
Default: dict(type='LeakyReLU', negative_slope=0.1).
"""
def __init__(self,
in_channels,
conv_cfg=None,
norm_cfg=dict(type='BN', requires_grad=True),
act_cfg=dict(type='LeakyReLU', negative_slope=0.1)):
super(ResBlock, self).__init__()
assert in_channels % 2 == 0 # ensure the in_channels is even
half_in_channels = in_channels // 2
# shortcut
cfg = dict(conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg)
self.conv1 = ConvModule(in_channels, half_in_channels, 1, **cfg)
self.conv2 = ConvModule(
half_in_channels, in_channels, 3, padding=1, **cfg)
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.conv2(out)
out = out + residual
return out
@BACKBONES.register_module()
class Darknet(nn.Module):
"""Darknet backbone.
Args:
depth (int): Depth of Darknet. Currently only support 53.
out_indices (Sequence[int]): Output from which stages.
frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
-1 means not freezing any parameters. Default: -1.
conv_cfg (dict): Config dict for convolution layer. Default: None.
norm_cfg (dict): Dictionary to construct and config norm layer.
Default: dict(type='BN', requires_grad=True)
act_cfg (dict): Config dict for activation layer.
Default: dict(type='LeakyReLU', negative_slope=0.1).
norm_eval (bool): Whether to set norm layers to eval mode, namely,
freeze running stats (mean and var). Note: Effect on Batch Norm
and its variants only.
Example:
>>> from mmdet.models import Darknet
>>> import torch
>>> self = Darknet(depth=53)
>>> self.eval()
>>> inputs = torch.rand(1, 3, 416, 416)
>>> level_outputs = self.forward(inputs)
>>> for level_out in level_outputs:
... print(tuple(level_out.shape))
...
(1, 256, 52, 52)
(1, 512, 26, 26)
(1, 1024, 13, 13)
"""
# Dict(depth: (layers, channels))
arch_settings = {
53: ((1, 2, 8, 8, 4), ((32, 64), (64, 128), (128, 256), (256, 512),
(512, 1024)))
}
def __init__(self,
depth=53,
out_indices=(3, 4, 5),
frozen_stages=-1,
conv_cfg=None,
norm_cfg=dict(type='BN', requires_grad=True),
act_cfg=dict(type='LeakyReLU', negative_slope=0.1),
norm_eval=True):
super(Darknet, self).__init__()
if depth not in self.arch_settings:
raise KeyError(f'invalid depth {depth} for darknet')
self.depth = depth
self.out_indices = out_indices
self.frozen_stages = frozen_stages
self.layers, self.channels = self.arch_settings[depth]
cfg = dict(conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg)
self.conv1 = ConvModule(3, 32, 3, padding=1, **cfg)
self.cr_blocks = ['conv1']
for i, n_layers in enumerate(self.layers):
layer_name = f'conv_res_block{i + 1}'
in_c, out_c = self.channels[i]
self.add_module(
layer_name,
self.make_conv_res_block(in_c, out_c, n_layers, **cfg))
self.cr_blocks.append(layer_name)
self.norm_eval = norm_eval
def forward(self, x):
outs = []
for i, layer_name in enumerate(self.cr_blocks):
cr_block = getattr(self, layer_name)
x = cr_block(x)
if i in self.out_indices:
outs.append(x)
return tuple(outs)
def init_weights(self, pretrained=None):
if isinstance(pretrained, str):
logger = logging.getLogger()
load_checkpoint(self, pretrained, strict=False, logger=logger)
elif pretrained is None:
for m in self.modules():
if isinstance(m, nn.Conv2d):
kaiming_init(m)
elif isinstance(m, (_BatchNorm, nn.GroupNorm)):
constant_init(m, 1)
else:
raise TypeError('pretrained must be a str or None')
def _freeze_stages(self):
if self.frozen_stages >= 0:
for i in range(self.frozen_stages):
m = getattr(self, self.cr_blocks[i])
m.eval()
for param in m.parameters():
param.requires_grad = False
def train(self, mode=True):
super(Darknet, self).train(mode)
self._freeze_stages()
if mode and self.norm_eval:
for m in self.modules():
if isinstance(m, _BatchNorm):
m.eval()
@staticmethod
def make_conv_res_block(in_channels,
out_channels,
res_repeat,
conv_cfg=None,
norm_cfg=dict(type='BN', requires_grad=True),
act_cfg=dict(type='LeakyReLU',
negative_slope=0.1)):
"""In Darknet backbone, ConvLayer is usually followed by ResBlock. This
function will make that. The Conv layers always have 3x3 filters with
stride=2. The number of the filters in Conv layer is the same as the
out channels of the ResBlock.
Args:
in_channels (int): The number of input channels.
out_channels (int): The number of output channels.
res_repeat (int): The number of ResBlocks.
conv_cfg (dict): Config dict for convolution layer. Default: None.
norm_cfg (dict): Dictionary to construct and config norm layer.
Default: dict(type='BN', requires_grad=True)
act_cfg (dict): Config dict for activation layer.
Default: dict(type='LeakyReLU', negative_slope=0.1).
"""
cfg = dict(conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg)
model = nn.Sequential()
model.add_module(
'conv',
ConvModule(
in_channels, out_channels, 3, stride=2, padding=1, **cfg))
for idx in range(res_repeat):
model.add_module('res{}'.format(idx),
ResBlock(out_channels, **cfg))
return model
|