AnonymousSub commited on
Commit
2b935c8
1 Parent(s): 0bd8ca5

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +196 -0
app.py ADDED
@@ -0,0 +1,196 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from tenacity import retry, stop_after_attempt, wait_random_exponential
2
+ from tqdm import tqdm
3
+ import time
4
+ import sys
5
+
6
+ # import openai
7
+ import time
8
+ # import pandas as pd
9
+ import random
10
+ import csv
11
+ import os
12
+ import pickle
13
+ import json
14
+ import nltk
15
+ nltk.download('punkt')
16
+ nltk.download('stopwords')
17
+ from nltk.tokenize import sent_tokenize
18
+ from nltk.corpus import stopwords
19
+ import string
20
+ from typing import List
21
+ import difflib
22
+
23
+
24
+ # import tiktoken
25
+
26
+ import re
27
+ from nltk.tokenize import sent_tokenize
28
+ from collections import defaultdict
29
+
30
+
31
+ import nltk
32
+ from nltk.tokenize import sent_tokenize
33
+ from nltk.tokenize import word_tokenize
34
+ import numpy as np
35
+ from retrieve import get_retrieved_results, get_slide
36
+
37
+ # Ensure you have downloaded the 'punkt' tokenizer models
38
+ nltk.download('punkt')
39
+
40
+
41
+
42
+
43
+
44
+ import streamlit as st
45
+
46
+ # Get the parent directory
47
+ # parent_dir = os.path.abspath(os.path.join(os.getcwd(), os.pardir))
48
+ # Add the parent directory to the system path
49
+ # sys.path.append(parent_dir)
50
+
51
+ from utils import AzureModels, write_to_file, read_from_file
52
+ # from utils_open import OpenModels
53
+
54
+ # Function to calculate similarity
55
+ def calculate_similarity(sentence1: str, sentence2: str) -> float:
56
+ return difflib.SequenceMatcher(None, sentence1, sentence2).ratio()
57
+
58
+ # Function to highlight sentences based on similarity
59
+ def highlight_sentences(predicted: str, ground_truth: str) -> str:
60
+ ground_truth_sentences = nltk.sent_tokenize(ground_truth)
61
+ predicted_sentences = nltk.sent_tokenize(predicted)
62
+
63
+ highlighted_text = ""
64
+
65
+ for pred_sentence in predicted_sentences:
66
+ max_similarity = 0
67
+ for gt_sentence in ground_truth_sentences:
68
+ similarity = calculate_similarity(pred_sentence, gt_sentence)
69
+ if similarity > max_similarity:
70
+ max_similarity = similarity
71
+ # Determine shade of green
72
+ shade = max_similarity # No need to convert to int, max_similarity is already in [0, 1]
73
+ highlighted_text += f'<span style="background-color: rgba(0, 255, 0, {shade})">{pred_sentence}</span> '
74
+
75
+ return highlighted_text
76
+
77
+ st.title('Multi-Document Narrative Generation')
78
+
79
+ options = ["Select", "Adobe Firefly", "Adobe Acrobat"]
80
+ selection = st.selectbox('Select an example', options)
81
+
82
+ if selection=="Select":
83
+ pass
84
+ elif selection=="Adobe Firefly":
85
+ with open('wiki_1.json', 'r') as fr:
86
+ list_1 = json.load(fr)
87
+
88
+ with open('wiki_2.json', 'r') as fr:
89
+ list_2 = json.load(fr)
90
+ document_name = "Adobe Firefly"
91
+ section_names = ["Introduction"]*7+["History"]*2
92
+ ref_doc_indices = np.arange(1,8).tolist() + np.arange(1,3).tolist()
93
+ else:
94
+ with open('wiki_2.json', 'r') as fr:
95
+ list_1 = json.load(fr)
96
+
97
+ with open('wiki_1.json', 'r') as fr:
98
+ list_2 = json.load(fr)
99
+ document_name = "Adobe Acrobat"
100
+ section_names = ["Introduction"]*3+["History"]*3+["Document Cloud"]*2
101
+ ref_doc_indices = np.arange(1,4).tolist() + np.arange(1,4).tolist() + np.arange(1,3).tolist()
102
+
103
+ inp_doc_list = []
104
+ inp_keys_list = []
105
+ retrieved_doc_list = []
106
+
107
+
108
+ if selection!='Select':
109
+ # for item, ret_item in zip(list_1, retrieved_out):
110
+ for item in list_1:
111
+ for key in item['ref_abstract']:
112
+ inp_doc_list.append(item['ref_abstract'][key])
113
+ inp_keys_list.append(key)
114
+ # retrieved_doc_list.append(ret_item['ref_abstract'][key]['abstract'])
115
+ # Initialize session state
116
+ if 'retrieve_clicked' not in st.session_state:
117
+ st.session_state.retrieve_clicked = False
118
+
119
+ retrieve_prompt_template = "{} : Document {} for the '{}' Section of the Article titled '{}'"
120
+
121
+ ui_doc_list = []
122
+ ui_retrieved_doc_list = []
123
+
124
+ # 5 input text boxes for 5 input documents
125
+ st.header('Input Documents')
126
+ # doc1 = st.text_area('Document 1', value="1. What up bruh??")
127
+ for i in range(len(section_names)):
128
+ ui_doc_list.append(st.text_area(retrieve_prompt_template.format(inp_keys_list[i], ref_doc_indices[i], section_names[i], document_name), value=inp_doc_list[i]))
129
+
130
+ if st.button('Retrieve'):
131
+ if 'organize_clicked' not in st.session_state:
132
+ st.session_state.organize_clicked = False
133
+ retrieved_out = get_retrieved_results("gpt4o", 0, "fixed", list_2, list_1)
134
+ write_to_file("retrieved_docs.json", retrieved_out)
135
+ retrieved_out_train = get_retrieved_results("gpt4o", 0, "fixed", list_1, list_2)
136
+ write_to_file("retrieved_docs_train.json", retrieved_out_train)
137
+
138
+ for ret_item in retrieved_out:
139
+ for key in ret_item['ref_abstract']:
140
+ # inp_doc_list.append(item['ref_abstract'][key])
141
+ retrieved_doc_list.append(ret_item['ref_abstract'][key]['abstract'])
142
+
143
+ # Step 2: Lowercase the documents
144
+ st.session_state.retrieve_clicked = True
145
+ st.header('Retrieved Documents')
146
+
147
+ for i in range(len(section_names)):
148
+ ui_retrieved_doc_list.append(st.text_area(retrieve_prompt_template.format(inp_keys_list[i], ref_doc_indices[i], section_names[i], document_name), value=retrieved_doc_list[i]))
149
+ if st.session_state.retrieve_clicked:
150
+ if st.button('Organize'):
151
+ if 'summarize_clicked' not in st.session_state:
152
+ st.session_state.summarize_clicked = False
153
+ st.session_state.organize_clicked = True
154
+ st.header("Organization of the documents in the narrative")
155
+ topics_list = ["Introduction", "History", "Document Cloud"]
156
+
157
+ organize_list = []
158
+ ui_organize_list = []
159
+
160
+ test_list = read_from_file("retrieved_docs.json")
161
+ train_list = read_from_file("retrieved_docs_train.json")
162
+ organize_out = get_retrieved_results("gpt4o", 1, "fixed", train_list, test_list, True)
163
+ for i in range(len(organize_out)):
164
+ organize_list.append(organize_out[i])
165
+ ui_organize_list.append(st.text_area("Section: " + topics_list[i], value=organize_out[i]))
166
+ write_to_file("organized_docs.json", organize_out)
167
+
168
+ if st.session_state.organize_clicked:
169
+ if st.button("Summarize"):
170
+ # if 'narrative_clicked' not in st.session_state:
171
+ # st.session_state.narrative_clicked = False
172
+ st.session_state.summarize_clicked = True
173
+ st.header("Intent-based multi-document summary")
174
+ topics_list = ["Introduction", "History", "Document Cloud"]
175
+ generate_list = []
176
+ ui_generate_list = []
177
+ slides_list = []
178
+ test_list = read_from_file("retrieved_docs.json")
179
+ train_list = read_from_file("retrieved_docs_train.json")
180
+ organize_out = read_from_file("organized_docs.json")
181
+ gen_summary_dict = get_retrieved_results("gpt4o", 1, "fixed", train_list, test_list, False, organize_out)
182
+ for i in range(len(gen_summary_dict)):
183
+ highlighted_summary = highlight_sentences(gen_summary_dict[i], test_list[i]['abstract'])
184
+ slides_list.append(get_slide(topics_list[i], gen_summary_dict[i]))
185
+ # generate_list.append(.format(topics_list[i], gen_summary_dict[i]))
186
+ st.markdown(f"## {topics_list[i]}")
187
+ # st.markdown(f"*{gen_summary_dict[i]}*")
188
+ st.markdown(highlighted_summary, unsafe_allow_html=True)
189
+ st.header("Generated Narrative")
190
+ for i in range(len(slides_list)):
191
+ st.markdown("---")
192
+ st.markdown(slides_list[i])
193
+ st.markdown("---")
194
+ # if st.session_state.summarize_clicked:
195
+ # if st.button("Narrative"):
196
+ # st.session_state.narrative_clicked = True