import os import sys import torch import torch.nn as nn import bitsandbytes as bnb from datasets import load_dataset import transformers import argparse import warnings from huggingface_hub import snapshot_download assert ( "LlamaTokenizer" in transformers._import_structure["models.llama"] ), "LLaMA is now in HuggingFace's main branch.\nPlease reinstall it: pip uninstall transformers && pip install git+https://github.com/huggingface/transformers.git" from transformers import LlamaForCausalLM, LlamaTokenizer from peft import ( prepare_model_for_int8_training, LoraConfig, get_peft_model, get_peft_model_state_dict, set_peft_model_state_dict, ) parser = argparse.ArgumentParser() parser.add_argument("--wandb", action="store_true", default=False) parser.add_argument("--data_path", type=str, default="merge.json") parser.add_argument("--output_path", type=str, default="lora-Vicuna") parser.add_argument("--model_path", type=str, default="decapoda-research/llama-7b-hf") parser.add_argument("--eval_steps", type=int, default=200) parser.add_argument("--save_steps", type=int, default=200) parser.add_argument("--test_size", type=int, default=200) parser.add_argument("--resume_from_checkpoint", type=str, default=None) parser.add_argument("--lora_remote_checkpoint", type=str, default=None) parser.add_argument("--ignore_data_skip", type=str, default="False") args = parser.parse_args() if not args.wandb: os.environ["WANDB_MODE"] = "disable" # optimized for RTX 4090. for larger GPUs, increase some of these? MICRO_BATCH_SIZE = 4 # this could actually be 5 but i like powers of 2 BATCH_SIZE = 128 MAX_STEPS = None GRADIENT_ACCUMULATION_STEPS = BATCH_SIZE // MICRO_BATCH_SIZE EPOCHS = 3 # we don't always need 3 tbh LEARNING_RATE = 3e-4 # the Karpathy constant CUTOFF_LEN = 256 # 256 accounts for about 96% of the data LORA_R = 8 LORA_ALPHA = 16 LORA_DROPOUT = 0.05 VAL_SET_SIZE = args.test_size #2000 USE_8bit = True if USE_8bit is True: warnings.warn("If your version of bitsandbytes>0.37.2, Please downgrade bitsandbytes's version, for example: pip install bitsandbytes==0.37.2") TARGET_MODULES = [ "q_proj", "v_proj", ] DATA_PATH = args.data_path OUTPUT_DIR = args.output_path #"lora-Vicuna" device_map = "auto" world_size = int(os.environ.get("WORLD_SIZE", 1)) ddp = world_size != 1 if ddp: device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)} GRADIENT_ACCUMULATION_STEPS = GRADIENT_ACCUMULATION_STEPS // world_size print(args.model_path) model = LlamaForCausalLM.from_pretrained( args.model_path, load_in_8bit=USE_8bit, device_map=device_map, ) tokenizer = LlamaTokenizer.from_pretrained( args.model_path, add_eos_token=True ) if USE_8bit is True: model = prepare_model_for_int8_training(model) config = LoraConfig( r=LORA_R, lora_alpha=LORA_ALPHA, target_modules=TARGET_MODULES, lora_dropout=LORA_DROPOUT, bias="none", task_type="CAUSAL_LM", ) model = get_peft_model(model, config) tokenizer.pad_token_id = 0 # unk. we want this to be different from the eos token #tokenizer.padding_side = "left" # Allow batched inference data = load_dataset("json", data_files=DATA_PATH) now_max_steps = max((len(data["train"]) - VAL_SET_SIZE) // BATCH_SIZE * EPOCHS, EPOCHS) if args.resume_from_checkpoint: if args.lora_remote_checkpoint is not None: snapshot_download(repo_id=args.lora_remote_checkpoint, allow_patterns=["*.pt", "*.bin", "*.json"], local_dir=args.resume_from_checkpoint) # Check the available weights and load them checkpoint_name = os.path.join( args.resume_from_checkpoint, "pytorch_model.bin" ) # Full checkpoint if not os.path.exists(checkpoint_name): pytorch_bin_path = checkpoint_name checkpoint_name = os.path.join( args.resume_from_checkpoint, "adapter_model.bin" ) # only LoRA model - LoRA config above has to fit if os.path.exists(checkpoint_name): os.rename(checkpoint_name, pytorch_bin_path) warnings.warn("The file name of the lora checkpoint'adapter_model.bin' is replaced with 'pytorch_model.bin'") else: args.resume_from_checkpoint = ( None # So the trainer won't try loading its state ) # The two files above have a different name depending on how they were saved, but are actually the same. if os.path.exists(checkpoint_name): print(f"Restarting from {checkpoint_name}") adapters_weights = torch.load(checkpoint_name) model = set_peft_model_state_dict(model, adapters_weights) else: print(f"Checkpoint {checkpoint_name} not found") train_args_path = os.path.join(args.resume_from_checkpoint, "trainer_state.json") if os.path.exists(train_args_path): import json base_train_args = json.load(open(train_args_path, 'r')) base_max_steps = base_train_args["max_steps"] resume_scale = base_max_steps / now_max_steps if base_max_steps > now_max_steps: warnings.warn("epoch {} replace to the base_max_steps {}".format(EPOCHS, base_max_steps)) EPOCHS = None MAX_STEPS = base_max_steps else: MAX_STEPS = now_max_steps else: MAX_STEPS = now_max_steps model.print_trainable_parameters() def generate_prompt(data_point): # sorry about the formatting disaster gotta move fast if data_point["input"]: return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. ### Instruction: {data_point["instruction"]} ### Input: {data_point["input"]} ### Response: {data_point["output"]}""" else: return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {data_point["instruction"]} ### Response: {data_point["output"]}""" def tokenize(prompt): # there's probably a way to do this with the tokenizer settings # but again, gotta move fast result = tokenizer( prompt, truncation=True, max_length=CUTOFF_LEN + 1, padding="max_length", ) return { "input_ids": result["input_ids"][:-1], "attention_mask": result["attention_mask"][:-1], } def generate_and_tokenize_prompt(data_point): # This function masks out the labels for the input, # so that our loss is computed only on the response. user_prompt = ( ( f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request. ### Instruction: {data_point["instruction"]} ### Input: {data_point["input"]} ### Response: """ ) if data_point["input"] else ( f"""Below is an instruction that describes a task. Write a response that appropriately completes the request. ### Instruction: {data_point["instruction"]} ### Response: """ ) ) len_user_prompt_tokens = ( len( tokenizer( user_prompt, truncation=True, max_length=CUTOFF_LEN + 1, )["input_ids"] ) - 1 ) # no eos token full_tokens = tokenizer( user_prompt + data_point["output"], truncation=True, max_length=CUTOFF_LEN + 1, padding="max_length", )["input_ids"][:-1] return { "input_ids": full_tokens, "labels": [-100] * len_user_prompt_tokens + full_tokens[len_user_prompt_tokens:], "attention_mask": [1] * (len(full_tokens)), } if VAL_SET_SIZE > 0: train_val = data["train"].train_test_split( test_size=VAL_SET_SIZE, shuffle=True, seed=42 ) train_data = train_val["train"].shuffle().map(generate_and_tokenize_prompt) val_data = train_val["test"].shuffle().map(generate_and_tokenize_prompt) else: train_data = data["train"].shuffle().map(generate_and_tokenize_prompt) val_data = None trainer = transformers.Trainer( model=model, train_dataset=train_data, eval_dataset=val_data, args=transformers.TrainingArguments( per_device_train_batch_size=MICRO_BATCH_SIZE, gradient_accumulation_steps=GRADIENT_ACCUMULATION_STEPS, warmup_steps=100, num_train_epochs=EPOCHS, max_steps=MAX_STEPS, learning_rate=LEARNING_RATE, fp16=True, logging_steps=20, evaluation_strategy="steps" if VAL_SET_SIZE > 0 else "no", save_strategy="steps", eval_steps=args.eval_steps if VAL_SET_SIZE > 0 else None, save_steps=args.save_steps, output_dir=OUTPUT_DIR, save_total_limit=30, load_best_model_at_end=True if VAL_SET_SIZE > 0 else False, ddp_find_unused_parameters=False if ddp else None, report_to="wandb" if args.wandb else [], ignore_data_skip=args.ignore_data_skip, ), data_collator=transformers.DataCollatorForLanguageModeling(tokenizer, mlm=False) ) model.config.use_cache = False old_state_dict = model.state_dict model.state_dict = ( lambda self, *_, **__: get_peft_model_state_dict(self, old_state_dict()) ).__get__(model, type(model)) if torch.__version__ >= "2" and sys.platform != "win32": model = torch.compile(model) print("\n If there's a warning about missing keys above, please disregard :)") trainer.train(resume_from_checkpoint=args.resume_from_checkpoint) model.save_pretrained(OUTPUT_DIR)