bias-test-gpt-pairs / bloomberg_vis.py
RKocielnik's picture
Duplicate from RKocielnik/bias-test-gpt-pairs
4ea53b9
raw
history blame
4.43 kB
# def bloombergViz(val, numblocks=10, flip=False):
# percent = round(val * 100)
# percentStr = f"{percent}"
# filled = "<div style='height:20px;width:20px;background-color:#065b41;display:inline-block'></div> "
# unfilled = "<div style='height:20px;width:20px;background-color:#35d4ac;display:inline-block'></div> "
# numFilled = round((percent/100) * numblocks)
# numUnFilled = numblocks - numFilled
# if flip:
# return numFilled * unfilled + numUnFilled * filled;
# return numFilled * filled + numUnFilled * unfilled
# def att_bloombergViz(att, val, numblocks, flip=False):
# viz = bloombergViz(val, numblocks, flip)
# attHTML = f"<div style='border-style:solid;border-color:#999;border-radius:12px'>{att}: {round(val*100)}%<br>{viz}</div><br>"
# return attHTML
def bloombergViz(att, val, numblocks, score_templates_df, onRight=False, flip=False):
# percent = round(val * 100)
# percentStr = f"{percent}"
# filled = "<div style='height:20px;width:20px;background-color:#555;display:inline-block'><span class='tooltiptext' style='color:#FFF'>{}</span></div> "
# unfilled = "<div style='height:20px;width:20px;background-color:#999;display:inline-block'><span class='tooltiptext' style='color:#FFF'>{}</span></div> "
# numFilled = round((percent/100) * numblocks)
# numUnFilled = numblocks - numFilled
leftColor = "#065b41" #"#555"
rightColor = "#35d4ac" #"#999"
if flip:
leftColor = "#35d4ac" #"#999"
rightColor = "#065b41" #"#555"
res = ""
spanClass = "tooltiptext_left"
if onRight:
spanClass = "tooltiptext_right"
dfy = score_templates_df.loc[(score_templates_df['att_term'] == att) & (score_templates_df['stereotyped_b'] == 'yes')]
dfn = score_templates_df.loc[(score_templates_df['att_term'] == att) & (score_templates_df['stereotyped_b'] == 'no')]
#print("dfy", dfy)
#print("dfn", dfn)
for i in range(len(dfy.index)):
#print("--GROUP IN BLOOMBERG--")
groups = dfy.iloc[i, dfy.columns.get_loc("groups_rel")].split("/")
gr_disp = groups[0]+"&#47;"+groups[1]
grp_refs = list(dfy.iloc[i, dfy.columns.get_loc("grp_refs")])
template = dfy.iloc[i, dfy.columns.get_loc("template")]
for grp_pair in grp_refs:
#print(f"Item: {grp_pair[0]} - {grp_pair[1]}")
template = template.replace("[R]", grp_pair[0]+"/"+grp_pair[1], 1)
# template based
disp = template.replace("[T]", f"[{gr_disp}]") #, 1)
# sentence/alt-sentence based
#sentence = dfy.iloc[i, dfy.columns.get_loc("sentence")]
#alt_sentence = dfy.iloc[i, dfy.columns.get_loc("alt_sentence")]
#disp = f'"{sentence}"/"{alt_sentence}"'
res += f"<div style='height:20px;width:20px;background-color:{leftColor};display:inline-block;position:relative' id='filled'><span class='{spanClass}' style='color:#FFF'>{disp}</span></div> "
for i in range(len(dfn.index)):
groups = dfn.iloc[i, dfn.columns.get_loc("groups_rel")].split("/")
gr_disp = groups[0]+"&#47;"+groups[1]
grp_refs = list(dfn.iloc[i, dfn.columns.get_loc("grp_refs")])
template = dfn.iloc[i, dfn.columns.get_loc("template")]
for grp_pair in grp_refs:
#print(f"Item: {grp_pair[0]} - {grp_pair[1]}")
template = template.replace("[R]", grp_pair[0]+"/"+grp_pair[1], 1)
# template based
disp = template.replace("[T]", f"[{gr_disp}]")#, 1)
# sentence/alt-sentence based
#sentence = dfn.iloc[i, dfn.columns.get_loc("sentence")]
#alt_sentence = dfn.iloc[i, dfn.columns.get_loc("alt_sentence")]
#disp = f'"{sentence}"/"{alt_sentence}"'
res += f"<div style='height:20px;width:20px;background-color:{rightColor};display:inline-block;position:relative' id='empty'><span class='{spanClass}' style='color:#FFF'>{disp}</span></div> "
return res
# if flip:
# return numFilled * unfilled + numUnFilled * filled;
# return numFilled * filled + numUnFilled * unfilled
def att_bloombergViz(att, val, numblocks, score_templates_df, onRight=False, flip=False):
viz = bloombergViz(att, val, numblocks, score_templates_df, onRight, flip)
attHTML = f"<div style='border-style:solid;border-color:#999;border-radius:12px'>{att}: {round(val*100)}%<br>{viz}</div><br>"
return attHTML