File size: 13,401 Bytes
b1c4c5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d97de06
b1c4c5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
import gradio as gr
# import torch
# from torch import autocast
# from diffusers import StableDiffusionPipeline
from datasets import load_dataset
from PIL import Image
from io import BytesIO
# import base64
# import re
import os
import requests
import json
import base64
# from urllib import parse

from share_btn import community_icon_html, loading_icon_html, share_js


is_gpu_busy = False


def infer(prompt, n_samples, steps, scale, seed):
    global is_gpu_busy
    # generator = torch.Generator(device=device).manual_seed(seed)
    # print("Is GPU busy? ", is_gpu_busy)
    images = []
    # if(not is_gpu_busy):
    #    is_gpu_busy = True
    #    images_list = pipe(
    #        [prompt] * samples,
    #        num_inference_steps=steps,
    #        guidance_scale=scale,
    # generator=generator,
    #    )
    #    is_gpu_busy = False
    #    safe_image = Image.open(r"unsafe.png")
    #    for i, image in enumerate(images_list["sample"]):
    #       if(images_list["nsfw_content_detected"][i]):
    #           images.append(safe_image)
    #       else:
    #           images.append(image)
    # else:
    url = os.getenv('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')
    response = requests.get(url.format(prompt, int(n_samples), max(50,int(steps)), f'{scale:.1f}', int(seed)))
    #response = requests.get(url.format('a%20naked%20girl', 2, 50, 7.5, 2))
    data = json.load(BytesIO(response.content))
    if 'output' not in data:
        raise gr.Error("Although safety guidance is enabled, potential unsafe content found. Please try again with different seed.")
    else:
        for image in data['output']['choices']:
            im = Image.open(BytesIO(base64.b64decode(image['image_base64'])))
            images.append(im)

    # payload = {'prompt': prompt}
    # images_request = requests.post(url, json=payload)
    # for image in images_request.json()["output"]['choices']:
    #    image_b64 = (f"data:image/jpeg;base64,{image['image_base64']}")
    #    images.append(image_b64)

    return images


css = """
        .gradio-container {
            font-family: 'IBM Plex Sans', sans-serif;
        }
        .gr-button {
            color: white;
            border-color: #3a669bff;
            background: #3a669bff;
        }
        input[type='range'] {
            accent-color: #3a669bff;
        }
        .dark input[type='range'] {
            accent-color: #3a669bff;
        }
        .container {
            max-width: 730px;
            margin: auto;
            padding-top: 1.5rem;
        }
        #gallery {
            min-height: 22rem;
            margin-bottom: 15px;
            margin-left: auto;
            margin-right: auto;
            border-bottom-right-radius: .5rem !important;
            border-bottom-left-radius: .5rem !important;
        }
        #gallery>div>.h-full {
            min-height: 20rem;
        }
        .details:hover {
            text-decoration: underline;
        }
        .gr-button {
            white-space: nowrap;
        }
        .gr-button:focus {
            border-color: rgb(147 197 253 / var(--tw-border-opacity));
            outline: none;
            box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000);
            --tw-border-opacity: 1;
            --tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);
            --tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color);
            --tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity));
            --tw-ring-opacity: .5;
        }
        #advanced-btn {
            font-size: .7rem !important;
            line-height: 19px;
            margin-top: 12px;
            margin-bottom: 12px;
            padding: 2px 8px;
            border-radius: 14px !important;
        }
        #advanced-options {
            display: none;
            margin-bottom: 20px;
        }
        .footer {
            margin-bottom: 45px;
            margin-top: 35px;
            text-align: center;
            border-bottom: 1px solid #e5e5e5;
        }
        .footer>p {
            font-size: .8rem;
            display: inline-block;
            padding: 0 10px;
            transform: translateY(10px);
            background: white;
        }
        .dark .footer {
            border-color: #303030;
        }
        .dark .footer>p {
            background: #0b0f19;
        }
        .acknowledgments h4{
            margin: 1.25em 0 .25em 0;
            font-weight: bold;
            font-size: 115%;
        }
        #container-advanced-btns{
            display: flex;
            flex-wrap: wrap;
            justify-content: space-between;
            align-items: center;
        }
        .animate-spin {
            animation: spin 1s linear infinite;
        }
        @keyframes spin {
            from {
                transform: rotate(0deg);
            }
            to {
                transform: rotate(360deg);
            }
        }
        #share-btn-container {
            display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #3a669bff; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem;
        }
        #share-btn {
            all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;
        }
        #share-btn * {
            all: unset;
        }
        .gr-form{
            flex: 1 1 50%; border-top-right-radius: 0; border-bottom-right-radius: 0;
        }
        #prompt-container{
            gap: 0;
        }
"""

block = gr.Blocks(css=css)

examples = [
    [
        'a gorgeous female photo',
        1,
        50,
        7.5,
        251815625,
    ],
    [
        'a gorgeous male photo',
        1,
        50,
        7.5,
        479079226,
    ],
    [
        'portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and children from bahnhof zoo, detailed ',
        1,
        50,
        9,
        364629028,
    ],
    [
        'portrait of Sickly diseased dying Samurai warrior, sun shining, photo realistic illustration by greg rutkowski, thomas kindkade, alphonse mucha, loish, norman rockwell.',
        1,
        50,
        10,
        1714108957,
    ],
    [
        'a photograph by vanessa beecroft',
        1,
        50,
        7.5,
        445713657,
    ],
]

with block:
    gr.HTML(
        """
            <div style="text-align: center; max-width: 650px; margin: 0 auto;">
              <div
                style="
                  display: inline-flex;
                  align-items: center;
                  gap: 0.8rem;
                  font-size: 1.75rem;
                "
              >
                <img class="logo" src="https://aeiljuispo.cloudimg.io/v7/https://s3.amazonaws.com/moonup/production/uploads/1666181274838-62fa1d95e8c9c532aa75331c.png" alt="AIML Logo"
                    style="margin: auto; max-width: 7rem;">
                <h1 style="font-weight: 900; margin-bottom: 7px;">
                  Safe Stable Diffusion Demo
                </h1>
              </div>
              <p style="margin-bottom: 10px; font-size: 94%">
                Safe Stable Diffusion extends Stable Diffusion with safety guidance. In the case of NSFW images it returns the closest non-NSFW images instead of a black square.
                Details can be found in the <a href="https://arxiv.org/abs/2211.05105" style="text-decoration: underline;" target="_blank">Safe Latent Diffusion: Mitigating Inappropriate Degeneration in Diffusion Models paper</a>.
              </p>
            </div>
        """
    )
    with gr.Group():
        with gr.Box():
            with gr.Row(elem_id="prompt-container").style(mobile_collapse=False, equal_height=True):
                text = gr.Textbox(
                    label="Enter your prompt",
                    show_label=False,
                    max_lines=1,
                    placeholder="Enter your prompt",
                    elem_id="prompt-text-input",
                ).style(
                    border=(True, False, True, True),
                    rounded=(True, False, False, True),
                    container=False,
                )
                btn = gr.Button("Generate image").style(
                    margin=False,
                    rounded=(False, True, True, False),
                    full_width=False,
                )

        gallery = gr.Gallery(
            label="Generated images", show_label=False, elem_id="gallery"
        ).style(grid=[1], height="auto")

        with gr.Group(elem_id="container-advanced-btns"):
            advanced_button = gr.Button("Advanced options", elem_id="advanced-btn")
            with gr.Group(elem_id="share-btn-container"):
                community_icon = gr.HTML(community_icon_html)
                loading_icon = gr.HTML(loading_icon_html)
                share_button = gr.Button("Share to community", elem_id="share-btn")

        with gr.Row(elem_id="advanced-options"):
            #gr.Markdown("Advanced settings are temporarily unavailable")
            samples = gr.Slider(label="Images", minimum=1, maximum=1, value=2, step=1)
            steps = gr.Slider(label="Steps", minimum=50, maximum=50, value=50, step=1)
            scale = gr.Slider(
                label="Guidance Scale", minimum=7.5, maximum=20, value=7.5, step=0.5
            )
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=2147483647,
                step=1,
                randomize=True,
            )

        ex = gr.Examples(examples=examples, fn=infer, inputs=[text, samples, steps, scale, seed],
                         outputs=[gallery, community_icon, loading_icon, share_button], cache_examples=False)
        ex.dataset.headers = [""]

        text.submit(infer, inputs=[text, samples, steps, scale, seed], outputs=gallery)
        btn.click(infer, inputs=[text, samples, steps, scale, seed], outputs=gallery)

        advanced_button.click(
            None,
            [],
            text,
            _js="""
            () => {
                const options = document.querySelector("body > gradio-app").querySelector("#advanced-options");
                options.style.display = ["none", ""].includes(options.style.display) ? "flex" : "none";
            }""",
        )
        share_button.click(
            None,
            [],
            [],
            _js=share_js,
        )
        gr.HTML(
            """
                <div class="footer">
                    <p>Model by <a href="https://huggingface.co/AIML-TUDA/" style="text-decoration: underline;" target="_blank">AIML Lab @TU Darmstadt</a> - backend provided through the generous support of <a href="https://www.together.xyz/" style="text-decoration: underline;" target="_blank">Together</a> - Gradio Demo by 🤗 Hugging Face
                    </p>
                </div>
                <div class="acknowledgments">
                    <p><h4>LICENSE</h4>
The model is licensed with a <a href="https://huggingface.co/spaces/CompVis/stable-diffusion-license" style="text-decoration: underline;" target="_blank">CreativeML Open RAIL-M</a> license. The authors claim no rights on the outputs you generate, you are free to use them and are accountable for their use which must not go against the provisions set in this license. The license forbids you from sharing any content that violates any laws, produce any harm to a person, disseminate any personal information that would be meant for harm, spread misinformation and target vulnerable groups. For the full list of restrictions please <a href="https://huggingface.co/spaces/CompVis/stable-diffusion-license" target="_blank" style="text-decoration: underline;" target="_blank">read the license</a>.</p>
                    <p><h4>Biases and content acknowledgment</h4>
Despite how impressive being able to turn text into image is, beware to the fact that this model may output content that reinforces or exacerbates societal biases, as well as realistic faces, pornography and violence. While the applied safety guidance suppresses the majority of inappropriate content, this still could apply to Safe Stable Diffusion models. The original model was trained on the <a href="https://laion.ai/blog/laion-5b/" style="text-decoration: underline;" target="_blank">LAION-5B dataset</a>, which scraped non-curated image-text-pairs from the internet (the exception being the removal of illegal content) and is meant for research purposes. Safety guidance suppresses potentially inappropriate content during inference. You can read more in the <a href="https://huggingface.co/AIML-TUDA/stable-diffusion-safe" style="text-decoration: underline;" target="_blank">model card</a>.</p>
               </div>
           """
        )

block.queue(concurrency_count=40, max_size=20).launch(max_threads=150)