Spaces:
Runtime error
Runtime error
File size: 3,785 Bytes
5632d25 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
# coding:UTF-8
import torch
import torch.nn as nn
from transformers import Wav2Vec2Processor
from transformers.models.wav2vec2.modeling_wav2vec2 import (
Wav2Vec2Model,
Wav2Vec2PreTrainedModel,
)
import os
import librosa
import numpy as np
class RegressionHead(nn.Module):
r"""Classification head."""
def __init__(self, config):
super().__init__()
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
self.dropout = nn.Dropout(config.final_dropout)
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
def forward(self, features, **kwargs):
x = features
x = self.dropout(x)
x = self.dense(x)
x = torch.tanh(x)
x = self.dropout(x)
x = self.out_proj(x)
return x
class EmotionModel(Wav2Vec2PreTrainedModel):
r"""Speech emotion classifier."""
def __init__(self, config):
super().__init__(config)
self.config = config
self.wav2vec2 = Wav2Vec2Model(config)
self.classifier = RegressionHead(config)
self.init_weights()
def forward(
self,
input_values,
):
outputs = self.wav2vec2(input_values)
hidden_states = outputs[0]
hidden_states = torch.mean(hidden_states, dim=1)
logits = self.classifier(hidden_states)
return hidden_states, logits
# load model from hub
device = 'cuda' if torch.cuda.is_available() else "cpu"
model_name = 'audeering/wav2vec2-large-robust-12-ft-emotion-msp-dim'
processor = Wav2Vec2Processor.from_pretrained(model_name)
model = EmotionModel.from_pretrained(model_name).to(device)
def process_func(
x: np.ndarray,
sampling_rate: int,
embeddings: bool = False,
) -> np.ndarray:
r"""Predict emotions or extract embeddings from raw audio signal."""
# run through processor to normalize signal
# always returns a batch, so we just get the first entry
# then we put it on the device
y = processor(x, sampling_rate=sampling_rate)
y = y['input_values'][0]
y = torch.from_numpy(y).to(device)
# run through model
with torch.no_grad():
y = model(y)[0 if embeddings else 1]
# convert to numpy
y = y.detach().cpu().numpy()
return y
#
#
# def disp(rootpath, wavname):
# wav, sr = librosa.load(f"{rootpath}/{wavname}", 16000)
# display(ipd.Audio(wav, rate=sr))
rootpath = "dataset/nene"
embs = []
wavnames = []
def extract_dir(path):
rootpath = path
for idx, wavname in enumerate(os.listdir(rootpath)):
wav, sr = librosa.load(f"{rootpath}/{wavname}", 16000)
emb = process_func(np.expand_dims(wav, 0), sr, embeddings=True)
embs.append(emb)
wavnames.append(wavname)
np.save(f"{rootpath}/{wavname}.emo.npy", emb.squeeze(0))
print(idx, wavname)
def extract_wav(path):
wav, sr = librosa.load(path, 16000)
emb = process_func(np.expand_dims(wav, 0), sr, embeddings=True)
return emb
def preprocess_one(path):
wav, sr = librosa.load(path, 16000)
emb = process_func(np.expand_dims(wav, 0), sr, embeddings=True)
np.save(f"{path}.emo.npy", emb.squeeze(0))
return emb
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser(description='Emotion Extraction Preprocess')
parser.add_argument('--filelists', dest='filelists',nargs="+", type=str, help='path of the filelists')
args = parser.parse_args()
for filelist in args.filelists:
print(filelist,"----start emotion extract-------")
with open(filelist) as f:
for idx, line in enumerate(f.readlines()):
path, _, _ = line.strip().split("|")
preprocess_one(path)
print(idx, path)
|