SakuraD's picture
update
cdfecf8
# Modified from https://github.com/facebookresearch/detectron2/blob/master/detectron2/data/datasets/cityscapes.py # noqa
# and https://github.com/mcordts/cityscapesScripts/blob/master/cityscapesscripts/evaluation/evalInstanceLevelSemanticLabeling.py # noqa
import glob
import os
import os.path as osp
import tempfile
from collections import OrderedDict
import mmcv
import numpy as np
import pycocotools.mask as maskUtils
from mmcv.utils import print_log
from .builder import DATASETS
from .coco import CocoDataset
@DATASETS.register_module()
class CityscapesDataset(CocoDataset):
CLASSES = ('person', 'rider', 'car', 'truck', 'bus', 'train', 'motorcycle',
'bicycle')
def _filter_imgs(self, min_size=32):
"""Filter images too small or without ground truths."""
valid_inds = []
# obtain images that contain annotation
ids_with_ann = set(_['image_id'] for _ in self.coco.anns.values())
# obtain images that contain annotations of the required categories
ids_in_cat = set()
for i, class_id in enumerate(self.cat_ids):
ids_in_cat |= set(self.coco.cat_img_map[class_id])
# merge the image id sets of the two conditions and use the merged set
# to filter out images if self.filter_empty_gt=True
ids_in_cat &= ids_with_ann
valid_img_ids = []
for i, img_info in enumerate(self.data_infos):
img_id = img_info['id']
ann_ids = self.coco.getAnnIds(imgIds=[img_id])
ann_info = self.coco.loadAnns(ann_ids)
all_iscrowd = all([_['iscrowd'] for _ in ann_info])
if self.filter_empty_gt and (self.img_ids[i] not in ids_in_cat
or all_iscrowd):
continue
if min(img_info['width'], img_info['height']) >= min_size:
valid_inds.append(i)
valid_img_ids.append(img_id)
self.img_ids = valid_img_ids
return valid_inds
def _parse_ann_info(self, img_info, ann_info):
"""Parse bbox and mask annotation.
Args:
img_info (dict): Image info of an image.
ann_info (list[dict]): Annotation info of an image.
Returns:
dict: A dict containing the following keys: bboxes, \
bboxes_ignore, labels, masks, seg_map. \
"masks" are already decoded into binary masks.
"""
gt_bboxes = []
gt_labels = []
gt_bboxes_ignore = []
gt_masks_ann = []
for i, ann in enumerate(ann_info):
if ann.get('ignore', False):
continue
x1, y1, w, h = ann['bbox']
if ann['area'] <= 0 or w < 1 or h < 1:
continue
if ann['category_id'] not in self.cat_ids:
continue
bbox = [x1, y1, x1 + w, y1 + h]
if ann.get('iscrowd', False):
gt_bboxes_ignore.append(bbox)
else:
gt_bboxes.append(bbox)
gt_labels.append(self.cat2label[ann['category_id']])
gt_masks_ann.append(ann['segmentation'])
if gt_bboxes:
gt_bboxes = np.array(gt_bboxes, dtype=np.float32)
gt_labels = np.array(gt_labels, dtype=np.int64)
else:
gt_bboxes = np.zeros((0, 4), dtype=np.float32)
gt_labels = np.array([], dtype=np.int64)
if gt_bboxes_ignore:
gt_bboxes_ignore = np.array(gt_bboxes_ignore, dtype=np.float32)
else:
gt_bboxes_ignore = np.zeros((0, 4), dtype=np.float32)
ann = dict(
bboxes=gt_bboxes,
labels=gt_labels,
bboxes_ignore=gt_bboxes_ignore,
masks=gt_masks_ann,
seg_map=img_info['segm_file'])
return ann
def results2txt(self, results, outfile_prefix):
"""Dump the detection results to a txt file.
Args:
results (list[list | tuple]): Testing results of the
dataset.
outfile_prefix (str): The filename prefix of the json files.
If the prefix is "somepath/xxx",
the txt files will be named "somepath/xxx.txt".
Returns:
list[str]: Result txt files which contains corresponding \
instance segmentation images.
"""
try:
import cityscapesscripts.helpers.labels as CSLabels
except ImportError:
raise ImportError('Please run "pip install citscapesscripts" to '
'install cityscapesscripts first.')
result_files = []
os.makedirs(outfile_prefix, exist_ok=True)
prog_bar = mmcv.ProgressBar(len(self))
for idx in range(len(self)):
result = results[idx]
filename = self.data_infos[idx]['filename']
basename = osp.splitext(osp.basename(filename))[0]
pred_txt = osp.join(outfile_prefix, basename + '_pred.txt')
bbox_result, segm_result = result
bboxes = np.vstack(bbox_result)
# segm results
if isinstance(segm_result, tuple):
# Some detectors use different scores for bbox and mask,
# like Mask Scoring R-CNN. Score of segm will be used instead
# of bbox score.
segms = mmcv.concat_list(segm_result[0])
mask_score = segm_result[1]
else:
# use bbox score for mask score
segms = mmcv.concat_list(segm_result)
mask_score = [bbox[-1] for bbox in bboxes]
labels = [
np.full(bbox.shape[0], i, dtype=np.int32)
for i, bbox in enumerate(bbox_result)
]
labels = np.concatenate(labels)
assert len(bboxes) == len(segms) == len(labels)
num_instances = len(bboxes)
prog_bar.update()
with open(pred_txt, 'w') as fout:
for i in range(num_instances):
pred_class = labels[i]
classes = self.CLASSES[pred_class]
class_id = CSLabels.name2label[classes].id
score = mask_score[i]
mask = maskUtils.decode(segms[i]).astype(np.uint8)
png_filename = osp.join(outfile_prefix,
basename + f'_{i}_{classes}.png')
mmcv.imwrite(mask, png_filename)
fout.write(f'{osp.basename(png_filename)} {class_id} '
f'{score}\n')
result_files.append(pred_txt)
return result_files
def format_results(self, results, txtfile_prefix=None):
"""Format the results to txt (standard format for Cityscapes
evaluation).
Args:
results (list): Testing results of the dataset.
txtfile_prefix (str | None): The prefix of txt files. It includes
the file path and the prefix of filename, e.g., "a/b/prefix".
If not specified, a temp file will be created. Default: None.
Returns:
tuple: (result_files, tmp_dir), result_files is a dict containing \
the json filepaths, tmp_dir is the temporal directory created \
for saving txt/png files when txtfile_prefix is not specified.
"""
assert isinstance(results, list), 'results must be a list'
assert len(results) == len(self), (
'The length of results is not equal to the dataset len: {} != {}'.
format(len(results), len(self)))
assert isinstance(results, list), 'results must be a list'
assert len(results) == len(self), (
'The length of results is not equal to the dataset len: {} != {}'.
format(len(results), len(self)))
if txtfile_prefix is None:
tmp_dir = tempfile.TemporaryDirectory()
txtfile_prefix = osp.join(tmp_dir.name, 'results')
else:
tmp_dir = None
result_files = self.results2txt(results, txtfile_prefix)
return result_files, tmp_dir
def evaluate(self,
results,
metric='bbox',
logger=None,
outfile_prefix=None,
classwise=False,
proposal_nums=(100, 300, 1000),
iou_thrs=np.arange(0.5, 0.96, 0.05)):
"""Evaluation in Cityscapes/COCO protocol.
Args:
results (list[list | tuple]): Testing results of the dataset.
metric (str | list[str]): Metrics to be evaluated. Options are
'bbox', 'segm', 'proposal', 'proposal_fast'.
logger (logging.Logger | str | None): Logger used for printing
related information during evaluation. Default: None.
outfile_prefix (str | None): The prefix of output file. It includes
the file path and the prefix of filename, e.g., "a/b/prefix".
If results are evaluated with COCO protocol, it would be the
prefix of output json file. For example, the metric is 'bbox'
and 'segm', then json files would be "a/b/prefix.bbox.json" and
"a/b/prefix.segm.json".
If results are evaluated with cityscapes protocol, it would be
the prefix of output txt/png files. The output files would be
png images under folder "a/b/prefix/xxx/" and the file name of
images would be written into a txt file
"a/b/prefix/xxx_pred.txt", where "xxx" is the video name of
cityscapes. If not specified, a temp file will be created.
Default: None.
classwise (bool): Whether to evaluating the AP for each class.
proposal_nums (Sequence[int]): Proposal number used for evaluating
recalls, such as recall@100, recall@1000.
Default: (100, 300, 1000).
iou_thrs (Sequence[float]): IoU threshold used for evaluating
recalls. If set to a list, the average recall of all IoUs will
also be computed. Default: 0.5.
Returns:
dict[str, float]: COCO style evaluation metric or cityscapes mAP \
and AP@50.
"""
eval_results = dict()
metrics = metric.copy() if isinstance(metric, list) else [metric]
if 'cityscapes' in metrics:
eval_results.update(
self._evaluate_cityscapes(results, outfile_prefix, logger))
metrics.remove('cityscapes')
# left metrics are all coco metric
if len(metrics) > 0:
# create CocoDataset with CityscapesDataset annotation
self_coco = CocoDataset(self.ann_file, self.pipeline.transforms,
None, self.data_root, self.img_prefix,
self.seg_prefix, self.proposal_file,
self.test_mode, self.filter_empty_gt)
# TODO: remove this in the future
# reload annotations of correct class
self_coco.CLASSES = self.CLASSES
self_coco.data_infos = self_coco.load_annotations(self.ann_file)
eval_results.update(
self_coco.evaluate(results, metrics, logger, outfile_prefix,
classwise, proposal_nums, iou_thrs))
return eval_results
def _evaluate_cityscapes(self, results, txtfile_prefix, logger):
"""Evaluation in Cityscapes protocol.
Args:
results (list): Testing results of the dataset.
txtfile_prefix (str | None): The prefix of output txt file
logger (logging.Logger | str | None): Logger used for printing
related information during evaluation. Default: None.
Returns:
dict[str: float]: Cityscapes evaluation results, contains 'mAP' \
and 'AP@50'.
"""
try:
import cityscapesscripts.evaluation.evalInstanceLevelSemanticLabeling as CSEval # noqa
except ImportError:
raise ImportError('Please run "pip install citscapesscripts" to '
'install cityscapesscripts first.')
msg = 'Evaluating in Cityscapes style'
if logger is None:
msg = '\n' + msg
print_log(msg, logger=logger)
result_files, tmp_dir = self.format_results(results, txtfile_prefix)
if tmp_dir is None:
result_dir = osp.join(txtfile_prefix, 'results')
else:
result_dir = osp.join(tmp_dir.name, 'results')
eval_results = OrderedDict()
print_log(f'Evaluating results under {result_dir} ...', logger=logger)
# set global states in cityscapes evaluation API
CSEval.args.cityscapesPath = os.path.join(self.img_prefix, '../..')
CSEval.args.predictionPath = os.path.abspath(result_dir)
CSEval.args.predictionWalk = None
CSEval.args.JSONOutput = False
CSEval.args.colorized = False
CSEval.args.gtInstancesFile = os.path.join(result_dir,
'gtInstances.json')
CSEval.args.groundTruthSearch = os.path.join(
self.img_prefix.replace('leftImg8bit', 'gtFine'),
'*/*_gtFine_instanceIds.png')
groundTruthImgList = glob.glob(CSEval.args.groundTruthSearch)
assert len(groundTruthImgList), 'Cannot find ground truth images' \
f' in {CSEval.args.groundTruthSearch}.'
predictionImgList = []
for gt in groundTruthImgList:
predictionImgList.append(CSEval.getPrediction(gt, CSEval.args))
CSEval_results = CSEval.evaluateImgLists(predictionImgList,
groundTruthImgList,
CSEval.args)['averages']
eval_results['mAP'] = CSEval_results['allAp']
eval_results['AP@50'] = CSEval_results['allAp50%']
if tmp_dir is not None:
tmp_dir.cleanup()
return eval_results