import sagemaker import boto3 from sagemaker.huggingface import HuggingFaceModel try: role = sagemaker.get_execution_role() except ValueError: iam = boto3.client('iam') role = iam.get_role(RoleName='sagemaker_execution_role')['Role']['Arn'] # Hub Model configuration. https://huggingface.co/models hub = { 'HF_MODEL_ID':'microsoft/speecht5_tts', 'HF_TASK':'text-to-speech' } # create Hugging Face Model Class huggingface_model = HuggingFaceModel( transformers_version='4.26.0', pytorch_version='1.13.1', py_version='py39', env=hub, role=role, ) # deploy model to SageMaker Inference predictor = huggingface_model.deploy( initial_instance_count=1, # number of instances instance_type='ml.m5.xlarge' # ec2 instance type ) predictor.predict({ "inputs": "The answer to the universe is 42", })