import gradio as gr from transformers import pipeline, AutoConfig, AutoModelForImageClassification, AutoImageProcessor config = AutoConfig.from_pretrained("./model/checkpoint-9730/config.json") model = AutoModelForImageClassification.from_pretrained( "./model/checkpoint-9730/", config=config ) image_processor = AutoImageProcessor.from_pretrained("./model/checkpoint-9730/") pipe = pipeline("image-classification", model=model, feature_extractor=image_processor) def predict(image): predictions = pipe(image) return {p["label"]: p["score"] for p in predictions} gr.Interface( predict, inputs=gr.inputs.Image(label="Upload Skin Disease Image", type="filepath"), outputs=gr.outputs.Label(num_top_classes=3), title="Detect your skin disease", ).launch()