Upload run_inference.py
Browse files- run_inference.py +181 -0
run_inference.py
ADDED
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import imageio
|
3 |
+
from PIL import Image
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.nn.functional as F
|
7 |
+
|
8 |
+
from diffusers import IFSuperResolutionPipeline, VideoToVideoSDPipeline
|
9 |
+
from diffusers.utils.torch_utils import randn_tensor
|
10 |
+
|
11 |
+
from showone.pipelines import TextToVideoIFPipeline, TextToVideoIFInterpPipeline, TextToVideoIFSuperResolutionPipeline
|
12 |
+
from showone.pipelines.pipeline_t2v_base_pixel import tensor2vid
|
13 |
+
from showone.pipelines.pipeline_t2v_sr_pixel_cond import TextToVideoIFSuperResolutionPipeline_Cond
|
14 |
+
|
15 |
+
|
16 |
+
# Base Model
|
17 |
+
# When using "showlab/show-1-base-0.0", it's advisable to increase the number of inference steps (e.g., 100)
|
18 |
+
# and opt for a larger guidance scale (e.g., 12.0) to enhance visual quality.
|
19 |
+
pretrained_model_path = "showlab/show-1-base"
|
20 |
+
pipe_base = TextToVideoIFPipeline.from_pretrained(
|
21 |
+
pretrained_model_path,
|
22 |
+
torch_dtype=torch.float16,
|
23 |
+
variant="fp16"
|
24 |
+
)
|
25 |
+
pipe_base.enable_model_cpu_offload()
|
26 |
+
|
27 |
+
# Interpolation Model
|
28 |
+
pretrained_model_path = "showlab/show-1-interpolation"
|
29 |
+
pipe_interp_1 = TextToVideoIFInterpPipeline.from_pretrained(
|
30 |
+
pretrained_model_path,
|
31 |
+
torch_dtype=torch.float16,
|
32 |
+
variant="fp16"
|
33 |
+
)
|
34 |
+
pipe_interp_1.enable_model_cpu_offload()
|
35 |
+
|
36 |
+
# Super-Resolution Model 1
|
37 |
+
# Image super-resolution model from DeepFloyd https://huggingface.co/DeepFloyd/IF-II-L-v1.0
|
38 |
+
pretrained_model_path = "DeepFloyd/IF-II-L-v1.0"
|
39 |
+
pipe_sr_1_image = IFSuperResolutionPipeline.from_pretrained(
|
40 |
+
pretrained_model_path,
|
41 |
+
text_encoder=None,
|
42 |
+
torch_dtype=torch.float16,
|
43 |
+
variant="fp16"
|
44 |
+
)
|
45 |
+
pipe_sr_1_image.enable_model_cpu_offload()
|
46 |
+
|
47 |
+
pretrained_model_path = "showlab/show-1-sr1"
|
48 |
+
pipe_sr_1_cond = TextToVideoIFSuperResolutionPipeline_Cond.from_pretrained(
|
49 |
+
pretrained_model_path,
|
50 |
+
torch_dtype=torch.float16
|
51 |
+
)
|
52 |
+
pipe_sr_1_cond.enable_model_cpu_offload()
|
53 |
+
|
54 |
+
# Super-Resolution Model 2
|
55 |
+
pretrained_model_path = "showlab/show-1-sr2"
|
56 |
+
pipe_sr_2 = VideoToVideoSDPipeline.from_pretrained(
|
57 |
+
pretrained_model_path,
|
58 |
+
torch_dtype=torch.float16
|
59 |
+
)
|
60 |
+
pipe_sr_2.enable_model_cpu_offload()
|
61 |
+
pipe_sr_2.enable_vae_slicing()
|
62 |
+
|
63 |
+
|
64 |
+
# Inference
|
65 |
+
prompt = "A burning lamborghini driving on rainbow."
|
66 |
+
output_dir = "./outputs/example"
|
67 |
+
negative_prompt = "low resolution, blur"
|
68 |
+
|
69 |
+
seed = 345
|
70 |
+
os.makedirs(output_dir, exist_ok=True)
|
71 |
+
|
72 |
+
# Text embeds
|
73 |
+
prompt_embeds, negative_embeds = pipe_base.encode_prompt(prompt)
|
74 |
+
|
75 |
+
# Keyframes generation (8x64x40, 2fps)
|
76 |
+
video_frames = pipe_base(
|
77 |
+
prompt_embeds=prompt_embeds,
|
78 |
+
negative_prompt_embeds=negative_embeds,
|
79 |
+
num_frames=8,
|
80 |
+
height=40,
|
81 |
+
width=64,
|
82 |
+
num_inference_steps=75,
|
83 |
+
guidance_scale=9.0,
|
84 |
+
generator=torch.manual_seed(seed),
|
85 |
+
output_type="pt"
|
86 |
+
).frames
|
87 |
+
|
88 |
+
imageio.mimsave(f"{output_dir}/{prompt}_base.gif", tensor2vid(video_frames.clone()), fps=2)
|
89 |
+
|
90 |
+
# Frame interpolation (8x64x40, 2fps -> 29x64x40, 7.5fps)
|
91 |
+
bsz, channel, num_frames, height, width = video_frames.shape
|
92 |
+
new_num_frames = 3 * (num_frames - 1) + num_frames
|
93 |
+
new_video_frames = torch.zeros((bsz, channel, new_num_frames, height, width),
|
94 |
+
dtype=video_frames.dtype, device=video_frames.device)
|
95 |
+
new_video_frames[:, :, torch.arange(0, new_num_frames, 4), ...] = video_frames
|
96 |
+
init_noise = randn_tensor((bsz, channel, 5, height, width), dtype=video_frames.dtype,
|
97 |
+
device=video_frames.device, generator=torch.manual_seed(seed))
|
98 |
+
|
99 |
+
for i in range(num_frames - 1):
|
100 |
+
batch_i = torch.zeros((bsz, channel, 5, height, width), dtype=video_frames.dtype, device=video_frames.device)
|
101 |
+
batch_i[:, :, 0, ...] = video_frames[:, :, i, ...]
|
102 |
+
batch_i[:, :, -1, ...] = video_frames[:, :, i + 1, ...]
|
103 |
+
batch_i = pipe_interp_1(
|
104 |
+
pixel_values=batch_i,
|
105 |
+
prompt_embeds=prompt_embeds,
|
106 |
+
negative_prompt_embeds=negative_embeds,
|
107 |
+
num_frames=batch_i.shape[2],
|
108 |
+
height=40,
|
109 |
+
width=64,
|
110 |
+
num_inference_steps=75,
|
111 |
+
guidance_scale=4.0,
|
112 |
+
generator=torch.manual_seed(seed),
|
113 |
+
output_type="pt",
|
114 |
+
init_noise=init_noise,
|
115 |
+
cond_interpolation=True,
|
116 |
+
).frames
|
117 |
+
|
118 |
+
new_video_frames[:, :, i * 4:i * 4 + 5, ...] = batch_i
|
119 |
+
|
120 |
+
video_frames = new_video_frames
|
121 |
+
imageio.mimsave(f"{output_dir}/{prompt}_interp.gif", tensor2vid(video_frames.clone()), fps=8)
|
122 |
+
|
123 |
+
# Super-resolution 1 (29x64x40 -> 29x256x160)
|
124 |
+
bsz, channel, num_frames, height, width = video_frames.shape
|
125 |
+
window_size, stride = 8, 7
|
126 |
+
new_video_frames = torch.zeros(
|
127 |
+
(bsz, channel, num_frames, height * 4, width * 4),
|
128 |
+
dtype=video_frames.dtype,
|
129 |
+
device=video_frames.device)
|
130 |
+
for i in range(0, num_frames - window_size + 1, stride):
|
131 |
+
batch_i = video_frames[:, :, i:i + window_size, ...]
|
132 |
+
all_frame_cond = None
|
133 |
+
|
134 |
+
if i == 0:
|
135 |
+
first_frame_cond = pipe_sr_1_image(
|
136 |
+
image=video_frames[:, :, 0, ...],
|
137 |
+
prompt_embeds=prompt_embeds,
|
138 |
+
negative_prompt_embeds=negative_embeds,
|
139 |
+
height=height * 4,
|
140 |
+
width=width * 4,
|
141 |
+
num_inference_steps=70,
|
142 |
+
guidance_scale=4.0,
|
143 |
+
noise_level=150,
|
144 |
+
generator=torch.manual_seed(seed),
|
145 |
+
output_type="pt"
|
146 |
+
).images
|
147 |
+
first_frame_cond = first_frame_cond.unsqueeze(2)
|
148 |
+
else:
|
149 |
+
first_frame_cond = new_video_frames[:, :, i:i + 1, ...]
|
150 |
+
|
151 |
+
batch_i = pipe_sr_1_cond(
|
152 |
+
image=batch_i,
|
153 |
+
prompt_embeds=prompt_embeds,
|
154 |
+
negative_prompt_embeds=negative_embeds,
|
155 |
+
first_frame_cond=first_frame_cond,
|
156 |
+
height=height * 4,
|
157 |
+
width=width * 4,
|
158 |
+
num_inference_steps=125,
|
159 |
+
guidance_scale=7.0,
|
160 |
+
noise_level=250,
|
161 |
+
generator=torch.manual_seed(seed),
|
162 |
+
output_type="pt"
|
163 |
+
).frames
|
164 |
+
new_video_frames[:, :, i:i + window_size, ...] = batch_i
|
165 |
+
|
166 |
+
video_frames = new_video_frames
|
167 |
+
imageio.mimsave(f"{output_dir}/{prompt}_sr1.gif", tensor2vid(video_frames.clone()), fps=8)
|
168 |
+
|
169 |
+
# Super-resolution 2 (29x256x160 -> 29x576x320)
|
170 |
+
video_frames = [Image.fromarray(frame).resize((576, 320)) for frame in tensor2vid(video_frames.clone())]
|
171 |
+
video_frames = pipe_sr_2(
|
172 |
+
prompt,
|
173 |
+
negative_prompt=negative_prompt,
|
174 |
+
video=video_frames,
|
175 |
+
strength=0.8,
|
176 |
+
num_inference_steps=50,
|
177 |
+
generator=torch.manual_seed(seed),
|
178 |
+
output_type="pt"
|
179 |
+
).frames
|
180 |
+
|
181 |
+
imageio.mimsave(f"{output_dir}/{prompt}.gif", tensor2vid(video_frames.clone()), fps=8)
|