Spaces:
Build error
Build error
File size: 29,706 Bytes
cdfecf8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 |
import numpy as np
import torch
from mmcv.runner import force_fp32
from mmdet.core import multi_apply, multiclass_nms
from mmdet.core.bbox.iou_calculators import bbox_overlaps
from mmdet.models import HEADS
from mmdet.models.dense_heads import ATSSHead
EPS = 1e-12
try:
import sklearn.mixture as skm
except ImportError:
skm = None
def levels_to_images(mlvl_tensor):
"""Concat multi-level feature maps by image.
[feature_level0, feature_level1...] -> [feature_image0, feature_image1...]
Convert the shape of each element in mlvl_tensor from (N, C, H, W) to
(N, H*W , C), then split the element to N elements with shape (H*W, C), and
concat elements in same image of all level along first dimension.
Args:
mlvl_tensor (list[torch.Tensor]): list of Tensor which collect from
corresponding level. Each element is of shape (N, C, H, W)
Returns:
list[torch.Tensor]: A list that contains N tensors and each tensor is
of shape (num_elements, C)
"""
batch_size = mlvl_tensor[0].size(0)
batch_list = [[] for _ in range(batch_size)]
channels = mlvl_tensor[0].size(1)
for t in mlvl_tensor:
t = t.permute(0, 2, 3, 1)
t = t.view(batch_size, -1, channels).contiguous()
for img in range(batch_size):
batch_list[img].append(t[img])
return [torch.cat(item, 0) for item in batch_list]
@HEADS.register_module()
class PAAHead(ATSSHead):
"""Head of PAAAssignment: Probabilistic Anchor Assignment with IoU
Prediction for Object Detection.
Code is modified from the `official github repo
<https://github.com/kkhoot/PAA/blob/master/paa_core
/modeling/rpn/paa/loss.py>`_.
More details can be found in the `paper
<https://arxiv.org/abs/2007.08103>`_ .
Args:
topk (int): Select topk samples with smallest loss in
each level.
score_voting (bool): Whether to use score voting in post-process.
covariance_type : String describing the type of covariance parameters
to be used in :class:`sklearn.mixture.GaussianMixture`.
It must be one of:
- 'full': each component has its own general covariance matrix
- 'tied': all components share the same general covariance matrix
- 'diag': each component has its own diagonal covariance matrix
- 'spherical': each component has its own single variance
Default: 'diag'. From 'full' to 'spherical', the gmm fitting
process is faster yet the performance could be influenced. For most
cases, 'diag' should be a good choice.
"""
def __init__(self,
*args,
topk=9,
score_voting=True,
covariance_type='diag',
**kwargs):
# topk used in paa reassign process
self.topk = topk
self.with_score_voting = score_voting
self.covariance_type = covariance_type
super(PAAHead, self).__init__(*args, **kwargs)
@force_fp32(apply_to=('cls_scores', 'bbox_preds', 'iou_preds'))
def loss(self,
cls_scores,
bbox_preds,
iou_preds,
gt_bboxes,
gt_labels,
img_metas,
gt_bboxes_ignore=None):
"""Compute losses of the head.
Args:
cls_scores (list[Tensor]): Box scores for each scale level
Has shape (N, num_anchors * num_classes, H, W)
bbox_preds (list[Tensor]): Box energies / deltas for each scale
level with shape (N, num_anchors * 4, H, W)
iou_preds (list[Tensor]): iou_preds for each scale
level with shape (N, num_anchors * 1, H, W)
gt_bboxes (list[Tensor]): Ground truth bboxes for each image with
shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format.
gt_labels (list[Tensor]): class indices corresponding to each box
img_metas (list[dict]): Meta information of each image, e.g.,
image size, scaling factor, etc.
gt_bboxes_ignore (list[Tensor] | None): Specify which bounding
boxes can be ignored when are computing the loss.
Returns:
dict[str, Tensor]: A dictionary of loss gmm_assignment.
"""
featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
assert len(featmap_sizes) == self.anchor_generator.num_levels
device = cls_scores[0].device
anchor_list, valid_flag_list = self.get_anchors(
featmap_sizes, img_metas, device=device)
label_channels = self.cls_out_channels if self.use_sigmoid_cls else 1
cls_reg_targets = self.get_targets(
anchor_list,
valid_flag_list,
gt_bboxes,
img_metas,
gt_bboxes_ignore_list=gt_bboxes_ignore,
gt_labels_list=gt_labels,
label_channels=label_channels,
)
(labels, labels_weight, bboxes_target, bboxes_weight, pos_inds,
pos_gt_index) = cls_reg_targets
cls_scores = levels_to_images(cls_scores)
cls_scores = [
item.reshape(-1, self.cls_out_channels) for item in cls_scores
]
bbox_preds = levels_to_images(bbox_preds)
bbox_preds = [item.reshape(-1, 4) for item in bbox_preds]
iou_preds = levels_to_images(iou_preds)
iou_preds = [item.reshape(-1, 1) for item in iou_preds]
pos_losses_list, = multi_apply(self.get_pos_loss, anchor_list,
cls_scores, bbox_preds, labels,
labels_weight, bboxes_target,
bboxes_weight, pos_inds)
with torch.no_grad():
reassign_labels, reassign_label_weight, \
reassign_bbox_weights, num_pos = multi_apply(
self.paa_reassign,
pos_losses_list,
labels,
labels_weight,
bboxes_weight,
pos_inds,
pos_gt_index,
anchor_list)
num_pos = sum(num_pos)
# convert all tensor list to a flatten tensor
cls_scores = torch.cat(cls_scores, 0).view(-1, cls_scores[0].size(-1))
bbox_preds = torch.cat(bbox_preds, 0).view(-1, bbox_preds[0].size(-1))
iou_preds = torch.cat(iou_preds, 0).view(-1, iou_preds[0].size(-1))
labels = torch.cat(reassign_labels, 0).view(-1)
flatten_anchors = torch.cat(
[torch.cat(item, 0) for item in anchor_list])
labels_weight = torch.cat(reassign_label_weight, 0).view(-1)
bboxes_target = torch.cat(bboxes_target,
0).view(-1, bboxes_target[0].size(-1))
pos_inds_flatten = ((labels >= 0)
&
(labels < self.num_classes)).nonzero().reshape(-1)
losses_cls = self.loss_cls(
cls_scores,
labels,
labels_weight,
avg_factor=max(num_pos, len(img_metas))) # avoid num_pos=0
if num_pos:
pos_bbox_pred = self.bbox_coder.decode(
flatten_anchors[pos_inds_flatten],
bbox_preds[pos_inds_flatten])
pos_bbox_target = bboxes_target[pos_inds_flatten]
iou_target = bbox_overlaps(
pos_bbox_pred.detach(), pos_bbox_target, is_aligned=True)
losses_iou = self.loss_centerness(
iou_preds[pos_inds_flatten],
iou_target.unsqueeze(-1),
avg_factor=num_pos)
losses_bbox = self.loss_bbox(
pos_bbox_pred,
pos_bbox_target,
iou_target.clamp(min=EPS),
avg_factor=iou_target.sum())
else:
losses_iou = iou_preds.sum() * 0
losses_bbox = bbox_preds.sum() * 0
return dict(
loss_cls=losses_cls, loss_bbox=losses_bbox, loss_iou=losses_iou)
def get_pos_loss(self, anchors, cls_score, bbox_pred, label, label_weight,
bbox_target, bbox_weight, pos_inds):
"""Calculate loss of all potential positive samples obtained from first
match process.
Args:
anchors (list[Tensor]): Anchors of each scale.
cls_score (Tensor): Box scores of single image with shape
(num_anchors, num_classes)
bbox_pred (Tensor): Box energies / deltas of single image
with shape (num_anchors, 4)
label (Tensor): classification target of each anchor with
shape (num_anchors,)
label_weight (Tensor): Classification loss weight of each
anchor with shape (num_anchors).
bbox_target (dict): Regression target of each anchor with
shape (num_anchors, 4).
bbox_weight (Tensor): Bbox weight of each anchor with shape
(num_anchors, 4).
pos_inds (Tensor): Index of all positive samples got from
first assign process.
Returns:
Tensor: Losses of all positive samples in single image.
"""
if not len(pos_inds):
return cls_score.new([]),
anchors_all_level = torch.cat(anchors, 0)
pos_scores = cls_score[pos_inds]
pos_bbox_pred = bbox_pred[pos_inds]
pos_label = label[pos_inds]
pos_label_weight = label_weight[pos_inds]
pos_bbox_target = bbox_target[pos_inds]
pos_bbox_weight = bbox_weight[pos_inds]
pos_anchors = anchors_all_level[pos_inds]
pos_bbox_pred = self.bbox_coder.decode(pos_anchors, pos_bbox_pred)
# to keep loss dimension
loss_cls = self.loss_cls(
pos_scores,
pos_label,
pos_label_weight,
avg_factor=self.loss_cls.loss_weight,
reduction_override='none')
loss_bbox = self.loss_bbox(
pos_bbox_pred,
pos_bbox_target,
pos_bbox_weight,
avg_factor=self.loss_cls.loss_weight,
reduction_override='none')
loss_cls = loss_cls.sum(-1)
pos_loss = loss_bbox + loss_cls
return pos_loss,
def paa_reassign(self, pos_losses, label, label_weight, bbox_weight,
pos_inds, pos_gt_inds, anchors):
"""Fit loss to GMM distribution and separate positive, ignore, negative
samples again with GMM model.
Args:
pos_losses (Tensor): Losses of all positive samples in
single image.
label (Tensor): classification target of each anchor with
shape (num_anchors,)
label_weight (Tensor): Classification loss weight of each
anchor with shape (num_anchors).
bbox_weight (Tensor): Bbox weight of each anchor with shape
(num_anchors, 4).
pos_inds (Tensor): Index of all positive samples got from
first assign process.
pos_gt_inds (Tensor): Gt_index of all positive samples got
from first assign process.
anchors (list[Tensor]): Anchors of each scale.
Returns:
tuple: Usually returns a tuple containing learning targets.
- label (Tensor): classification target of each anchor after
paa assign, with shape (num_anchors,)
- label_weight (Tensor): Classification loss weight of each
anchor after paa assign, with shape (num_anchors).
- bbox_weight (Tensor): Bbox weight of each anchor with shape
(num_anchors, 4).
- num_pos (int): The number of positive samples after paa
assign.
"""
if not len(pos_inds):
return label, label_weight, bbox_weight, 0
label = label.clone()
label_weight = label_weight.clone()
bbox_weight = bbox_weight.clone()
num_gt = pos_gt_inds.max() + 1
num_level = len(anchors)
num_anchors_each_level = [item.size(0) for item in anchors]
num_anchors_each_level.insert(0, 0)
inds_level_interval = np.cumsum(num_anchors_each_level)
pos_level_mask = []
for i in range(num_level):
mask = (pos_inds >= inds_level_interval[i]) & (
pos_inds < inds_level_interval[i + 1])
pos_level_mask.append(mask)
pos_inds_after_paa = [label.new_tensor([])]
ignore_inds_after_paa = [label.new_tensor([])]
for gt_ind in range(num_gt):
pos_inds_gmm = []
pos_loss_gmm = []
gt_mask = pos_gt_inds == gt_ind
for level in range(num_level):
level_mask = pos_level_mask[level]
level_gt_mask = level_mask & gt_mask
value, topk_inds = pos_losses[level_gt_mask].topk(
min(level_gt_mask.sum(), self.topk), largest=False)
pos_inds_gmm.append(pos_inds[level_gt_mask][topk_inds])
pos_loss_gmm.append(value)
pos_inds_gmm = torch.cat(pos_inds_gmm)
pos_loss_gmm = torch.cat(pos_loss_gmm)
# fix gmm need at least two sample
if len(pos_inds_gmm) < 2:
continue
device = pos_inds_gmm.device
pos_loss_gmm, sort_inds = pos_loss_gmm.sort()
pos_inds_gmm = pos_inds_gmm[sort_inds]
pos_loss_gmm = pos_loss_gmm.view(-1, 1).cpu().numpy()
min_loss, max_loss = pos_loss_gmm.min(), pos_loss_gmm.max()
means_init = np.array([min_loss, max_loss]).reshape(2, 1)
weights_init = np.array([0.5, 0.5])
precisions_init = np.array([1.0, 1.0]).reshape(2, 1, 1) # full
if self.covariance_type == 'spherical':
precisions_init = precisions_init.reshape(2)
elif self.covariance_type == 'diag':
precisions_init = precisions_init.reshape(2, 1)
elif self.covariance_type == 'tied':
precisions_init = np.array([[1.0]])
if skm is None:
raise ImportError('Please run "pip install sklearn" '
'to install sklearn first.')
gmm = skm.GaussianMixture(
2,
weights_init=weights_init,
means_init=means_init,
precisions_init=precisions_init,
covariance_type=self.covariance_type)
gmm.fit(pos_loss_gmm)
gmm_assignment = gmm.predict(pos_loss_gmm)
scores = gmm.score_samples(pos_loss_gmm)
gmm_assignment = torch.from_numpy(gmm_assignment).to(device)
scores = torch.from_numpy(scores).to(device)
pos_inds_temp, ignore_inds_temp = self.gmm_separation_scheme(
gmm_assignment, scores, pos_inds_gmm)
pos_inds_after_paa.append(pos_inds_temp)
ignore_inds_after_paa.append(ignore_inds_temp)
pos_inds_after_paa = torch.cat(pos_inds_after_paa)
ignore_inds_after_paa = torch.cat(ignore_inds_after_paa)
reassign_mask = (pos_inds.unsqueeze(1) != pos_inds_after_paa).all(1)
reassign_ids = pos_inds[reassign_mask]
label[reassign_ids] = self.num_classes
label_weight[ignore_inds_after_paa] = 0
bbox_weight[reassign_ids] = 0
num_pos = len(pos_inds_after_paa)
return label, label_weight, bbox_weight, num_pos
def gmm_separation_scheme(self, gmm_assignment, scores, pos_inds_gmm):
"""A general separation scheme for gmm model.
It separates a GMM distribution of candidate samples into three
parts, 0 1 and uncertain areas, and you can implement other
separation schemes by rewriting this function.
Args:
gmm_assignment (Tensor): The prediction of GMM which is of shape
(num_samples,). The 0/1 value indicates the distribution
that each sample comes from.
scores (Tensor): The probability of sample coming from the
fit GMM distribution. The tensor is of shape (num_samples,).
pos_inds_gmm (Tensor): All the indexes of samples which are used
to fit GMM model. The tensor is of shape (num_samples,)
Returns:
tuple[Tensor]: The indices of positive and ignored samples.
- pos_inds_temp (Tensor): Indices of positive samples.
- ignore_inds_temp (Tensor): Indices of ignore samples.
"""
# The implementation is (c) in Fig.3 in origin paper instead of (b).
# You can refer to issues such as
# https://github.com/kkhoot/PAA/issues/8 and
# https://github.com/kkhoot/PAA/issues/9.
fgs = gmm_assignment == 0
pos_inds_temp = fgs.new_tensor([], dtype=torch.long)
ignore_inds_temp = fgs.new_tensor([], dtype=torch.long)
if fgs.nonzero().numel():
_, pos_thr_ind = scores[fgs].topk(1)
pos_inds_temp = pos_inds_gmm[fgs][:pos_thr_ind + 1]
ignore_inds_temp = pos_inds_gmm.new_tensor([])
return pos_inds_temp, ignore_inds_temp
def get_targets(
self,
anchor_list,
valid_flag_list,
gt_bboxes_list,
img_metas,
gt_bboxes_ignore_list=None,
gt_labels_list=None,
label_channels=1,
unmap_outputs=True,
):
"""Get targets for PAA head.
This method is almost the same as `AnchorHead.get_targets()`. We direct
return the results from _get_targets_single instead map it to levels
by images_to_levels function.
Args:
anchor_list (list[list[Tensor]]): Multi level anchors of each
image. The outer list indicates images, and the inner list
corresponds to feature levels of the image. Each element of
the inner list is a tensor of shape (num_anchors, 4).
valid_flag_list (list[list[Tensor]]): Multi level valid flags of
each image. The outer list indicates images, and the inner list
corresponds to feature levels of the image. Each element of
the inner list is a tensor of shape (num_anchors, )
gt_bboxes_list (list[Tensor]): Ground truth bboxes of each image.
img_metas (list[dict]): Meta info of each image.
gt_bboxes_ignore_list (list[Tensor]): Ground truth bboxes to be
ignored.
gt_labels_list (list[Tensor]): Ground truth labels of each box.
label_channels (int): Channel of label.
unmap_outputs (bool): Whether to map outputs back to the original
set of anchors.
Returns:
tuple: Usually returns a tuple containing learning targets.
- labels (list[Tensor]): Labels of all anchors, each with
shape (num_anchors,).
- label_weights (list[Tensor]): Label weights of all anchor.
each with shape (num_anchors,).
- bbox_targets (list[Tensor]): BBox targets of all anchors.
each with shape (num_anchors, 4).
- bbox_weights (list[Tensor]): BBox weights of all anchors.
each with shape (num_anchors, 4).
- pos_inds (list[Tensor]): Contains all index of positive
sample in all anchor.
- gt_inds (list[Tensor]): Contains all gt_index of positive
sample in all anchor.
"""
num_imgs = len(img_metas)
assert len(anchor_list) == len(valid_flag_list) == num_imgs
concat_anchor_list = []
concat_valid_flag_list = []
for i in range(num_imgs):
assert len(anchor_list[i]) == len(valid_flag_list[i])
concat_anchor_list.append(torch.cat(anchor_list[i]))
concat_valid_flag_list.append(torch.cat(valid_flag_list[i]))
# compute targets for each image
if gt_bboxes_ignore_list is None:
gt_bboxes_ignore_list = [None for _ in range(num_imgs)]
if gt_labels_list is None:
gt_labels_list = [None for _ in range(num_imgs)]
results = multi_apply(
self._get_targets_single,
concat_anchor_list,
concat_valid_flag_list,
gt_bboxes_list,
gt_bboxes_ignore_list,
gt_labels_list,
img_metas,
label_channels=label_channels,
unmap_outputs=unmap_outputs)
(labels, label_weights, bbox_targets, bbox_weights, valid_pos_inds,
valid_neg_inds, sampling_result) = results
# Due to valid flag of anchors, we have to calculate the real pos_inds
# in origin anchor set.
pos_inds = []
for i, single_labels in enumerate(labels):
pos_mask = (0 <= single_labels) & (
single_labels < self.num_classes)
pos_inds.append(pos_mask.nonzero().view(-1))
gt_inds = [item.pos_assigned_gt_inds for item in sampling_result]
return (labels, label_weights, bbox_targets, bbox_weights, pos_inds,
gt_inds)
def _get_targets_single(self,
flat_anchors,
valid_flags,
gt_bboxes,
gt_bboxes_ignore,
gt_labels,
img_meta,
label_channels=1,
unmap_outputs=True):
"""Compute regression and classification targets for anchors in a
single image.
This method is same as `AnchorHead._get_targets_single()`.
"""
assert unmap_outputs, 'We must map outputs back to the original' \
'set of anchors in PAAhead'
return super(ATSSHead, self)._get_targets_single(
flat_anchors,
valid_flags,
gt_bboxes,
gt_bboxes_ignore,
gt_labels,
img_meta,
label_channels=1,
unmap_outputs=True)
def _get_bboxes(self,
cls_scores,
bbox_preds,
iou_preds,
mlvl_anchors,
img_shapes,
scale_factors,
cfg,
rescale=False,
with_nms=True):
"""Transform outputs for a single batch item into labeled boxes.
This method is almost same as `ATSSHead._get_bboxes()`.
We use sqrt(iou_preds * cls_scores) in NMS process instead of just
cls_scores. Besides, score voting is used when `` score_voting``
is set to True.
"""
assert with_nms, 'PAA only supports "with_nms=True" now'
assert len(cls_scores) == len(bbox_preds) == len(mlvl_anchors)
batch_size = cls_scores[0].shape[0]
mlvl_bboxes = []
mlvl_scores = []
mlvl_iou_preds = []
for cls_score, bbox_pred, iou_preds, anchors in zip(
cls_scores, bbox_preds, iou_preds, mlvl_anchors):
assert cls_score.size()[-2:] == bbox_pred.size()[-2:]
scores = cls_score.permute(0, 2, 3, 1).reshape(
batch_size, -1, self.cls_out_channels).sigmoid()
bbox_pred = bbox_pred.permute(0, 2, 3,
1).reshape(batch_size, -1, 4)
iou_preds = iou_preds.permute(0, 2, 3, 1).reshape(batch_size,
-1).sigmoid()
nms_pre = cfg.get('nms_pre', -1)
if nms_pre > 0 and scores.shape[1] > nms_pre:
max_scores, _ = (scores * iou_preds[..., None]).sqrt().max(-1)
_, topk_inds = max_scores.topk(nms_pre)
batch_inds = torch.arange(batch_size).view(
-1, 1).expand_as(topk_inds).long()
anchors = anchors[topk_inds, :]
bbox_pred = bbox_pred[batch_inds, topk_inds, :]
scores = scores[batch_inds, topk_inds, :]
iou_preds = iou_preds[batch_inds, topk_inds]
else:
anchors = anchors.expand_as(bbox_pred)
bboxes = self.bbox_coder.decode(
anchors, bbox_pred, max_shape=img_shapes)
mlvl_bboxes.append(bboxes)
mlvl_scores.append(scores)
mlvl_iou_preds.append(iou_preds)
batch_mlvl_bboxes = torch.cat(mlvl_bboxes, dim=1)
if rescale:
batch_mlvl_bboxes /= batch_mlvl_bboxes.new_tensor(
scale_factors).unsqueeze(1)
batch_mlvl_scores = torch.cat(mlvl_scores, dim=1)
# Add a dummy background class to the backend when using sigmoid
# remind that we set FG labels to [0, num_class-1] since mmdet v2.0
# BG cat_id: num_class
padding = batch_mlvl_scores.new_zeros(batch_size,
batch_mlvl_scores.shape[1], 1)
batch_mlvl_scores = torch.cat([batch_mlvl_scores, padding], dim=-1)
batch_mlvl_iou_preds = torch.cat(mlvl_iou_preds, dim=1)
batch_mlvl_nms_scores = (batch_mlvl_scores *
batch_mlvl_iou_preds[..., None]).sqrt()
det_results = []
for (mlvl_bboxes, mlvl_scores) in zip(batch_mlvl_bboxes,
batch_mlvl_nms_scores):
det_bbox, det_label = multiclass_nms(
mlvl_bboxes,
mlvl_scores,
cfg.score_thr,
cfg.nms,
cfg.max_per_img,
score_factors=None)
if self.with_score_voting and len(det_bbox) > 0:
det_bbox, det_label = self.score_voting(
det_bbox, det_label, mlvl_bboxes, mlvl_scores,
cfg.score_thr)
det_results.append(tuple([det_bbox, det_label]))
return det_results
def score_voting(self, det_bboxes, det_labels, mlvl_bboxes,
mlvl_nms_scores, score_thr):
"""Implementation of score voting method works on each remaining boxes
after NMS procedure.
Args:
det_bboxes (Tensor): Remaining boxes after NMS procedure,
with shape (k, 5), each dimension means
(x1, y1, x2, y2, score).
det_labels (Tensor): The label of remaining boxes, with shape
(k, 1),Labels are 0-based.
mlvl_bboxes (Tensor): All boxes before the NMS procedure,
with shape (num_anchors,4).
mlvl_nms_scores (Tensor): The scores of all boxes which is used
in the NMS procedure, with shape (num_anchors, num_class)
mlvl_iou_preds (Tensor): The predictions of IOU of all boxes
before the NMS procedure, with shape (num_anchors, 1)
score_thr (float): The score threshold of bboxes.
Returns:
tuple: Usually returns a tuple containing voting results.
- det_bboxes_voted (Tensor): Remaining boxes after
score voting procedure, with shape (k, 5), each
dimension means (x1, y1, x2, y2, score).
- det_labels_voted (Tensor): Label of remaining bboxes
after voting, with shape (num_anchors,).
"""
candidate_mask = mlvl_nms_scores > score_thr
candidate_mask_nonzeros = candidate_mask.nonzero()
candidate_inds = candidate_mask_nonzeros[:, 0]
candidate_labels = candidate_mask_nonzeros[:, 1]
candidate_bboxes = mlvl_bboxes[candidate_inds]
candidate_scores = mlvl_nms_scores[candidate_mask]
det_bboxes_voted = []
det_labels_voted = []
for cls in range(self.cls_out_channels):
candidate_cls_mask = candidate_labels == cls
if not candidate_cls_mask.any():
continue
candidate_cls_scores = candidate_scores[candidate_cls_mask]
candidate_cls_bboxes = candidate_bboxes[candidate_cls_mask]
det_cls_mask = det_labels == cls
det_cls_bboxes = det_bboxes[det_cls_mask].view(
-1, det_bboxes.size(-1))
det_candidate_ious = bbox_overlaps(det_cls_bboxes[:, :4],
candidate_cls_bboxes)
for det_ind in range(len(det_cls_bboxes)):
single_det_ious = det_candidate_ious[det_ind]
pos_ious_mask = single_det_ious > 0.01
pos_ious = single_det_ious[pos_ious_mask]
pos_bboxes = candidate_cls_bboxes[pos_ious_mask]
pos_scores = candidate_cls_scores[pos_ious_mask]
pis = (torch.exp(-(1 - pos_ious)**2 / 0.025) *
pos_scores)[:, None]
voted_box = torch.sum(
pis * pos_bboxes, dim=0) / torch.sum(
pis, dim=0)
voted_score = det_cls_bboxes[det_ind][-1:][None, :]
det_bboxes_voted.append(
torch.cat((voted_box[None, :], voted_score), dim=1))
det_labels_voted.append(cls)
det_bboxes_voted = torch.cat(det_bboxes_voted, dim=0)
det_labels_voted = det_labels.new_tensor(det_labels_voted)
return det_bboxes_voted, det_labels_voted
|