Spaces:
Runtime error
Runtime error
import json | |
import os | |
from functools import lru_cache | |
from typing import Mapping | |
import gradio as gr | |
from huggingface_hub import HfFileSystem, hf_hub_download | |
from imgutils.data import ImageTyping, load_image | |
from natsort import natsorted | |
from onnx_ import _open_onnx_model | |
from preprocess import _img_encode | |
hfs = HfFileSystem() | |
def open_model_from_repo(repository, model): | |
runtime = _open_onnx_model(hf_hub_download(repository, f'{model}/model.onnx')) | |
with open(hf_hub_download(repository, f'{model}/meta.json'), 'r') as f: | |
labels = json.load(f)['labels'] | |
return runtime, labels | |
class Classification: | |
def __init__(self, title: str, repository: str, default_model=None, imgsize: int = 384): | |
self.title = title | |
self.repository = repository | |
self.models = natsorted([ | |
os.path.dirname(os.path.relpath(file, self.repository)) | |
for file in hfs.glob(f'{self.repository}/*/model.onnx') | |
]) | |
self.default_model = default_model or self.models[0] | |
self.imgsize = imgsize | |
def _open_onnx_model(self, model): | |
return open_model_from_repo(self.repository, model) | |
def _gr_classification(self, image: ImageTyping, model_name: str, size=384) -> Mapping[str, float]: | |
image = load_image(image, mode='RGB') | |
input_ = _img_encode(image, size=(size, size))[None, ...] | |
model, labels = self._open_onnx_model(model_name) | |
output, = model.run(['output'], {'input': input_}) | |
values = dict(zip(labels, map(lambda x: x.item(), output[0]))) | |
return values | |
def create_gr(self): | |
with gr.Tab(self.title): | |
with gr.Row(): | |
with gr.Column(): | |
gr_input_image = gr.Image(type='pil', label='Original Image') | |
gr_model = gr.Dropdown(self.models, value=self.default_model, label='Model') | |
gr_infer_size = gr.Slider(224, 640, value=384, step=32, label='Infer Size') | |
gr_submit = gr.Button(value='Submit', variant='primary') | |
with gr.Column(): | |
gr_output = gr.Label(label='Classes') | |
gr_submit.click( | |
self._gr_classification, | |
inputs=[gr_input_image, gr_model, gr_infer_size], | |
outputs=[gr_output], | |
) | |