File size: 29,706 Bytes
cdfecf8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
import numpy as np
import torch
from mmcv.runner import force_fp32

from mmdet.core import multi_apply, multiclass_nms
from mmdet.core.bbox.iou_calculators import bbox_overlaps
from mmdet.models import HEADS
from mmdet.models.dense_heads import ATSSHead

EPS = 1e-12
try:
    import sklearn.mixture as skm
except ImportError:
    skm = None


def levels_to_images(mlvl_tensor):
    """Concat multi-level feature maps by image.

    [feature_level0, feature_level1...] -> [feature_image0, feature_image1...]
    Convert the shape of each element in mlvl_tensor from (N, C, H, W) to
    (N, H*W , C), then split the element to N elements with shape (H*W, C), and
    concat elements in same image of all level along first dimension.

    Args:
        mlvl_tensor (list[torch.Tensor]): list of Tensor which collect from
            corresponding level. Each element is of shape (N, C, H, W)

    Returns:
        list[torch.Tensor]: A list that contains N tensors and each tensor is
            of shape (num_elements, C)
    """
    batch_size = mlvl_tensor[0].size(0)
    batch_list = [[] for _ in range(batch_size)]
    channels = mlvl_tensor[0].size(1)
    for t in mlvl_tensor:
        t = t.permute(0, 2, 3, 1)
        t = t.view(batch_size, -1, channels).contiguous()
        for img in range(batch_size):
            batch_list[img].append(t[img])
    return [torch.cat(item, 0) for item in batch_list]


@HEADS.register_module()
class PAAHead(ATSSHead):
    """Head of PAAAssignment: Probabilistic Anchor Assignment with IoU
    Prediction for Object Detection.

    Code is modified from the `official github repo
    <https://github.com/kkhoot/PAA/blob/master/paa_core
    /modeling/rpn/paa/loss.py>`_.

    More details can be found in the `paper
    <https://arxiv.org/abs/2007.08103>`_ .

    Args:
        topk (int): Select topk samples with smallest loss in
            each level.
        score_voting (bool): Whether to use score voting in post-process.
        covariance_type : String describing the type of covariance parameters
            to be used in :class:`sklearn.mixture.GaussianMixture`.
            It must be one of:

            - 'full': each component has its own general covariance matrix
            - 'tied': all components share the same general covariance matrix
            - 'diag': each component has its own diagonal covariance matrix
            - 'spherical': each component has its own single variance
            Default: 'diag'. From 'full' to 'spherical', the gmm fitting
            process is faster yet the performance could be influenced. For most
            cases, 'diag' should be a good choice.
    """

    def __init__(self,
                 *args,
                 topk=9,
                 score_voting=True,
                 covariance_type='diag',
                 **kwargs):
        # topk used in paa reassign process
        self.topk = topk
        self.with_score_voting = score_voting
        self.covariance_type = covariance_type
        super(PAAHead, self).__init__(*args, **kwargs)

    @force_fp32(apply_to=('cls_scores', 'bbox_preds', 'iou_preds'))
    def loss(self,
             cls_scores,
             bbox_preds,
             iou_preds,
             gt_bboxes,
             gt_labels,
             img_metas,
             gt_bboxes_ignore=None):
        """Compute losses of the head.

        Args:
            cls_scores (list[Tensor]): Box scores for each scale level
                Has shape (N, num_anchors * num_classes, H, W)
            bbox_preds (list[Tensor]): Box energies / deltas for each scale
                level with shape (N, num_anchors * 4, H, W)
            iou_preds (list[Tensor]): iou_preds for each scale
                level with shape (N, num_anchors * 1, H, W)
            gt_bboxes (list[Tensor]): Ground truth bboxes for each image with
                shape (num_gts, 4) in [tl_x, tl_y, br_x, br_y] format.
            gt_labels (list[Tensor]): class indices corresponding to each box
            img_metas (list[dict]): Meta information of each image, e.g.,
                image size, scaling factor, etc.
            gt_bboxes_ignore (list[Tensor] | None): Specify which bounding
                boxes can be ignored when are computing the loss.

        Returns:
            dict[str, Tensor]: A dictionary of loss gmm_assignment.
        """

        featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores]
        assert len(featmap_sizes) == self.anchor_generator.num_levels

        device = cls_scores[0].device
        anchor_list, valid_flag_list = self.get_anchors(
            featmap_sizes, img_metas, device=device)
        label_channels = self.cls_out_channels if self.use_sigmoid_cls else 1
        cls_reg_targets = self.get_targets(
            anchor_list,
            valid_flag_list,
            gt_bboxes,
            img_metas,
            gt_bboxes_ignore_list=gt_bboxes_ignore,
            gt_labels_list=gt_labels,
            label_channels=label_channels,
        )
        (labels, labels_weight, bboxes_target, bboxes_weight, pos_inds,
         pos_gt_index) = cls_reg_targets
        cls_scores = levels_to_images(cls_scores)
        cls_scores = [
            item.reshape(-1, self.cls_out_channels) for item in cls_scores
        ]
        bbox_preds = levels_to_images(bbox_preds)
        bbox_preds = [item.reshape(-1, 4) for item in bbox_preds]
        iou_preds = levels_to_images(iou_preds)
        iou_preds = [item.reshape(-1, 1) for item in iou_preds]
        pos_losses_list, = multi_apply(self.get_pos_loss, anchor_list,
                                       cls_scores, bbox_preds, labels,
                                       labels_weight, bboxes_target,
                                       bboxes_weight, pos_inds)

        with torch.no_grad():
            reassign_labels, reassign_label_weight, \
                reassign_bbox_weights, num_pos = multi_apply(
                    self.paa_reassign,
                    pos_losses_list,
                    labels,
                    labels_weight,
                    bboxes_weight,
                    pos_inds,
                    pos_gt_index,
                    anchor_list)
            num_pos = sum(num_pos)
        # convert all tensor list to a flatten tensor
        cls_scores = torch.cat(cls_scores, 0).view(-1, cls_scores[0].size(-1))
        bbox_preds = torch.cat(bbox_preds, 0).view(-1, bbox_preds[0].size(-1))
        iou_preds = torch.cat(iou_preds, 0).view(-1, iou_preds[0].size(-1))
        labels = torch.cat(reassign_labels, 0).view(-1)
        flatten_anchors = torch.cat(
            [torch.cat(item, 0) for item in anchor_list])
        labels_weight = torch.cat(reassign_label_weight, 0).view(-1)
        bboxes_target = torch.cat(bboxes_target,
                                  0).view(-1, bboxes_target[0].size(-1))

        pos_inds_flatten = ((labels >= 0)
                            &
                            (labels < self.num_classes)).nonzero().reshape(-1)

        losses_cls = self.loss_cls(
            cls_scores,
            labels,
            labels_weight,
            avg_factor=max(num_pos, len(img_metas)))  # avoid num_pos=0
        if num_pos:
            pos_bbox_pred = self.bbox_coder.decode(
                flatten_anchors[pos_inds_flatten],
                bbox_preds[pos_inds_flatten])
            pos_bbox_target = bboxes_target[pos_inds_flatten]
            iou_target = bbox_overlaps(
                pos_bbox_pred.detach(), pos_bbox_target, is_aligned=True)
            losses_iou = self.loss_centerness(
                iou_preds[pos_inds_flatten],
                iou_target.unsqueeze(-1),
                avg_factor=num_pos)
            losses_bbox = self.loss_bbox(
                pos_bbox_pred,
                pos_bbox_target,
                iou_target.clamp(min=EPS),
                avg_factor=iou_target.sum())
        else:
            losses_iou = iou_preds.sum() * 0
            losses_bbox = bbox_preds.sum() * 0

        return dict(
            loss_cls=losses_cls, loss_bbox=losses_bbox, loss_iou=losses_iou)

    def get_pos_loss(self, anchors, cls_score, bbox_pred, label, label_weight,
                     bbox_target, bbox_weight, pos_inds):
        """Calculate loss of all potential positive samples obtained from first
        match process.

        Args:
            anchors (list[Tensor]): Anchors of each scale.
            cls_score (Tensor): Box scores of single image with shape
                (num_anchors, num_classes)
            bbox_pred (Tensor): Box energies / deltas of single image
                with shape (num_anchors, 4)
            label (Tensor): classification target of each anchor with
                shape (num_anchors,)
            label_weight (Tensor): Classification loss weight of each
                anchor with shape (num_anchors).
            bbox_target (dict): Regression target of each anchor with
                shape (num_anchors, 4).
            bbox_weight (Tensor): Bbox weight of each anchor with shape
                (num_anchors, 4).
            pos_inds (Tensor): Index of all positive samples got from
                first assign process.

        Returns:
            Tensor: Losses of all positive samples in single image.
        """
        if not len(pos_inds):
            return cls_score.new([]),
        anchors_all_level = torch.cat(anchors, 0)
        pos_scores = cls_score[pos_inds]
        pos_bbox_pred = bbox_pred[pos_inds]
        pos_label = label[pos_inds]
        pos_label_weight = label_weight[pos_inds]
        pos_bbox_target = bbox_target[pos_inds]
        pos_bbox_weight = bbox_weight[pos_inds]
        pos_anchors = anchors_all_level[pos_inds]
        pos_bbox_pred = self.bbox_coder.decode(pos_anchors, pos_bbox_pred)

        # to keep loss dimension
        loss_cls = self.loss_cls(
            pos_scores,
            pos_label,
            pos_label_weight,
            avg_factor=self.loss_cls.loss_weight,
            reduction_override='none')

        loss_bbox = self.loss_bbox(
            pos_bbox_pred,
            pos_bbox_target,
            pos_bbox_weight,
            avg_factor=self.loss_cls.loss_weight,
            reduction_override='none')

        loss_cls = loss_cls.sum(-1)
        pos_loss = loss_bbox + loss_cls
        return pos_loss,

    def paa_reassign(self, pos_losses, label, label_weight, bbox_weight,
                     pos_inds, pos_gt_inds, anchors):
        """Fit loss to GMM distribution and separate positive, ignore, negative
        samples again with GMM model.

        Args:
            pos_losses (Tensor): Losses of all positive samples in
                single image.
            label (Tensor): classification target of each anchor with
                shape (num_anchors,)
            label_weight (Tensor): Classification loss weight of each
                anchor with shape (num_anchors).
            bbox_weight (Tensor): Bbox weight of each anchor with shape
                (num_anchors, 4).
            pos_inds (Tensor): Index of all positive samples got from
                first assign process.
            pos_gt_inds (Tensor): Gt_index of all positive samples got
                from first assign process.
            anchors (list[Tensor]): Anchors of each scale.

        Returns:
            tuple: Usually returns a tuple containing learning targets.

                - label (Tensor): classification target of each anchor after
                  paa assign, with shape (num_anchors,)
                - label_weight (Tensor): Classification loss weight of each
                  anchor after paa assign, with shape (num_anchors).
                - bbox_weight (Tensor): Bbox weight of each anchor with shape
                  (num_anchors, 4).
                - num_pos (int): The number of positive samples after paa
                  assign.
        """
        if not len(pos_inds):
            return label, label_weight, bbox_weight, 0
        label = label.clone()
        label_weight = label_weight.clone()
        bbox_weight = bbox_weight.clone()
        num_gt = pos_gt_inds.max() + 1
        num_level = len(anchors)
        num_anchors_each_level = [item.size(0) for item in anchors]
        num_anchors_each_level.insert(0, 0)
        inds_level_interval = np.cumsum(num_anchors_each_level)
        pos_level_mask = []
        for i in range(num_level):
            mask = (pos_inds >= inds_level_interval[i]) & (
                pos_inds < inds_level_interval[i + 1])
            pos_level_mask.append(mask)
        pos_inds_after_paa = [label.new_tensor([])]
        ignore_inds_after_paa = [label.new_tensor([])]
        for gt_ind in range(num_gt):
            pos_inds_gmm = []
            pos_loss_gmm = []
            gt_mask = pos_gt_inds == gt_ind
            for level in range(num_level):
                level_mask = pos_level_mask[level]
                level_gt_mask = level_mask & gt_mask
                value, topk_inds = pos_losses[level_gt_mask].topk(
                    min(level_gt_mask.sum(), self.topk), largest=False)
                pos_inds_gmm.append(pos_inds[level_gt_mask][topk_inds])
                pos_loss_gmm.append(value)
            pos_inds_gmm = torch.cat(pos_inds_gmm)
            pos_loss_gmm = torch.cat(pos_loss_gmm)
            # fix gmm need at least two sample
            if len(pos_inds_gmm) < 2:
                continue
            device = pos_inds_gmm.device
            pos_loss_gmm, sort_inds = pos_loss_gmm.sort()
            pos_inds_gmm = pos_inds_gmm[sort_inds]
            pos_loss_gmm = pos_loss_gmm.view(-1, 1).cpu().numpy()
            min_loss, max_loss = pos_loss_gmm.min(), pos_loss_gmm.max()
            means_init = np.array([min_loss, max_loss]).reshape(2, 1)
            weights_init = np.array([0.5, 0.5])
            precisions_init = np.array([1.0, 1.0]).reshape(2, 1, 1)  # full
            if self.covariance_type == 'spherical':
                precisions_init = precisions_init.reshape(2)
            elif self.covariance_type == 'diag':
                precisions_init = precisions_init.reshape(2, 1)
            elif self.covariance_type == 'tied':
                precisions_init = np.array([[1.0]])
            if skm is None:
                raise ImportError('Please run "pip install sklearn" '
                                  'to install sklearn first.')
            gmm = skm.GaussianMixture(
                2,
                weights_init=weights_init,
                means_init=means_init,
                precisions_init=precisions_init,
                covariance_type=self.covariance_type)
            gmm.fit(pos_loss_gmm)
            gmm_assignment = gmm.predict(pos_loss_gmm)
            scores = gmm.score_samples(pos_loss_gmm)
            gmm_assignment = torch.from_numpy(gmm_assignment).to(device)
            scores = torch.from_numpy(scores).to(device)

            pos_inds_temp, ignore_inds_temp = self.gmm_separation_scheme(
                gmm_assignment, scores, pos_inds_gmm)
            pos_inds_after_paa.append(pos_inds_temp)
            ignore_inds_after_paa.append(ignore_inds_temp)

        pos_inds_after_paa = torch.cat(pos_inds_after_paa)
        ignore_inds_after_paa = torch.cat(ignore_inds_after_paa)
        reassign_mask = (pos_inds.unsqueeze(1) != pos_inds_after_paa).all(1)
        reassign_ids = pos_inds[reassign_mask]
        label[reassign_ids] = self.num_classes
        label_weight[ignore_inds_after_paa] = 0
        bbox_weight[reassign_ids] = 0
        num_pos = len(pos_inds_after_paa)
        return label, label_weight, bbox_weight, num_pos

    def gmm_separation_scheme(self, gmm_assignment, scores, pos_inds_gmm):
        """A general separation scheme for gmm model.

        It separates a GMM distribution of candidate samples into three
        parts, 0 1 and uncertain areas, and you can implement other
        separation schemes by rewriting this function.

        Args:
            gmm_assignment (Tensor): The prediction of GMM which is of shape
                (num_samples,). The 0/1 value indicates the distribution
                that each sample comes from.
            scores (Tensor): The probability of sample coming from the
                fit GMM distribution. The tensor is of shape (num_samples,).
            pos_inds_gmm (Tensor): All the indexes of samples which are used
                to fit GMM model. The tensor is of shape (num_samples,)

        Returns:
            tuple[Tensor]: The indices of positive and ignored samples.

                - pos_inds_temp (Tensor): Indices of positive samples.
                - ignore_inds_temp (Tensor): Indices of ignore samples.
        """
        # The implementation is (c) in Fig.3 in origin paper instead of (b).
        # You can refer to issues such as
        # https://github.com/kkhoot/PAA/issues/8 and
        # https://github.com/kkhoot/PAA/issues/9.
        fgs = gmm_assignment == 0
        pos_inds_temp = fgs.new_tensor([], dtype=torch.long)
        ignore_inds_temp = fgs.new_tensor([], dtype=torch.long)
        if fgs.nonzero().numel():
            _, pos_thr_ind = scores[fgs].topk(1)
            pos_inds_temp = pos_inds_gmm[fgs][:pos_thr_ind + 1]
            ignore_inds_temp = pos_inds_gmm.new_tensor([])
        return pos_inds_temp, ignore_inds_temp

    def get_targets(
        self,
        anchor_list,
        valid_flag_list,
        gt_bboxes_list,
        img_metas,
        gt_bboxes_ignore_list=None,
        gt_labels_list=None,
        label_channels=1,
        unmap_outputs=True,
    ):
        """Get targets for PAA head.

        This method is almost the same as `AnchorHead.get_targets()`. We direct
        return the results from _get_targets_single instead map it to levels
        by images_to_levels function.

        Args:
            anchor_list (list[list[Tensor]]): Multi level anchors of each
                image. The outer list indicates images, and the inner list
                corresponds to feature levels of the image. Each element of
                the inner list is a tensor of shape (num_anchors, 4).
            valid_flag_list (list[list[Tensor]]): Multi level valid flags of
                each image. The outer list indicates images, and the inner list
                corresponds to feature levels of the image. Each element of
                the inner list is a tensor of shape (num_anchors, )
            gt_bboxes_list (list[Tensor]): Ground truth bboxes of each image.
            img_metas (list[dict]): Meta info of each image.
            gt_bboxes_ignore_list (list[Tensor]): Ground truth bboxes to be
                ignored.
            gt_labels_list (list[Tensor]): Ground truth labels of each box.
            label_channels (int): Channel of label.
            unmap_outputs (bool): Whether to map outputs back to the original
                set of anchors.

        Returns:
            tuple: Usually returns a tuple containing learning targets.

                - labels (list[Tensor]): Labels of all anchors, each with
                    shape (num_anchors,).
                - label_weights (list[Tensor]): Label weights of all anchor.
                    each with shape (num_anchors,).
                - bbox_targets (list[Tensor]): BBox targets of all anchors.
                    each with shape (num_anchors, 4).
                - bbox_weights (list[Tensor]): BBox weights of all anchors.
                    each with shape (num_anchors, 4).
                - pos_inds (list[Tensor]): Contains all index of positive
                    sample in all anchor.
                - gt_inds (list[Tensor]): Contains all gt_index of positive
                    sample in all anchor.
        """

        num_imgs = len(img_metas)
        assert len(anchor_list) == len(valid_flag_list) == num_imgs
        concat_anchor_list = []
        concat_valid_flag_list = []
        for i in range(num_imgs):
            assert len(anchor_list[i]) == len(valid_flag_list[i])
            concat_anchor_list.append(torch.cat(anchor_list[i]))
            concat_valid_flag_list.append(torch.cat(valid_flag_list[i]))

        # compute targets for each image
        if gt_bboxes_ignore_list is None:
            gt_bboxes_ignore_list = [None for _ in range(num_imgs)]
        if gt_labels_list is None:
            gt_labels_list = [None for _ in range(num_imgs)]
        results = multi_apply(
            self._get_targets_single,
            concat_anchor_list,
            concat_valid_flag_list,
            gt_bboxes_list,
            gt_bboxes_ignore_list,
            gt_labels_list,
            img_metas,
            label_channels=label_channels,
            unmap_outputs=unmap_outputs)

        (labels, label_weights, bbox_targets, bbox_weights, valid_pos_inds,
         valid_neg_inds, sampling_result) = results

        # Due to valid flag of anchors, we have to calculate the real pos_inds
        # in origin anchor set.
        pos_inds = []
        for i, single_labels in enumerate(labels):
            pos_mask = (0 <= single_labels) & (
                single_labels < self.num_classes)
            pos_inds.append(pos_mask.nonzero().view(-1))

        gt_inds = [item.pos_assigned_gt_inds for item in sampling_result]
        return (labels, label_weights, bbox_targets, bbox_weights, pos_inds,
                gt_inds)

    def _get_targets_single(self,
                            flat_anchors,
                            valid_flags,
                            gt_bboxes,
                            gt_bboxes_ignore,
                            gt_labels,
                            img_meta,
                            label_channels=1,
                            unmap_outputs=True):
        """Compute regression and classification targets for anchors in a
        single image.

        This method is same as `AnchorHead._get_targets_single()`.
        """
        assert unmap_outputs, 'We must map outputs back to the original' \
            'set of anchors in PAAhead'
        return super(ATSSHead, self)._get_targets_single(
            flat_anchors,
            valid_flags,
            gt_bboxes,
            gt_bboxes_ignore,
            gt_labels,
            img_meta,
            label_channels=1,
            unmap_outputs=True)

    def _get_bboxes(self,
                    cls_scores,
                    bbox_preds,
                    iou_preds,
                    mlvl_anchors,
                    img_shapes,
                    scale_factors,
                    cfg,
                    rescale=False,
                    with_nms=True):
        """Transform outputs for a single batch item into labeled boxes.

        This method is almost same as `ATSSHead._get_bboxes()`.
        We use sqrt(iou_preds * cls_scores) in NMS process instead of just
        cls_scores. Besides, score voting is used when `` score_voting``
        is set to True.
        """
        assert with_nms, 'PAA only supports "with_nms=True" now'
        assert len(cls_scores) == len(bbox_preds) == len(mlvl_anchors)
        batch_size = cls_scores[0].shape[0]

        mlvl_bboxes = []
        mlvl_scores = []
        mlvl_iou_preds = []
        for cls_score, bbox_pred, iou_preds, anchors in zip(
                cls_scores, bbox_preds, iou_preds, mlvl_anchors):
            assert cls_score.size()[-2:] == bbox_pred.size()[-2:]

            scores = cls_score.permute(0, 2, 3, 1).reshape(
                batch_size, -1, self.cls_out_channels).sigmoid()
            bbox_pred = bbox_pred.permute(0, 2, 3,
                                          1).reshape(batch_size, -1, 4)
            iou_preds = iou_preds.permute(0, 2, 3, 1).reshape(batch_size,
                                                              -1).sigmoid()

            nms_pre = cfg.get('nms_pre', -1)
            if nms_pre > 0 and scores.shape[1] > nms_pre:
                max_scores, _ = (scores * iou_preds[..., None]).sqrt().max(-1)
                _, topk_inds = max_scores.topk(nms_pre)
                batch_inds = torch.arange(batch_size).view(
                    -1, 1).expand_as(topk_inds).long()
                anchors = anchors[topk_inds, :]
                bbox_pred = bbox_pred[batch_inds, topk_inds, :]
                scores = scores[batch_inds, topk_inds, :]
                iou_preds = iou_preds[batch_inds, topk_inds]
            else:
                anchors = anchors.expand_as(bbox_pred)

            bboxes = self.bbox_coder.decode(
                anchors, bbox_pred, max_shape=img_shapes)
            mlvl_bboxes.append(bboxes)
            mlvl_scores.append(scores)
            mlvl_iou_preds.append(iou_preds)

        batch_mlvl_bboxes = torch.cat(mlvl_bboxes, dim=1)
        if rescale:
            batch_mlvl_bboxes /= batch_mlvl_bboxes.new_tensor(
                scale_factors).unsqueeze(1)
        batch_mlvl_scores = torch.cat(mlvl_scores, dim=1)
        # Add a dummy background class to the backend when using sigmoid
        # remind that we set FG labels to [0, num_class-1] since mmdet v2.0
        # BG cat_id: num_class
        padding = batch_mlvl_scores.new_zeros(batch_size,
                                              batch_mlvl_scores.shape[1], 1)
        batch_mlvl_scores = torch.cat([batch_mlvl_scores, padding], dim=-1)
        batch_mlvl_iou_preds = torch.cat(mlvl_iou_preds, dim=1)
        batch_mlvl_nms_scores = (batch_mlvl_scores *
                                 batch_mlvl_iou_preds[..., None]).sqrt()

        det_results = []
        for (mlvl_bboxes, mlvl_scores) in zip(batch_mlvl_bboxes,
                                              batch_mlvl_nms_scores):
            det_bbox, det_label = multiclass_nms(
                mlvl_bboxes,
                mlvl_scores,
                cfg.score_thr,
                cfg.nms,
                cfg.max_per_img,
                score_factors=None)
            if self.with_score_voting and len(det_bbox) > 0:
                det_bbox, det_label = self.score_voting(
                    det_bbox, det_label, mlvl_bboxes, mlvl_scores,
                    cfg.score_thr)
            det_results.append(tuple([det_bbox, det_label]))

        return det_results

    def score_voting(self, det_bboxes, det_labels, mlvl_bboxes,
                     mlvl_nms_scores, score_thr):
        """Implementation of score voting method works on each remaining boxes
        after NMS procedure.

        Args:
            det_bboxes (Tensor): Remaining boxes after NMS procedure,
                with shape (k, 5), each dimension means
                (x1, y1, x2, y2, score).
            det_labels (Tensor): The label of remaining boxes, with shape
                (k, 1),Labels are 0-based.
            mlvl_bboxes (Tensor): All boxes before the NMS procedure,
                with shape (num_anchors,4).
            mlvl_nms_scores (Tensor): The scores of all boxes which is used
                in the NMS procedure, with shape (num_anchors, num_class)
            mlvl_iou_preds (Tensor): The predictions of IOU of all boxes
                before the NMS procedure, with shape (num_anchors, 1)
            score_thr (float): The score threshold of bboxes.

        Returns:
            tuple: Usually returns a tuple containing voting results.

                - det_bboxes_voted (Tensor): Remaining boxes after
                    score voting procedure, with shape (k, 5), each
                    dimension means (x1, y1, x2, y2, score).
                - det_labels_voted (Tensor): Label of remaining bboxes
                    after voting, with shape (num_anchors,).
        """
        candidate_mask = mlvl_nms_scores > score_thr
        candidate_mask_nonzeros = candidate_mask.nonzero()
        candidate_inds = candidate_mask_nonzeros[:, 0]
        candidate_labels = candidate_mask_nonzeros[:, 1]
        candidate_bboxes = mlvl_bboxes[candidate_inds]
        candidate_scores = mlvl_nms_scores[candidate_mask]
        det_bboxes_voted = []
        det_labels_voted = []
        for cls in range(self.cls_out_channels):
            candidate_cls_mask = candidate_labels == cls
            if not candidate_cls_mask.any():
                continue
            candidate_cls_scores = candidate_scores[candidate_cls_mask]
            candidate_cls_bboxes = candidate_bboxes[candidate_cls_mask]
            det_cls_mask = det_labels == cls
            det_cls_bboxes = det_bboxes[det_cls_mask].view(
                -1, det_bboxes.size(-1))
            det_candidate_ious = bbox_overlaps(det_cls_bboxes[:, :4],
                                               candidate_cls_bboxes)
            for det_ind in range(len(det_cls_bboxes)):
                single_det_ious = det_candidate_ious[det_ind]
                pos_ious_mask = single_det_ious > 0.01
                pos_ious = single_det_ious[pos_ious_mask]
                pos_bboxes = candidate_cls_bboxes[pos_ious_mask]
                pos_scores = candidate_cls_scores[pos_ious_mask]
                pis = (torch.exp(-(1 - pos_ious)**2 / 0.025) *
                       pos_scores)[:, None]
                voted_box = torch.sum(
                    pis * pos_bboxes, dim=0) / torch.sum(
                        pis, dim=0)
                voted_score = det_cls_bboxes[det_ind][-1:][None, :]
                det_bboxes_voted.append(
                    torch.cat((voted_box[None, :], voted_score), dim=1))
                det_labels_voted.append(cls)

        det_bboxes_voted = torch.cat(det_bboxes_voted, dim=0)
        det_labels_voted = det_labels.new_tensor(det_labels_voted)
        return det_bboxes_voted, det_labels_voted