Ayurveda4U / app.py
AnonymousSub's picture
Update app.py
9f9dd2d
raw
history blame
1.73 kB
from transformers import AutoModelForCausalLM, AutoTokenizer
import gradio as gr
import torch
title = "Ayurveda4U"
description = "LLM-Powered Medical Chatbot that will answer all your health-related queries with the help of Ayurvedic texts ynder the hood!"
examples = [["How can you cure common cold using Ayurveda?"], ["What is the Ayurvedic equivalent of Paracetamol?"]]
model_path = 'tloen/alpaca-lora-7b' #'microsoft/phi-1_5'#'microsoft/DialoGPT-large' #'microsoft/biogpt' #'microsoft/BioGPT-large' #microsoft/DialoGPT-large
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path)
def predict(input, history=[]):
# tokenize the new input sentence
new_user_input_ids = tokenizer.encode(
input + tokenizer.eos_token, return_tensors="pt"
)
# append the new user input tokens to the chat history
bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1)
# generate a response
history = model.generate(
bot_input_ids, max_length=4000, pad_token_id=tokenizer.eos_token_id
).tolist()
# convert the tokens to text, and then split the responses into lines
response = tokenizer.decode(history[0]).split("<|endoftext|>")
# print('decoded_response-->>'+str(response))
response = [
(response[i], response[i + 1]) for i in range(0, len(response) - 1, 2)
] # convert to tuples of list
# print('response-->>'+str(response))
return response, history
gr.Interface(
fn=predict,
title=title,
description=description,
examples=examples,
inputs=["text", "state"],
outputs=["chatbot", "state"],
theme="finlaymacklon/boxy_violet",
).launch()