File size: 7,574 Bytes
cdfecf8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
# Copyright (c) 2019 Western Digital Corporation or its affiliates.

import logging

import torch.nn as nn
from mmcv.cnn import ConvModule, constant_init, kaiming_init
from mmcv.runner import load_checkpoint
from torch.nn.modules.batchnorm import _BatchNorm

from ..builder import BACKBONES


class ResBlock(nn.Module):
    """The basic residual block used in Darknet. Each ResBlock consists of two
    ConvModules and the input is added to the final output. Each ConvModule is
    composed of Conv, BN, and LeakyReLU. In YoloV3 paper, the first convLayer
    has half of the number of the filters as much as the second convLayer. The
    first convLayer has filter size of 1x1 and the second one has the filter
    size of 3x3.

    Args:
        in_channels (int): The input channels. Must be even.
        conv_cfg (dict): Config dict for convolution layer. Default: None.
        norm_cfg (dict): Dictionary to construct and config norm layer.
            Default: dict(type='BN', requires_grad=True)
        act_cfg (dict): Config dict for activation layer.
            Default: dict(type='LeakyReLU', negative_slope=0.1).
    """

    def __init__(self,
                 in_channels,
                 conv_cfg=None,
                 norm_cfg=dict(type='BN', requires_grad=True),
                 act_cfg=dict(type='LeakyReLU', negative_slope=0.1)):
        super(ResBlock, self).__init__()
        assert in_channels % 2 == 0  # ensure the in_channels is even
        half_in_channels = in_channels // 2

        # shortcut
        cfg = dict(conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg)

        self.conv1 = ConvModule(in_channels, half_in_channels, 1, **cfg)
        self.conv2 = ConvModule(
            half_in_channels, in_channels, 3, padding=1, **cfg)

    def forward(self, x):
        residual = x
        out = self.conv1(x)
        out = self.conv2(out)
        out = out + residual

        return out


@BACKBONES.register_module()
class Darknet(nn.Module):
    """Darknet backbone.

    Args:
        depth (int): Depth of Darknet. Currently only support 53.
        out_indices (Sequence[int]): Output from which stages.
        frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
            -1 means not freezing any parameters. Default: -1.
        conv_cfg (dict): Config dict for convolution layer. Default: None.
        norm_cfg (dict): Dictionary to construct and config norm layer.
            Default: dict(type='BN', requires_grad=True)
        act_cfg (dict): Config dict for activation layer.
            Default: dict(type='LeakyReLU', negative_slope=0.1).
        norm_eval (bool): Whether to set norm layers to eval mode, namely,
            freeze running stats (mean and var). Note: Effect on Batch Norm
            and its variants only.

    Example:
        >>> from mmdet.models import Darknet
        >>> import torch
        >>> self = Darknet(depth=53)
        >>> self.eval()
        >>> inputs = torch.rand(1, 3, 416, 416)
        >>> level_outputs = self.forward(inputs)
        >>> for level_out in level_outputs:
        ...     print(tuple(level_out.shape))
        ...
        (1, 256, 52, 52)
        (1, 512, 26, 26)
        (1, 1024, 13, 13)
    """

    # Dict(depth: (layers, channels))
    arch_settings = {
        53: ((1, 2, 8, 8, 4), ((32, 64), (64, 128), (128, 256), (256, 512),
                               (512, 1024)))
    }

    def __init__(self,
                 depth=53,
                 out_indices=(3, 4, 5),
                 frozen_stages=-1,
                 conv_cfg=None,
                 norm_cfg=dict(type='BN', requires_grad=True),
                 act_cfg=dict(type='LeakyReLU', negative_slope=0.1),
                 norm_eval=True):
        super(Darknet, self).__init__()
        if depth not in self.arch_settings:
            raise KeyError(f'invalid depth {depth} for darknet')
        self.depth = depth
        self.out_indices = out_indices
        self.frozen_stages = frozen_stages
        self.layers, self.channels = self.arch_settings[depth]

        cfg = dict(conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg)

        self.conv1 = ConvModule(3, 32, 3, padding=1, **cfg)

        self.cr_blocks = ['conv1']
        for i, n_layers in enumerate(self.layers):
            layer_name = f'conv_res_block{i + 1}'
            in_c, out_c = self.channels[i]
            self.add_module(
                layer_name,
                self.make_conv_res_block(in_c, out_c, n_layers, **cfg))
            self.cr_blocks.append(layer_name)

        self.norm_eval = norm_eval

    def forward(self, x):
        outs = []
        for i, layer_name in enumerate(self.cr_blocks):
            cr_block = getattr(self, layer_name)
            x = cr_block(x)
            if i in self.out_indices:
                outs.append(x)

        return tuple(outs)

    def init_weights(self, pretrained=None):
        if isinstance(pretrained, str):
            logger = logging.getLogger()
            load_checkpoint(self, pretrained, strict=False, logger=logger)
        elif pretrained is None:
            for m in self.modules():
                if isinstance(m, nn.Conv2d):
                    kaiming_init(m)
                elif isinstance(m, (_BatchNorm, nn.GroupNorm)):
                    constant_init(m, 1)

        else:
            raise TypeError('pretrained must be a str or None')

    def _freeze_stages(self):
        if self.frozen_stages >= 0:
            for i in range(self.frozen_stages):
                m = getattr(self, self.cr_blocks[i])
                m.eval()
                for param in m.parameters():
                    param.requires_grad = False

    def train(self, mode=True):
        super(Darknet, self).train(mode)
        self._freeze_stages()
        if mode and self.norm_eval:
            for m in self.modules():
                if isinstance(m, _BatchNorm):
                    m.eval()

    @staticmethod
    def make_conv_res_block(in_channels,
                            out_channels,
                            res_repeat,
                            conv_cfg=None,
                            norm_cfg=dict(type='BN', requires_grad=True),
                            act_cfg=dict(type='LeakyReLU',
                                         negative_slope=0.1)):
        """In Darknet backbone, ConvLayer is usually followed by ResBlock. This
        function will make that. The Conv layers always have 3x3 filters with
        stride=2. The number of the filters in Conv layer is the same as the
        out channels of the ResBlock.

        Args:
            in_channels (int): The number of input channels.
            out_channels (int): The number of output channels.
            res_repeat (int): The number of ResBlocks.
            conv_cfg (dict): Config dict for convolution layer. Default: None.
            norm_cfg (dict): Dictionary to construct and config norm layer.
                Default: dict(type='BN', requires_grad=True)
            act_cfg (dict): Config dict for activation layer.
                Default: dict(type='LeakyReLU', negative_slope=0.1).
        """

        cfg = dict(conv_cfg=conv_cfg, norm_cfg=norm_cfg, act_cfg=act_cfg)

        model = nn.Sequential()
        model.add_module(
            'conv',
            ConvModule(
                in_channels, out_channels, 3, stride=2, padding=1, **cfg))
        for idx in range(res_repeat):
            model.add_module('res{}'.format(idx),
                             ResBlock(out_channels, **cfg))
        return model