File size: 243,033 Bytes
a8f737f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2023-01-25 23:46:00,530	9nineM	INFO	{'train': {'log_interval': 200, 'eval_interval': 400, 'seed': 1234, 'epochs': 1000, 'learning_rate': 0.0002, 'betas': [0.8, 0.99], 'eps': 1e-09, 'batch_size': 24, 'fp16_run': True, 'lr_decay': 0.999875, 'segment_size': 8192, 'init_lr_ratio': 1, 'warmup_epochs': 0, 'c_mel': 45, 'c_kl': 1.0}, 'data': {'training_files': 'filelists/9nine_multi/filelists/MultiNoHaru_train.txt.cleaned', 'validation_files': 'filelists/9nine_multi/filelists/MultiNoHaru_valid.txt.cleaned', 'text_cleaners': ['japanese_cleaners2'], 'max_wav_value': 32768.0, 'sampling_rate': 22050, 'filter_length': 1024, 'hop_length': 256, 'win_length': 1024, 'n_mel_channels': 80, 'mel_fmin': 0.0, 'mel_fmax': None, 'add_blank': True, 'n_speakers': 5, 'cleaned_text': True}, 'model': {'inter_channels': 192, 'hidden_channels': 192, 'filter_channels': 768, 'n_heads': 2, 'n_layers': 6, 'kernel_size': 3, 'p_dropout': 0.1, 'resblock': '1', 'resblock_kernel_sizes': [3, 7, 11], 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'upsample_rates': [8, 8, 2, 2], 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [16, 16, 4, 4], 'n_layers_q': 3, 'use_spectral_norm': False, 'gin_channels': 256}, 'model_dir': './logs\\9nineM', 'ckptG': None, 'ckptD': None}
2023-01-25 23:46:38,282	9nineM	INFO	Train Epoch: 1 [0%]
2023-01-25 23:46:38,282	9nineM	INFO	[6.073990345001221, 6.072503566741943, 0.30118170380592346, 101.45647430419922, 1.7897791862487793, 198.48548889160156, 0, 0.0002]
2023-01-25 23:47:05,692	9nineM	INFO	Saving model and optimizer state at iteration 1 to ./logs\9nineM\G_0.pth
2023-01-25 23:47:05,958	9nineM	INFO	Saving model and optimizer state at iteration 1 to ./logs\9nineM\D_0.pth
2023-01-25 23:49:33,816	9nineM	INFO	{'train': {'log_interval': 200, 'eval_interval': 400, 'seed': 1234, 'epochs': 1000, 'learning_rate': 0.0002, 'betas': [0.8, 0.99], 'eps': 1e-09, 'batch_size': 24, 'fp16_run': False, 'lr_decay': 0.999875, 'segment_size': 8192, 'init_lr_ratio': 1, 'warmup_epochs': 0, 'c_mel': 45, 'c_kl': 1.0}, 'data': {'training_files': 'filelists/9nine_multi/filelists/MultiNoHaru_train.txt.cleaned', 'validation_files': 'filelists/9nine_multi/filelists/MultiNoHaru_valid.txt.cleaned', 'text_cleaners': ['japanese_cleaners2'], 'max_wav_value': 32768.0, 'sampling_rate': 22050, 'filter_length': 1024, 'hop_length': 256, 'win_length': 1024, 'n_mel_channels': 80, 'mel_fmin': 0.0, 'mel_fmax': None, 'add_blank': True, 'n_speakers': 5, 'cleaned_text': True}, 'model': {'inter_channels': 192, 'hidden_channels': 192, 'filter_channels': 768, 'n_heads': 2, 'n_layers': 6, 'kernel_size': 3, 'p_dropout': 0.1, 'resblock': '1', 'resblock_kernel_sizes': [3, 7, 11], 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'upsample_rates': [8, 8, 2, 2], 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [16, 16, 4, 4], 'n_layers_q': 3, 'use_spectral_norm': False, 'gin_channels': 256}, 'model_dir': './logs\\9nineM', 'ckptG': None, 'ckptD': None}
2023-01-25 23:49:37,570	9nineM	INFO	Loaded checkpoint './logs\9nineM\G_0.pth' (iteration 1)
2023-01-25 23:49:37,678	9nineM	INFO	Loaded checkpoint './logs\9nineM\D_0.pth' (iteration 1)
2023-01-25 23:50:10,424	9nineM	INFO	Train Epoch: 1 [0%]
2023-01-25 23:50:10,425	9nineM	INFO	[6.073970317840576, 4.677792549133301, 0.30806946754455566, 101.44989776611328, 1.7897722721099854, 198.4989013671875, 0, 0.0002]
2023-01-25 23:50:36,468	9nineM	INFO	Saving model and optimizer state at iteration 1 to ./logs\9nineM\G_0.pth
2023-01-25 23:50:37,251	9nineM	INFO	Saving model and optimizer state at iteration 1 to ./logs\9nineM\D_0.pth
2023-01-25 23:54:21,335	9nineM	INFO	Train Epoch: 1 [35%]
2023-01-25 23:54:21,335	9nineM	INFO	[2.0056729316711426, 2.2880539894104004, 5.171030044555664, 47.03142547607422, 1.995613932609558, 1.627901554107666, 200, 0.0002]
2023-01-25 23:59:20,162	9nineM	INFO	Train Epoch: 1 [70%]
2023-01-25 23:59:20,163	9nineM	INFO	[2.313659191131592, 2.3724217414855957, 3.7704148292541504, 40.99565887451172, 2.0197911262512207, 1.2937748432159424, 400, 0.0002]
2023-01-25 23:59:45,658	9nineM	INFO	Saving model and optimizer state at iteration 1 to ./logs\9nineM\G_400.pth
2023-01-25 23:59:46,341	9nineM	INFO	Saving model and optimizer state at iteration 1 to ./logs\9nineM\D_400.pth
2023-01-26 00:02:43,047	9nineM	INFO	====> Epoch: 1
2023-01-26 00:03:37,133	9nineM	INFO	Train Epoch: 2 [5%]
2023-01-26 00:03:37,133	9nineM	INFO	[2.34749436378479, 2.807877779006958, 3.85154390335083, 36.201969146728516, 2.026376724243164, 1.5017982721328735, 600, 0.000199975]
2023-01-26 00:06:59,932	9nineM	INFO	Train Epoch: 2 [40%]
2023-01-26 00:06:59,933	9nineM	INFO	[2.2677979469299316, 2.7484307289123535, 3.9582455158233643, 32.791133880615234, 2.033611536026001, 1.4443621635437012, 800, 0.000199975]
2023-01-26 00:07:25,282	9nineM	INFO	Saving model and optimizer state at iteration 2 to ./logs\9nineM\G_800.pth
2023-01-26 00:07:25,953	9nineM	INFO	Saving model and optimizer state at iteration 2 to ./logs\9nineM\D_800.pth
2023-01-26 00:10:47,662	9nineM	INFO	Train Epoch: 2 [75%]
2023-01-26 00:10:47,663	9nineM	INFO	[2.4101669788360596, 1.9714564085006714, 3.4384775161743164, 30.411867141723633, 2.0720434188842773, 1.4144717454910278, 1000, 0.000199975]
2023-01-26 00:13:13,823	9nineM	INFO	====> Epoch: 2
2023-01-26 00:14:38,413	9nineM	INFO	Train Epoch: 3 [11%]
2023-01-26 00:14:38,413	9nineM	INFO	[2.357465982437134, 2.5078492164611816, 3.657393455505371, 34.19534683227539, 1.9945192337036133, 1.623528003692627, 1200, 0.000199950003125]
2023-01-26 00:15:03,696	9nineM	INFO	Saving model and optimizer state at iteration 3 to ./logs\9nineM\G_1200.pth
2023-01-26 00:15:04,370	9nineM	INFO	Saving model and optimizer state at iteration 3 to ./logs\9nineM\D_1200.pth
2023-01-26 00:18:25,883	9nineM	INFO	Train Epoch: 3 [46%]
2023-01-26 00:19:21,494	9nineM	INFO	[2.4258036613464355, 2.256639242172241, 3.5157554149627686, 33.91616439819336, 2.2258315086364746, 1.2393535375595093, 1400, 0.000199950003125]
2023-01-26 00:19:41,710	9nineM	INFO	{'train': {'log_interval': 200, 'eval_interval': 400, 'seed': 1234, 'epochs': 1000, 'learning_rate': 0.0002, 'betas': [0.8, 0.99], 'eps': 1e-09, 'batch_size': 24, 'fp16_run': False, 'lr_decay': 0.999875, 'segment_size': 8192, 'init_lr_ratio': 1, 'warmup_epochs': 0, 'c_mel': 45, 'c_kl': 1.0}, 'data': {'training_files': 'filelists/9nine_multi/filelists/MultiNoHaru_train.txt.cleaned', 'validation_files': 'filelists/9nine_multi/filelists/MultiNoHaru_valid.txt.cleaned', 'text_cleaners': ['japanese_cleaners2'], 'max_wav_value': 32768.0, 'sampling_rate': 22050, 'filter_length': 1024, 'hop_length': 256, 'win_length': 1024, 'n_mel_channels': 80, 'mel_fmin': 0.0, 'mel_fmax': None, 'add_blank': True, 'n_speakers': 5, 'cleaned_text': True}, 'model': {'inter_channels': 192, 'hidden_channels': 192, 'filter_channels': 768, 'n_heads': 2, 'n_layers': 6, 'kernel_size': 3, 'p_dropout': 0.1, 'resblock': '1', 'resblock_kernel_sizes': [3, 7, 11], 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'upsample_rates': [8, 8, 2, 2], 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [16, 16, 4, 4], 'n_layers_q': 3, 'use_spectral_norm': False, 'gin_channels': 256}, 'model_dir': './logs\\9nineM', 'ckptG': None, 'ckptD': None}
2023-01-26 00:19:45,443	9nineM	INFO	Loaded checkpoint './logs\9nineM\G_1200.pth' (iteration 3)
2023-01-26 00:19:45,808	9nineM	INFO	Loaded checkpoint './logs\9nineM\D_1200.pth' (iteration 3)
2023-01-26 00:21:26,746	9nineM	INFO	Train Epoch: 3 [11%]
2023-01-26 00:21:26,747	9nineM	INFO	[2.3221030235290527, 2.3704800605773926, 3.8071811199188232, 34.25653076171875, 2.0056378841400146, 1.6272631883621216, 1200, 0.00019992500937460937]
2023-01-26 00:21:52,686	9nineM	INFO	Saving model and optimizer state at iteration 3 to ./logs\9nineM\G_1200.pth
2023-01-26 00:21:53,394	9nineM	INFO	Saving model and optimizer state at iteration 3 to ./logs\9nineM\D_1200.pth
2023-01-26 00:25:29,110	9nineM	INFO	Train Epoch: 3 [46%]
2023-01-26 00:25:29,110	9nineM	INFO	[2.640127182006836, 2.103668689727783, 2.8140110969543457, 29.13928985595703, 2.2003533840179443, 1.3579349517822266, 1400, 0.00019992500937460937]
2023-01-26 00:28:54,650	9nineM	INFO	Train Epoch: 3 [81%]
2023-01-26 00:28:54,650	9nineM	INFO	[2.5244946479797363, 2.0201079845428467, 3.0896544456481934, 29.836584091186523, 1.9984928369522095, 1.1511805057525635, 1600, 0.00019992500937460937]
2023-01-26 00:29:20,048	9nineM	INFO	Saving model and optimizer state at iteration 3 to ./logs\9nineM\G_1600.pth
2023-01-26 00:29:20,796	9nineM	INFO	Saving model and optimizer state at iteration 3 to ./logs\9nineM\D_1600.pth
2023-01-26 00:31:15,326	9nineM	INFO	====> Epoch: 3
2023-01-26 00:33:09,483	9nineM	INFO	Train Epoch: 4 [16%]
2023-01-26 00:33:09,484	9nineM	INFO	[2.3062384128570557, 2.1731457710266113, 3.7697784900665283, 30.14053726196289, 2.0052859783172607, 1.4556211233139038, 1800, 0.00019990001874843754]
2023-01-26 00:36:31,391	9nineM	INFO	Train Epoch: 4 [51%]
2023-01-26 00:36:31,391	9nineM	INFO	[2.538445472717285, 2.1030821800231934, 3.1004858016967773, 30.39350700378418, 1.9460492134094238, 1.4961357116699219, 2000, 0.00019990001874843754]
2023-01-26 00:36:57,126	9nineM	INFO	Saving model and optimizer state at iteration 4 to ./logs\9nineM\G_2000.pth
2023-01-26 00:36:57,789	9nineM	INFO	Saving model and optimizer state at iteration 4 to ./logs\9nineM\D_2000.pth
2023-01-26 00:40:22,230	9nineM	INFO	Train Epoch: 4 [86%]
2023-01-26 00:40:22,230	9nineM	INFO	[2.2768425941467285, 2.3642055988311768, 3.762643814086914, 29.680871963500977, 1.8728859424591064, 1.559889316558838, 2200, 0.00019990001874843754]
2023-01-26 00:41:41,845	9nineM	INFO	====> Epoch: 4
2023-01-26 00:44:06,172	9nineM	INFO	Train Epoch: 5 [21%]
2023-01-26 00:44:06,173	9nineM	INFO	[2.34861159324646, 2.4874701499938965, 3.741352081298828, 30.817813873291016, 2.043848991394043, 1.1385068893432617, 2400, 0.00019987503124609398]
2023-01-26 00:44:31,651	9nineM	INFO	Saving model and optimizer state at iteration 5 to ./logs\9nineM\G_2400.pth
2023-01-26 00:44:32,309	9nineM	INFO	Saving model and optimizer state at iteration 5 to ./logs\9nineM\D_2400.pth
2023-01-26 00:47:52,710	9nineM	INFO	Train Epoch: 5 [56%]
2023-01-26 00:47:52,710	9nineM	INFO	[2.7938294410705566, 2.050962209701538, 2.652010679244995, 28.363901138305664, 2.0211844444274902, 1.408889651298523, 2600, 0.00019987503124609398]
2023-01-26 00:51:15,681	9nineM	INFO	Train Epoch: 5 [91%]
2023-01-26 00:51:15,681	9nineM	INFO	[2.497097969055176, 2.0679380893707275, 2.9265832901000977, 26.662799835205078, 1.8392996788024902, 1.1821995973587036, 2800, 0.00019987503124609398]
2023-01-26 00:51:41,418	9nineM	INFO	Saving model and optimizer state at iteration 5 to ./logs\9nineM\G_2800.pth
2023-01-26 00:51:42,076	9nineM	INFO	Saving model and optimizer state at iteration 5 to ./logs\9nineM\D_2800.pth
2023-01-26 00:52:32,791	9nineM	INFO	====> Epoch: 5
2023-01-26 00:55:26,207	9nineM	INFO	Train Epoch: 6 [26%]
2023-01-26 00:55:26,208	9nineM	INFO	[2.600545644760132, 1.8324110507965088, 3.007281541824341, 27.99269676208496, 1.8528962135314941, 1.5542216300964355, 3000, 0.0001998500468671882]
2023-01-26 00:58:49,002	9nineM	INFO	Train Epoch: 6 [61%]
2023-01-26 00:58:49,002	9nineM	INFO	[2.5305962562561035, 2.0720105171203613, 2.8197600841522217, 26.332839965820312, 1.933664083480835, 1.6304469108581543, 3200, 0.0001998500468671882]
2023-01-26 00:59:14,960	9nineM	INFO	Saving model and optimizer state at iteration 6 to ./logs\9nineM\G_3200.pth
2023-01-26 00:59:15,627	9nineM	INFO	Saving model and optimizer state at iteration 6 to ./logs\9nineM\D_3200.pth
2023-01-26 01:02:37,221	9nineM	INFO	Train Epoch: 6 [96%]
2023-01-26 01:02:37,222	9nineM	INFO	[2.67600154876709, 2.077462911605835, 3.057732343673706, 27.05984878540039, 1.9372596740722656, 1.4464811086654663, 3400, 0.0001998500468671882]
2023-01-26 01:02:57,537	9nineM	INFO	====> Epoch: 6
2023-01-26 01:06:21,797	9nineM	INFO	Train Epoch: 7 [32%]
2023-01-26 01:06:21,798	9nineM	INFO	[2.8754048347473145, 1.7571762800216675, 1.9291565418243408, 24.49405288696289, 1.978126049041748, 1.6392502784729004, 3600, 0.00019982506561132978]
2023-01-26 01:06:47,857	9nineM	INFO	Saving model and optimizer state at iteration 7 to ./logs\9nineM\G_3600.pth
2023-01-26 01:06:48,512	9nineM	INFO	Saving model and optimizer state at iteration 7 to ./logs\9nineM\D_3600.pth
2023-01-26 01:10:10,491	9nineM	INFO	Train Epoch: 7 [67%]
2023-01-26 01:10:10,492	9nineM	INFO	[2.846407413482666, 1.746802568435669, 2.026045560836792, 23.640016555786133, 1.9296040534973145, 1.5151889324188232, 3800, 0.00019982506561132978]
2023-01-26 01:13:20,916	9nineM	INFO	====> Epoch: 7
2023-01-26 01:13:55,559	9nineM	INFO	Train Epoch: 8 [2%]
2023-01-26 01:13:55,560	9nineM	INFO	[2.677149772644043, 1.9254252910614014, 2.465095281600952, 22.880842208862305, 1.9207991361618042, 1.3455860614776611, 4000, 0.00019980008747812837]
2023-01-26 01:14:21,049	9nineM	INFO	Saving model and optimizer state at iteration 8 to ./logs\9nineM\G_4000.pth
2023-01-26 01:14:22,079	9nineM	INFO	Saving model and optimizer state at iteration 8 to ./logs\9nineM\D_4000.pth
2023-01-26 01:17:44,557	9nineM	INFO	Train Epoch: 8 [37%]
2023-01-26 01:17:44,558	9nineM	INFO	[2.6028459072113037, 1.8677709102630615, 2.768541097640991, 25.192880630493164, 1.8907232284545898, 1.4924492835998535, 4200, 0.00019980008747812837]
2023-01-26 01:21:04,611	9nineM	INFO	Train Epoch: 8 [72%]
2023-01-26 01:21:04,611	9nineM	INFO	[2.736124038696289, 1.8049640655517578, 2.620659112930298, 26.275257110595703, 2.048452138900757, 1.4815564155578613, 4400, 0.00019980008747812837]
2023-01-26 01:21:30,323	9nineM	INFO	Saving model and optimizer state at iteration 8 to ./logs\9nineM\G_4400.pth
2023-01-26 01:21:30,981	9nineM	INFO	Saving model and optimizer state at iteration 8 to ./logs\9nineM\D_4400.pth
2023-01-26 01:24:11,402	9nineM	INFO	====> Epoch: 8
2023-01-26 01:25:16,374	9nineM	INFO	Train Epoch: 9 [7%]
2023-01-26 01:25:16,374	9nineM	INFO	[2.5049564838409424, 2.069748878479004, 3.278918981552124, 24.914398193359375, 1.8940491676330566, 1.5463682413101196, 4600, 0.0001997751124671936]
2023-01-26 01:28:37,874	9nineM	INFO	Train Epoch: 9 [42%]
2023-01-26 01:28:37,875	9nineM	INFO	[2.6231088638305664, 1.9032471179962158, 2.948408603668213, 26.60008430480957, 1.9691338539123535, 1.664552092552185, 4800, 0.0001997751124671936]
2023-01-26 01:29:03,509	9nineM	INFO	Saving model and optimizer state at iteration 9 to ./logs\9nineM\G_4800.pth
2023-01-26 01:29:04,253	9nineM	INFO	Saving model and optimizer state at iteration 9 to ./logs\9nineM\D_4800.pth
2023-01-26 01:32:24,537	9nineM	INFO	Train Epoch: 9 [77%]
2023-01-26 01:32:24,538	9nineM	INFO	[2.762094497680664, 1.8685764074325562, 2.75244140625, 23.52878189086914, 1.8895244598388672, 1.5115458965301514, 5000, 0.0001997751124671936]
2023-01-26 01:34:35,433	9nineM	INFO	====> Epoch: 9
2023-01-26 01:36:10,253	9nineM	INFO	Train Epoch: 10 [12%]
2023-01-26 01:36:10,254	9nineM	INFO	[2.6434783935546875, 2.1471564769744873, 2.7777180671691895, 22.199459075927734, 1.8439451456069946, 1.3497384786605835, 5200, 0.00019975014057813518]
2023-01-26 01:36:36,113	9nineM	INFO	Saving model and optimizer state at iteration 10 to ./logs\9nineM\G_5200.pth
2023-01-26 01:36:37,151	9nineM	INFO	Saving model and optimizer state at iteration 10 to ./logs\9nineM\D_5200.pth
2023-01-26 01:39:58,308	9nineM	INFO	Train Epoch: 10 [47%]
2023-01-26 01:39:58,308	9nineM	INFO	[2.6279044151306152, 2.083256721496582, 3.124328851699829, 26.54741096496582, 1.807456374168396, 1.491945743560791, 5400, 0.00019975014057813518]
2023-01-26 01:43:20,472	9nineM	INFO	Train Epoch: 10 [82%]
2023-01-26 01:43:20,473	9nineM	INFO	[2.732877016067505, 2.007030725479126, 3.1029460430145264, 23.12151527404785, 1.792919397354126, 1.6385772228240967, 5600, 0.00019975014057813518]
2023-01-26 01:43:46,593	9nineM	INFO	Saving model and optimizer state at iteration 10 to ./logs\9nineM\G_5600.pth
2023-01-26 01:43:47,258	9nineM	INFO	Saving model and optimizer state at iteration 10 to ./logs\9nineM\D_5600.pth
2023-01-26 01:45:27,070	9nineM	INFO	====> Epoch: 10
2023-01-26 01:47:32,232	9nineM	INFO	Train Epoch: 11 [18%]
2023-01-26 01:47:32,232	9nineM	INFO	[2.6612348556518555, 1.988817811012268, 3.1589221954345703, 25.66359519958496, 1.9967055320739746, 1.3854045867919922, 5800, 0.00019972517181056292]
2023-01-26 01:50:52,101	9nineM	INFO	Train Epoch: 11 [53%]
2023-01-26 01:50:52,101	9nineM	INFO	[2.4814376831054688, 2.278113842010498, 3.72249436378479, 27.97443389892578, 1.910007357597351, 1.6735199689865112, 6000, 0.00019972517181056292]
2023-01-26 01:51:18,095	9nineM	INFO	Saving model and optimizer state at iteration 11 to ./logs\9nineM\G_6000.pth
2023-01-26 01:51:18,748	9nineM	INFO	Saving model and optimizer state at iteration 11 to ./logs\9nineM\D_6000.pth
2023-01-26 01:54:41,547	9nineM	INFO	Train Epoch: 11 [88%]
2023-01-26 01:54:41,548	9nineM	INFO	[2.840207099914551, 1.8148894309997559, 2.635929584503174, 21.973249435424805, 1.9021368026733398, 1.4054532051086426, 6200, 0.00019972517181056292]
2023-01-26 01:55:52,153	9nineM	INFO	====> Epoch: 11
2023-01-26 01:58:25,991	9nineM	INFO	Train Epoch: 12 [23%]
2023-01-26 01:58:25,992	9nineM	INFO	[2.571866035461426, 2.0023553371429443, 3.5940442085266113, 23.71394157409668, 1.854814052581787, 1.5348354578018188, 6400, 0.0001997002061640866]
2023-01-26 01:58:51,408	9nineM	INFO	Saving model and optimizer state at iteration 12 to ./logs\9nineM\G_6400.pth
2023-01-26 01:58:52,079	9nineM	INFO	Saving model and optimizer state at iteration 12 to ./logs\9nineM\D_6400.pth
2023-01-26 02:02:13,024	9nineM	INFO	Train Epoch: 12 [58%]
2023-01-26 02:02:13,024	9nineM	INFO	[2.714251756668091, 1.8494516611099243, 2.969529628753662, 23.68009376525879, 1.8685411214828491, 1.7101963758468628, 6600, 0.0001997002061640866]
2023-01-26 02:05:34,069	9nineM	INFO	Train Epoch: 12 [93%]
2023-01-26 02:05:34,069	9nineM	INFO	[2.633039951324463, 2.013820171356201, 3.084203004837036, 24.739593505859375, 1.8181004524230957, 1.4082469940185547, 6800, 0.0001997002061640866]
2023-01-26 02:05:59,782	9nineM	INFO	Saving model and optimizer state at iteration 12 to ./logs\9nineM\G_6800.pth
2023-01-26 02:06:00,459	9nineM	INFO	Saving model and optimizer state at iteration 12 to ./logs\9nineM\D_6800.pth
2023-01-26 02:06:41,305	9nineM	INFO	====> Epoch: 12
2023-01-26 02:09:44,501	9nineM	INFO	Train Epoch: 13 [28%]
2023-01-26 02:09:44,502	9nineM	INFO	[2.659205436706543, 2.0233755111694336, 3.2026572227478027, 26.249746322631836, 1.8654255867004395, 1.6150071620941162, 7000, 0.00019967524363831608]
2023-01-26 09:02:48,598	9nineM	INFO	{'train': {'log_interval': 200, 'eval_interval': 400, 'seed': 1234, 'epochs': 1000, 'learning_rate': 0.0002, 'betas': [0.8, 0.99], 'eps': 1e-09, 'batch_size': 16, 'fp16_run': False, 'lr_decay': 0.999875, 'segment_size': 8192, 'init_lr_ratio': 1, 'warmup_epochs': 0, 'c_mel': 45, 'c_kl': 1.0}, 'data': {'training_files': 'filelists/9nine_multi/filelists/MultiNoHaru_train.txt.cleaned', 'validation_files': 'filelists/9nine_multi/filelists/MultiNoHaru_valid.txt.cleaned', 'text_cleaners': ['japanese_cleaners2'], 'max_wav_value': 32768.0, 'sampling_rate': 22050, 'filter_length': 1024, 'hop_length': 256, 'win_length': 1024, 'n_mel_channels': 80, 'mel_fmin': 0.0, 'mel_fmax': None, 'add_blank': True, 'n_speakers': 5, 'cleaned_text': True}, 'model': {'inter_channels': 192, 'hidden_channels': 192, 'filter_channels': 768, 'n_heads': 2, 'n_layers': 6, 'kernel_size': 3, 'p_dropout': 0.1, 'resblock': '1', 'resblock_kernel_sizes': [3, 7, 11], 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'upsample_rates': [8, 8, 2, 2], 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [16, 16, 4, 4], 'n_layers_q': 3, 'use_spectral_norm': False, 'gin_channels': 256}, 'model_dir': './logs\\9nineM', 'ckptG': None, 'ckptD': None}
2023-01-26 09:02:52,820	9nineM	INFO	Loaded checkpoint './logs\9nineM\G_6800.pth' (iteration 12)
2023-01-26 09:02:53,280	9nineM	INFO	Loaded checkpoint './logs\9nineM\D_6800.pth' (iteration 12)
2023-01-26 09:03:48,148	9nineM	INFO	Train Epoch: 12 [2%]
2023-01-26 09:03:48,148	9nineM	INFO	[2.67508602142334, 2.0451996326446533, 3.7132022380828857, 26.097049713134766, 1.8588463068008423, 1.780286431312561, 9400, 0.00019967524363831608]
2023-01-26 09:07:02,008	9nineM	INFO	Train Epoch: 12 [25%]
2023-01-26 09:07:02,009	9nineM	INFO	[2.731718063354492, 2.0827178955078125, 2.848446846008301, 25.81690216064453, 1.7822844982147217, 1.586802363395691, 9600, 0.00019967524363831608]
2023-01-26 09:07:32,154	9nineM	INFO	Saving model and optimizer state at iteration 12 to ./logs\9nineM\G_9600.pth
2023-01-26 09:07:33,015	9nineM	INFO	Saving model and optimizer state at iteration 12 to ./logs\9nineM\D_9600.pth
2023-01-26 09:10:21,101	9nineM	INFO	Train Epoch: 12 [49%]
2023-01-26 09:10:21,101	9nineM	INFO	[2.7443857192993164, 2.0565314292907715, 2.6688475608825684, 23.358121871948242, 1.7311820983886719, 1.3396525382995605, 9800, 0.00019967524363831608]
2023-01-26 09:13:06,102	9nineM	INFO	Train Epoch: 12 [72%]
2023-01-26 09:13:06,102	9nineM	INFO	[2.5754849910736084, 2.032925605773926, 3.5489773750305176, 28.008331298828125, 1.9132494926452637, 1.494615912437439, 10000, 0.00019967524363831608]
2023-01-26 09:13:32,731	9nineM	INFO	Saving model and optimizer state at iteration 12 to ./logs\9nineM\G_10000.pth
2023-01-26 09:13:33,393	9nineM	INFO	Saving model and optimizer state at iteration 12 to ./logs\9nineM\D_10000.pth
2023-01-26 09:16:18,444	9nineM	INFO	Train Epoch: 12 [96%]
2023-01-26 09:16:18,445	9nineM	INFO	[3.0923495292663574, 2.1421830654144287, 2.986941337585449, 26.63436508178711, 2.0824522972106934, 1.6558291912078857, 10200, 0.00019967524363831608]
2023-01-26 09:16:47,388	9nineM	INFO	====> Epoch: 12
2023-01-26 09:19:24,538	9nineM	INFO	Train Epoch: 13 [19%]
2023-01-26 09:19:24,538	9nineM	INFO	[2.610954999923706, 1.9253101348876953, 3.20231556892395, 23.34046173095703, 1.7719695568084717, 1.6583393812179565, 10400, 0.0001996502842328613]
2023-01-26 09:19:51,949	9nineM	INFO	Saving model and optimizer state at iteration 13 to ./logs\9nineM\G_10400.pth
2023-01-26 09:19:52,649	9nineM	INFO	Saving model and optimizer state at iteration 13 to ./logs\9nineM\D_10400.pth
2023-01-26 09:22:34,160	9nineM	INFO	Train Epoch: 13 [43%]
2023-01-26 09:22:34,161	9nineM	INFO	[2.7569684982299805, 1.9873456954956055, 2.755460500717163, 23.19409942626953, 1.8952136039733887, 1.5852245092391968, 10600, 0.0001996502842328613]
2023-01-26 09:25:16,266	9nineM	INFO	Train Epoch: 13 [66%]
2023-01-26 15:54:46,732	9nineM	INFO	[2.592890501022339, 1.9014997482299805, 3.476469039916992, 25.275184631347656, 1.8789172172546387, 1.4371107816696167, 10800, 0.0001996502842328613]
2023-01-26 15:55:05,473	9nineM	INFO	{'train': {'log_interval': 200, 'eval_interval': 400, 'seed': 1234, 'epochs': 1000, 'learning_rate': 0.0002, 'betas': [0.8, 0.99], 'eps': 1e-09, 'batch_size': 16, 'fp16_run': False, 'lr_decay': 0.999875, 'segment_size': 8192, 'init_lr_ratio': 1, 'warmup_epochs': 0, 'c_mel': 45, 'c_kl': 1.0}, 'data': {'training_files': 'filelists/9nine_multi/filelists/MultiNoHaru_train.txt.cleaned', 'validation_files': 'filelists/9nine_multi/filelists/MultiNoHaru_valid.txt.cleaned', 'text_cleaners': ['japanese_cleaners2'], 'max_wav_value': 32768.0, 'sampling_rate': 22050, 'filter_length': 1024, 'hop_length': 256, 'win_length': 1024, 'n_mel_channels': 80, 'mel_fmin': 0.0, 'mel_fmax': None, 'add_blank': True, 'n_speakers': 5, 'cleaned_text': True}, 'model': {'inter_channels': 192, 'hidden_channels': 192, 'filter_channels': 768, 'n_heads': 2, 'n_layers': 6, 'kernel_size': 3, 'p_dropout': 0.1, 'resblock': '1', 'resblock_kernel_sizes': [3, 7, 11], 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'upsample_rates': [8, 8, 2, 2], 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [16, 16, 4, 4], 'n_layers_q': 3, 'use_spectral_norm': False, 'gin_channels': 256}, 'model_dir': './logs\\9nineM', 'ckptG': None, 'ckptD': None}
2023-01-26 15:55:09,358	9nineM	INFO	Loaded checkpoint './logs\9nineM\G_10400.pth' (iteration 13)
2023-01-26 15:55:09,730	9nineM	INFO	Loaded checkpoint './logs\9nineM\D_10400.pth' (iteration 13)
2023-01-26 15:58:21,399	9nineM	INFO	Train Epoch: 13 [19%]
2023-01-26 15:58:21,399	9nineM	INFO	[2.716689109802246, 1.9423905611038208, 3.1998724937438965, 23.012908935546875, 1.7540184259414673, 1.386572003364563, 10400, 0.00019962532794733217]
2023-01-26 15:58:49,606	9nineM	INFO	Saving model and optimizer state at iteration 13 to ./logs\9nineM\G_10400.pth
2023-01-26 15:58:50,328	9nineM	INFO	Saving model and optimizer state at iteration 13 to ./logs\9nineM\D_10400.pth
2023-01-27 00:38:53,535	9nineM	INFO	{'train': {'log_interval': 200, 'eval_interval': 400, 'seed': 1234, 'epochs': 1000, 'learning_rate': 0.0002, 'betas': [0.8, 0.99], 'eps': 1e-09, 'batch_size': 16, 'fp16_run': False, 'lr_decay': 0.999875, 'segment_size': 8192, 'init_lr_ratio': 1, 'warmup_epochs': 0, 'c_mel': 45, 'c_kl': 1.0}, 'data': {'training_files': 'filelists/9nine_multi/filelists/MultiNoHaru_train.txt.cleaned', 'validation_files': 'filelists/9nine_multi/filelists/MultiNoHaru_valid.txt.cleaned', 'text_cleaners': ['japanese_cleaners2'], 'max_wav_value': 32768.0, 'sampling_rate': 22050, 'filter_length': 1024, 'hop_length': 256, 'win_length': 1024, 'n_mel_channels': 80, 'mel_fmin': 0.0, 'mel_fmax': None, 'add_blank': True, 'n_speakers': 5, 'cleaned_text': True}, 'model': {'inter_channels': 192, 'hidden_channels': 192, 'filter_channels': 768, 'n_heads': 2, 'n_layers': 6, 'kernel_size': 3, 'p_dropout': 0.1, 'resblock': '1', 'resblock_kernel_sizes': [3, 7, 11], 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'upsample_rates': [8, 8, 2, 2], 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [16, 16, 4, 4], 'n_layers_q': 3, 'use_spectral_norm': False, 'gin_channels': 256}, 'model_dir': './logs\\9nineM', 'ckptG': None, 'ckptD': None}
2023-01-27 00:39:02,315	9nineM	INFO	Loaded checkpoint './logs\9nineM\G_10400.pth' (iteration 13)
2023-01-27 00:39:02,742	9nineM	INFO	Loaded checkpoint './logs\9nineM\D_10400.pth' (iteration 13)
2023-01-27 00:42:11,285	9nineM	INFO	Train Epoch: 13 [19%]
2023-01-27 00:42:11,285	9nineM	INFO	[2.593064308166504, 2.0389575958251953, 3.3138771057128906, 22.423709869384766, 1.7547038793563843, 1.432450771331787, 10400, 0.00019960037478133875]
2023-01-27 00:42:32,259	9nineM	INFO	Saving model and optimizer state at iteration 13 to ./logs\9nineM\G_10400.pth
2023-01-27 00:42:33,008	9nineM	INFO	Saving model and optimizer state at iteration 13 to ./logs\9nineM\D_10400.pth
2023-01-27 00:46:13,827	9nineM	INFO	Train Epoch: 13 [43%]
2023-01-27 00:46:13,827	9nineM	INFO	[2.556051254272461, 1.9022951126098633, 3.661127805709839, 25.124727249145508, 1.8842947483062744, 1.5525946617126465, 10600, 0.00019960037478133875]
2023-01-27 00:49:07,975	9nineM	INFO	Train Epoch: 13 [66%]
2023-01-27 00:49:07,975	9nineM	INFO	[2.8230438232421875, 1.8189220428466797, 3.3968722820281982, 24.511898040771484, 1.8688939809799194, 1.4538723230361938, 10800, 0.00019960037478133875]
2023-01-27 00:49:28,686	9nineM	INFO	Saving model and optimizer state at iteration 13 to ./logs\9nineM\G_10800.pth
2023-01-27 00:49:29,421	9nineM	INFO	Saving model and optimizer state at iteration 13 to ./logs\9nineM\D_10800.pth
2023-01-27 00:52:19,115	9nineM	INFO	Train Epoch: 13 [90%]
2023-01-27 00:52:19,117	9nineM	INFO	[2.5895962715148926, 2.039095163345337, 3.4108002185821533, 24.823158264160156, 1.814432144165039, 1.4367151260375977, 11000, 0.00019960037478133875]
2023-01-27 00:53:33,975	9nineM	INFO	====> Epoch: 13
2023-01-27 00:55:27,532	9nineM	INFO	Train Epoch: 14 [13%]
2023-01-27 00:55:27,532	9nineM	INFO	[2.579453945159912, 2.1276276111602783, 3.180767297744751, 23.461275100708008, 1.7200267314910889, 1.4411695003509521, 11200, 0.00019957542473449108]
2023-01-27 00:55:48,182	9nineM	INFO	Saving model and optimizer state at iteration 14 to ./logs\9nineM\G_11200.pth
2023-01-27 00:55:48,900	9nineM	INFO	Saving model and optimizer state at iteration 14 to ./logs\9nineM\D_11200.pth
2023-01-27 00:58:39,222	9nineM	INFO	Train Epoch: 14 [36%]
2023-01-27 00:58:39,223	9nineM	INFO	[2.481574535369873, 2.234732151031494, 4.649705410003662, 29.452627182006836, 1.8431586027145386, 1.7566641569137573, 11400, 0.00019957542473449108]
2023-01-27 01:01:28,593	9nineM	INFO	Train Epoch: 14 [60%]
2023-01-27 01:01:28,594	9nineM	INFO	[2.433722972869873, 1.9445536136627197, 4.080624580383301, 25.17411994934082, 1.9031004905700684, 1.701436161994934, 11600, 0.00019957542473449108]
2023-01-27 01:01:49,821	9nineM	INFO	Saving model and optimizer state at iteration 14 to ./logs\9nineM\G_11600.pth
2023-01-27 01:01:50,532	9nineM	INFO	Saving model and optimizer state at iteration 14 to ./logs\9nineM\D_11600.pth
2023-01-27 01:04:40,027	9nineM	INFO	Train Epoch: 14 [83%]
2023-01-27 01:04:40,027	9nineM	INFO	[2.8180198669433594, 1.7142263650894165, 2.1654834747314453, 21.86096954345703, 1.836047649383545, 1.513923168182373, 11800, 0.00019957542473449108]
2023-01-27 01:06:39,771	9nineM	INFO	====> Epoch: 14
2023-01-27 01:07:50,087	9nineM	INFO	Train Epoch: 15 [7%]
2023-01-27 01:07:50,088	9nineM	INFO	[2.7611851692199707, 1.9578686952590942, 3.163517951965332, 23.736661911010742, 1.855008840560913, 1.37441086769104, 12000, 0.00019955047780639926]
2023-01-27 01:08:10,892	9nineM	INFO	Saving model and optimizer state at iteration 15 to ./logs\9nineM\G_12000.pth
2023-01-27 01:08:11,614	9nineM	INFO	Saving model and optimizer state at iteration 15 to ./logs\9nineM\D_12000.pth
2023-01-27 01:10:58,238	9nineM	INFO	Train Epoch: 15 [30%]
2023-01-27 01:10:58,238	9nineM	INFO	[2.6380977630615234, 2.1591074466705322, 3.333003044128418, 26.53448486328125, 1.8846534490585327, 1.4161484241485596, 12200, 0.00019955047780639926]
2023-01-27 01:13:48,357	9nineM	INFO	Train Epoch: 15 [54%]
2023-01-27 01:13:48,357	9nineM	INFO	[2.781557083129883, 1.881882905960083, 2.525613307952881, 23.762874603271484, 1.7821922302246094, 1.4436811208724976, 12400, 0.00019955047780639926]
2023-01-27 01:14:08,613	9nineM	INFO	Saving model and optimizer state at iteration 15 to ./logs\9nineM\G_12400.pth
2023-01-27 01:14:09,329	9nineM	INFO	Saving model and optimizer state at iteration 15 to ./logs\9nineM\D_12400.pth
2023-01-27 01:16:59,263	9nineM	INFO	Train Epoch: 15 [77%]
2023-01-27 01:16:59,264	9nineM	INFO	[2.6985788345336914, 2.0964505672454834, 3.055563449859619, 25.889053344726562, 1.8032093048095703, 1.5241085290908813, 12600, 0.00019955047780639926]
2023-01-27 01:19:43,427	9nineM	INFO	====> Epoch: 15
2023-01-27 01:20:08,148	9nineM	INFO	Train Epoch: 16 [1%]
2023-01-27 01:20:08,149	9nineM	INFO	[2.829136610031128, 1.9012501239776611, 2.156665802001953, 18.423717498779297, 1.8231360912322998, 1.171872854232788, 12800, 0.00019952553399667344]
2023-01-27 01:20:28,566	9nineM	INFO	Saving model and optimizer state at iteration 16 to ./logs\9nineM\G_12800.pth
2023-01-27 01:20:29,380	9nineM	INFO	Saving model and optimizer state at iteration 16 to ./logs\9nineM\D_12800.pth
2023-01-27 01:23:18,991	9nineM	INFO	Train Epoch: 16 [24%]
2023-01-27 01:23:18,991	9nineM	INFO	[2.5594887733459473, 1.8920013904571533, 3.3290469646453857, 23.873504638671875, 1.8619343042373657, 1.33939528465271, 13000, 0.00019952553399667344]
2023-01-27 01:26:07,022	9nineM	INFO	Train Epoch: 16 [47%]
2023-01-27 01:26:07,022	9nineM	INFO	[2.687272787094116, 2.1016502380371094, 3.4579007625579834, 24.758956909179688, 2.1824357509613037, 1.4737794399261475, 13200, 0.00019952553399667344]
2023-01-27 01:26:27,949	9nineM	INFO	Saving model and optimizer state at iteration 16 to ./logs\9nineM\G_13200.pth
2023-01-27 01:26:28,659	9nineM	INFO	Saving model and optimizer state at iteration 16 to ./logs\9nineM\D_13200.pth
2023-01-27 01:29:17,992	9nineM	INFO	Train Epoch: 16 [71%]
2023-01-27 01:29:17,993	9nineM	INFO	[2.369150400161743, 2.2178428173065186, 4.281978130340576, 27.698043823242188, 1.7796082496643066, 1.4050066471099854, 13400, 0.00019952553399667344]
2023-01-27 01:32:06,129	9nineM	INFO	Train Epoch: 16 [94%]
2023-01-27 01:32:06,130	9nineM	INFO	[2.589958429336548, 1.8505977392196655, 4.508889675140381, 27.62240219116211, 1.8430498838424683, 1.6121509075164795, 13600, 0.00019952553399667344]
2023-01-27 01:32:27,115	9nineM	INFO	Saving model and optimizer state at iteration 16 to ./logs\9nineM\G_13600.pth
2023-01-27 01:32:27,776	9nineM	INFO	Saving model and optimizer state at iteration 16 to ./logs\9nineM\D_13600.pth
2023-01-27 01:33:09,471	9nineM	INFO	====> Epoch: 16
2023-01-27 02:17:32,708	9nineM	INFO	Train Epoch: 17 [18%]
2023-01-27 02:17:32,709	9nineM	INFO	[2.5355350971221924, 2.052407741546631, 3.6694445610046387, 24.39693260192871, 1.6474822759628296, 1.6971988677978516, 13800, 0.00019950059330492385]
2023-01-27 02:20:34,347	9nineM	INFO	Train Epoch: 17 [41%]
2023-01-27 02:20:34,347	9nineM	INFO	[2.6254193782806396, 1.9815117120742798, 3.237941026687622, 25.04691505432129, 1.856569528579712, 1.5068683624267578, 14000, 0.00019950059330492385]
2023-01-27 02:20:57,626	9nineM	INFO	Saving model and optimizer state at iteration 17 to ./logs\9nineM\G_14000.pth
2023-01-27 02:20:58,314	9nineM	INFO	Saving model and optimizer state at iteration 17 to ./logs\9nineM\D_14000.pth
2023-01-27 02:23:47,432	9nineM	INFO	Train Epoch: 17 [65%]
2023-01-27 02:23:47,432	9nineM	INFO	[2.7365574836730957, 1.892822265625, 4.043918609619141, 28.595083236694336, 1.8436254262924194, 1.4542126655578613, 14200, 0.00019950059330492385]
2023-01-27 02:26:35,935	9nineM	INFO	Train Epoch: 17 [88%]
2023-01-27 02:26:35,936	9nineM	INFO	[2.5287258625030518, 2.2656726837158203, 4.5845842361450195, 26.422998428344727, 1.8147163391113281, 2.022395610809326, 14400, 0.00019950059330492385]
2023-01-27 02:26:57,398	9nineM	INFO	Saving model and optimizer state at iteration 17 to ./logs\9nineM\G_14400.pth
2023-01-27 02:26:58,079	9nineM	INFO	Saving model and optimizer state at iteration 17 to ./logs\9nineM\D_14400.pth
2023-01-27 02:28:22,913	9nineM	INFO	====> Epoch: 17
2023-01-27 02:30:06,542	9nineM	INFO	Train Epoch: 18 [12%]
2023-01-27 02:30:06,542	9nineM	INFO	[2.778486967086792, 1.9738329648971558, 2.865037202835083, 21.840980529785156, 1.8540937900543213, 1.3941742181777954, 14600, 0.00019947565573076072]
2023-01-27 02:32:53,975	9nineM	INFO	Train Epoch: 18 [35%]
2023-01-27 02:32:53,976	9nineM	INFO	[2.7022876739501953, 2.006470203399658, 3.4777889251708984, 23.463714599609375, 1.8447226285934448, 1.5847468376159668, 14800, 0.00019947565573076072]
2023-01-27 02:33:17,026	9nineM	INFO	Saving model and optimizer state at iteration 18 to ./logs\9nineM\G_14800.pth
2023-01-27 02:33:17,823	9nineM	INFO	Saving model and optimizer state at iteration 18 to ./logs\9nineM\D_14800.pth
2023-01-27 02:36:05,752	9nineM	INFO	Train Epoch: 18 [58%]
2023-01-27 02:36:05,752	9nineM	INFO	[2.6429147720336914, 1.9132986068725586, 2.695805072784424, 21.64963722229004, 1.835808515548706, 1.7501988410949707, 15000, 0.00019947565573076072]
2023-01-27 02:38:53,179	9nineM	INFO	Train Epoch: 18 [82%]
2023-01-27 02:38:53,179	9nineM	INFO	[2.5898306369781494, 2.3537399768829346, 4.625082015991211, 26.387826919555664, 1.6278905868530273, 1.1732033491134644, 15200, 0.00019947565573076072]
2023-01-27 02:39:15,268	9nineM	INFO	Saving model and optimizer state at iteration 18 to ./logs\9nineM\G_15200.pth
2023-01-27 02:39:15,999	9nineM	INFO	Saving model and optimizer state at iteration 18 to ./logs\9nineM\D_15200.pth
2023-01-27 02:41:24,911	9nineM	INFO	====> Epoch: 18
2023-01-27 02:42:24,025	9nineM	INFO	Train Epoch: 19 [5%]
2023-01-27 02:42:24,026	9nineM	INFO	[2.788545608520508, 1.7051345109939575, 2.6826417446136475, 22.653915405273438, 1.8110618591308594, 1.6172281503677368, 15400, 0.00019945072127379438]
2023-01-27 02:45:12,216	9nineM	INFO	Train Epoch: 19 [29%]
2023-01-27 02:45:12,217	9nineM	INFO	[2.7693731784820557, 2.0767621994018555, 3.6112165451049805, 25.01015281677246, 1.833752989768982, 1.9589978456497192, 15600, 0.00019945072127379438]
2023-01-27 02:45:34,167	9nineM	INFO	Saving model and optimizer state at iteration 19 to ./logs\9nineM\G_15600.pth
2023-01-27 02:45:34,961	9nineM	INFO	Saving model and optimizer state at iteration 19 to ./logs\9nineM\D_15600.pth
2023-01-27 02:48:22,774	9nineM	INFO	Train Epoch: 19 [52%]
2023-01-27 02:48:22,774	9nineM	INFO	[2.8319051265716553, 1.6597378253936768, 2.118863105773926, 18.201990127563477, 1.8336409330368042, 1.4559197425842285, 15800, 0.00019945072127379438]
2023-01-27 08:46:44,957	9nineM	INFO	Train Epoch: 19 [76%]
2023-01-27 08:46:44,958	9nineM	INFO	[2.675089120864868, 1.9621834754943848, 3.9128692150115967, 27.38287353515625, 1.9015834331512451, 1.762534737586975, 16000, 0.00019945072127379438]
2023-01-27 08:47:07,560	9nineM	INFO	Saving model and optimizer state at iteration 19 to ./logs\9nineM\G_16000.pth
2023-01-27 08:47:08,457	9nineM	INFO	Saving model and optimizer state at iteration 19 to ./logs\9nineM\D_16000.pth
2023-01-27 08:49:57,926	9nineM	INFO	Train Epoch: 19 [99%]
2023-01-27 08:49:57,926	9nineM	INFO	[2.556715965270996, 2.1266891956329346, 3.8266289234161377, 22.89759635925293, 1.8226630687713623, 1.8882153034210205, 16200, 0.00019945072127379438]
2023-01-27 08:50:04,038	9nineM	INFO	====> Epoch: 19
2023-01-27 08:53:13,237	9nineM	INFO	Train Epoch: 20 [23%]
2023-01-27 08:53:13,238	9nineM	INFO	[2.628126621246338, 2.0548593997955322, 3.6064229011535645, 23.717012405395508, 1.8935389518737793, 1.7230987548828125, 16400, 0.00019942578993363514]
2023-01-27 08:53:35,923	9nineM	INFO	Saving model and optimizer state at iteration 20 to ./logs\9nineM\G_16400.pth
2023-01-27 08:53:36,716	9nineM	INFO	Saving model and optimizer state at iteration 20 to ./logs\9nineM\D_16400.pth
2023-01-27 08:56:28,080	9nineM	INFO	Train Epoch: 20 [46%]
2023-01-27 08:56:28,081	9nineM	INFO	[2.8109192848205566, 1.8798633813858032, 2.577960729598999, 22.258501052856445, 1.7860854864120483, 1.5884227752685547, 16600, 0.00019942578993363514]
2023-01-27 08:59:17,974	9nineM	INFO	Train Epoch: 20 [70%]
2023-01-27 08:59:17,975	9nineM	INFO	[2.5190656185150146, 2.161292552947998, 4.299125671386719, 24.388322830200195, 1.8102023601531982, 1.8811415433883667, 16800, 0.00019942578993363514]
2023-01-27 08:59:41,933	9nineM	INFO	Saving model and optimizer state at iteration 20 to ./logs\9nineM\G_16800.pth
2023-01-27 08:59:42,645	9nineM	INFO	Saving model and optimizer state at iteration 20 to ./logs\9nineM\D_16800.pth
2023-01-27 09:02:31,134	9nineM	INFO	Train Epoch: 20 [93%]
2023-01-27 09:02:31,134	9nineM	INFO	[2.8164849281311035, 1.896257996559143, 2.8522329330444336, 21.2325496673584, 1.7639973163604736, 1.490799903869629, 17000, 0.00019942578993363514]
2023-01-27 09:03:22,220	9nineM	INFO	====> Epoch: 20
2023-01-27 09:05:39,499	9nineM	INFO	Train Epoch: 21 [16%]
2023-01-27 09:05:39,499	9nineM	INFO	[2.772402286529541, 1.900153398513794, 3.176760196685791, 24.0812931060791, 1.7919937372207642, 2.015469789505005, 17200, 0.00019940086170989343]
2023-01-27 09:06:03,219	9nineM	INFO	Saving model and optimizer state at iteration 21 to ./logs\9nineM\G_17200.pth
2023-01-27 09:06:03,932	9nineM	INFO	Saving model and optimizer state at iteration 21 to ./logs\9nineM\D_17200.pth
2023-01-27 09:08:54,501	9nineM	INFO	Train Epoch: 21 [40%]
2023-01-27 09:08:54,501	9nineM	INFO	[2.5729994773864746, 2.1857287883758545, 4.042057991027832, 25.70033073425293, 1.777273416519165, 1.5419124364852905, 17400, 0.00019940086170989343]
2023-01-27 09:11:42,668	9nineM	INFO	Train Epoch: 21 [63%]
2023-01-27 09:11:42,669	9nineM	INFO	[2.6897244453430176, 1.9821608066558838, 3.606863021850586, 24.428430557250977, 1.7553237676620483, 1.764305830001831, 17600, 0.00019940086170989343]
2023-01-27 09:12:05,022	9nineM	INFO	Saving model and optimizer state at iteration 21 to ./logs\9nineM\G_17600.pth
2023-01-27 09:12:05,752	9nineM	INFO	Saving model and optimizer state at iteration 21 to ./logs\9nineM\D_17600.pth
2023-01-27 09:14:54,081	9nineM	INFO	Train Epoch: 21 [87%]
2023-01-27 09:14:54,081	9nineM	INFO	[2.6521155834198, 2.0298845767974854, 3.739675283432007, 22.376190185546875, 1.7662222385406494, 1.4541441202163696, 17800, 0.00019940086170989343]
2023-01-27 09:16:29,852	9nineM	INFO	====> Epoch: 21
2023-01-27 09:18:03,846	9nineM	INFO	Train Epoch: 22 [10%]
2023-01-27 09:18:03,847	9nineM	INFO	[2.406970262527466, 2.1758666038513184, 5.130042552947998, 26.4575138092041, 1.676621437072754, 1.8340210914611816, 18000, 0.0001993759366021797]
2023-01-27 09:18:25,337	9nineM	INFO	Saving model and optimizer state at iteration 22 to ./logs\9nineM\G_18000.pth
2023-01-27 09:18:26,045	9nineM	INFO	Saving model and optimizer state at iteration 22 to ./logs\9nineM\D_18000.pth
2023-01-27 09:21:17,570	9nineM	INFO	Train Epoch: 22 [34%]
2023-01-27 09:21:17,571	9nineM	INFO	[2.5022988319396973, 2.1709604263305664, 3.877980947494507, 22.339065551757812, 1.8137295246124268, 1.437728762626648, 18200, 0.0001993759366021797]
2023-01-27 09:24:04,864	9nineM	INFO	Train Epoch: 22 [57%]
2023-01-27 09:24:04,865	9nineM	INFO	[2.3194479942321777, 2.346053123474121, 5.446766376495361, 26.25181007385254, 1.7403613328933716, 1.8677756786346436, 18400, 0.0001993759366021797]
2023-01-27 09:24:26,720	9nineM	INFO	Saving model and optimizer state at iteration 22 to ./logs\9nineM\G_18400.pth
2023-01-27 09:24:27,402	9nineM	INFO	Saving model and optimizer state at iteration 22 to ./logs\9nineM\D_18400.pth
2023-01-27 09:27:16,868	9nineM	INFO	Train Epoch: 22 [81%]
2023-01-27 09:27:16,868	9nineM	INFO	[2.452756881713867, 2.172793388366699, 4.119320869445801, 23.355058670043945, 1.8487279415130615, 1.761566162109375, 18600, 0.0001993759366021797]
2023-01-27 09:29:35,014	9nineM	INFO	====> Epoch: 22
2023-01-27 09:30:23,489	9nineM	INFO	Train Epoch: 23 [4%]
2023-01-27 09:30:23,489	9nineM	INFO	[2.792853832244873, 1.8062174320220947, 3.4824717044830322, 23.77733039855957, 1.964911699295044, 1.4758468866348267, 18800, 0.00019935101461010442]
2023-01-27 09:30:44,870	9nineM	INFO	Saving model and optimizer state at iteration 23 to ./logs\9nineM\G_18800.pth
2023-01-27 09:30:45,742	9nineM	INFO	Saving model and optimizer state at iteration 23 to ./logs\9nineM\D_18800.pth
2023-01-27 09:33:33,331	9nineM	INFO	Train Epoch: 23 [27%]
2023-01-27 09:33:33,332	9nineM	INFO	[2.721318244934082, 1.8487977981567383, 2.9894800186157227, 22.064241409301758, 1.7476164102554321, 1.894697904586792, 19000, 0.00019935101461010442]
2023-01-27 09:36:22,533	9nineM	INFO	Train Epoch: 23 [51%]
2023-01-27 09:36:22,534	9nineM	INFO	[2.6044092178344727, 2.000493288040161, 3.9952263832092285, 24.704246520996094, 1.8112146854400635, 1.7995251417160034, 19200, 0.00019935101461010442]
2023-01-27 09:36:43,078	9nineM	INFO	Saving model and optimizer state at iteration 23 to ./logs\9nineM\G_19200.pth
2023-01-27 09:36:43,770	9nineM	INFO	Saving model and optimizer state at iteration 23 to ./logs\9nineM\D_19200.pth
2023-01-27 09:39:35,010	9nineM	INFO	Train Epoch: 23 [74%]
2023-01-27 09:39:35,010	9nineM	INFO	[2.6385550498962402, 2.076610803604126, 3.4242939949035645, 17.827404022216797, 1.7784342765808105, 1.388757348060608, 19400, 0.00019935101461010442]
2023-01-27 09:42:22,759	9nineM	INFO	Train Epoch: 23 [98%]
2023-01-27 09:42:22,759	9nineM	INFO	[2.553217887878418, 2.038116216659546, 4.58839750289917, 25.605993270874023, 1.7224760055541992, 1.8490962982177734, 19600, 0.00019935101461010442]
2023-01-27 09:42:44,576	9nineM	INFO	Saving model and optimizer state at iteration 23 to ./logs\9nineM\G_19600.pth
2023-01-27 09:42:45,389	9nineM	INFO	Saving model and optimizer state at iteration 23 to ./logs\9nineM\D_19600.pth
2023-01-27 09:43:01,903	9nineM	INFO	====> Epoch: 23
2023-01-27 09:45:49,362	9nineM	INFO	Train Epoch: 24 [21%]
2023-01-27 09:45:49,362	9nineM	INFO	[2.6483659744262695, 2.3957860469818115, 4.525054454803467, 27.254854202270508, 1.6894183158874512, 1.9978209733963013, 19800, 0.00019932609573327815]
2023-01-27 09:48:37,543	9nineM	INFO	Train Epoch: 24 [45%]
2023-01-27 09:48:37,543	9nineM	INFO	[2.5882065296173096, 1.9280962944030762, 4.218741416931152, 23.399566650390625, 1.7521426677703857, 1.6448408365249634, 20000, 0.00019932609573327815]
2023-01-27 09:48:58,253	9nineM	INFO	Saving model and optimizer state at iteration 24 to ./logs\9nineM\G_20000.pth
2023-01-27 09:48:58,918	9nineM	INFO	Saving model and optimizer state at iteration 24 to ./logs\9nineM\D_20000.pth
2023-01-30 13:59:29,423	9nineM	INFO	{'train': {'log_interval': 200, 'eval_interval': 400, 'seed': 1234, 'epochs': 1000, 'learning_rate': 0.0002, 'betas': [0.8, 0.99], 'eps': 1e-09, 'batch_size': 16, 'fp16_run': False, 'lr_decay': 0.999875, 'segment_size': 8192, 'init_lr_ratio': 1, 'warmup_epochs': 0, 'c_mel': 45, 'c_kl': 1.0}, 'data': {'training_files': 'filelists/9nine_multi/filelists/MultiNoHaru_train.txt.cleaned', 'validation_files': 'filelists/9nine_multi/filelists/MultiNoHaru_valid.txt.cleaned', 'text_cleaners': ['japanese_cleaners2'], 'max_wav_value': 32768.0, 'sampling_rate': 22050, 'filter_length': 1024, 'hop_length': 256, 'win_length': 1024, 'n_mel_channels': 80, 'mel_fmin': 0.0, 'mel_fmax': None, 'add_blank': True, 'n_speakers': 5, 'cleaned_text': True}, 'model': {'inter_channels': 192, 'hidden_channels': 192, 'filter_channels': 768, 'n_heads': 2, 'n_layers': 6, 'kernel_size': 3, 'p_dropout': 0.1, 'resblock': '1', 'resblock_kernel_sizes': [3, 7, 11], 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'upsample_rates': [8, 8, 2, 2], 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [16, 16, 4, 4], 'n_layers_q': 3, 'use_spectral_norm': False, 'gin_channels': 256}, 'model_dir': './logs\\9nineM', 'ckptG': None, 'ckptD': None}
2023-01-30 13:59:38,603	9nineM	INFO	Loaded checkpoint './logs\9nineM\G_20000.pth' (iteration 24)
2023-01-30 13:59:39,032	9nineM	INFO	Loaded checkpoint './logs\9nineM\D_20000.pth' (iteration 24)
2023-01-30 14:03:00,845	9nineM	INFO	Train Epoch: 24 [21%]
2023-01-30 14:03:00,846	9nineM	INFO	[2.4233226776123047, 2.264484405517578, 5.42818546295166, 26.408262252807617, 1.6991338729858398, 1.9326978921890259, 19800, 0.0001993011799713115]
2023-01-30 14:05:55,926	9nineM	INFO	Train Epoch: 24 [45%]
2023-01-30 14:05:55,926	9nineM	INFO	[2.7016305923461914, 2.134594678878784, 3.7914786338806152, 24.01327896118164, 1.7582862377166748, 1.6192069053649902, 20000, 0.0001993011799713115]
2023-01-30 14:06:17,885	9nineM	INFO	Saving model and optimizer state at iteration 24 to ./logs\9nineM\G_20000.pth
2023-01-30 14:06:18,616	9nineM	INFO	Saving model and optimizer state at iteration 24 to ./logs\9nineM\D_20000.pth
2023-01-30 14:09:10,456	9nineM	INFO	Train Epoch: 24 [68%]
2023-01-30 14:09:10,457	9nineM	INFO	[2.496549606323242, 2.2131459712982178, 4.638711929321289, 24.81015968322754, 1.9151177406311035, 1.8024846315383911, 20200, 0.0001993011799713115]
2023-01-30 14:11:55,194	9nineM	INFO	Train Epoch: 24 [92%]
2023-01-30 14:11:55,195	9nineM	INFO	[2.6104557514190674, 2.0642175674438477, 3.8007540702819824, 22.306468963623047, 1.720705270767212, 1.5101583003997803, 20400, 0.0001993011799713115]
2023-01-30 14:12:15,118	9nineM	INFO	Saving model and optimizer state at iteration 24 to ./logs\9nineM\G_20400.pth
2023-01-30 14:12:15,871	9nineM	INFO	Saving model and optimizer state at iteration 24 to ./logs\9nineM\D_20400.pth
2023-01-30 14:13:16,359	9nineM	INFO	====> Epoch: 24
2023-01-30 14:15:21,547	9nineM	INFO	Train Epoch: 25 [15%]
2023-01-30 14:15:21,548	9nineM	INFO	[2.5959115028381348, 2.238276481628418, 5.503964424133301, 27.154827117919922, 2.0218310356140137, 1.794956922531128, 20600, 0.00019927626732381507]
2023-01-30 14:18:07,501	9nineM	INFO	Train Epoch: 25 [38%]
2023-01-30 14:18:07,502	9nineM	INFO	[2.6357550621032715, 2.1467175483703613, 3.890899658203125, 20.90275764465332, 1.7875596284866333, 1.3034027814865112, 20800, 0.00019927626732381507]
2023-01-30 14:18:27,806	9nineM	INFO	Saving model and optimizer state at iteration 25 to ./logs\9nineM\G_20800.pth
2023-01-30 14:18:28,838	9nineM	INFO	Saving model and optimizer state at iteration 25 to ./logs\9nineM\D_20800.pth
2023-01-30 14:21:14,504	9nineM	INFO	Train Epoch: 25 [62%]
2023-01-30 14:21:14,504	9nineM	INFO	[2.5597102642059326, 1.9738388061523438, 4.298656940460205, 26.072538375854492, 1.8264048099517822, 1.645263671875, 21000, 0.00019927626732381507]
2023-01-30 14:23:56,732	9nineM	INFO	Train Epoch: 25 [85%]
2023-01-30 14:23:56,733	9nineM	INFO	[2.357044219970703, 2.2680459022521973, 5.406231880187988, 26.98268699645996, 1.8424121141433716, 1.744455337524414, 21200, 0.00019927626732381507]
2023-01-30 14:24:16,887	9nineM	INFO	Saving model and optimizer state at iteration 25 to ./logs\9nineM\G_21200.pth
2023-01-30 14:24:17,524	9nineM	INFO	Saving model and optimizer state at iteration 25 to ./logs\9nineM\D_21200.pth
2023-01-30 14:26:00,682	9nineM	INFO	====> Epoch: 25
2023-01-30 14:27:20,457	9nineM	INFO	Train Epoch: 26 [9%]
2023-01-30 14:27:20,457	9nineM	INFO	[2.513702392578125, 2.582909107208252, 5.313809394836426, 26.997928619384766, 1.891054630279541, 1.5602864027023315, 21400, 0.00019925135779039958]
2023-01-30 18:10:59,516	9nineM	INFO	Train Epoch: 26 [32%]
2023-01-30 18:10:59,517	9nineM	INFO	[2.7052407264709473, 1.8598670959472656, 3.4029574394226074, 23.73880958557129, 1.822087287902832, 1.5161125659942627, 21600, 0.00019925135779039958]
2023-01-30 18:11:20,473	9nineM	INFO	Saving model and optimizer state at iteration 26 to ./logs\9nineM\G_21600.pth
2023-01-30 18:11:21,309	9nineM	INFO	Saving model and optimizer state at iteration 26 to ./logs\9nineM\D_21600.pth
2023-01-30 18:14:08,306	9nineM	INFO	Train Epoch: 26 [56%]
2023-01-30 18:14:08,306	9nineM	INFO	[2.6186649799346924, 2.2027549743652344, 4.938816547393799, 26.00452423095703, 1.8225845098495483, 1.6558605432510376, 21800, 0.00019925135779039958]
2023-01-30 18:16:57,734	9nineM	INFO	Train Epoch: 26 [79%]
2023-01-30 18:16:57,735	9nineM	INFO	[2.551978588104248, 2.255690336227417, 4.471135139465332, 23.771936416625977, 1.763396143913269, 2.0592684745788574, 22000, 0.00019925135779039958]
2023-01-30 18:17:20,708	9nineM	INFO	Saving model and optimizer state at iteration 26 to ./logs\9nineM\G_22000.pth
2023-01-30 18:17:21,406	9nineM	INFO	Saving model and optimizer state at iteration 26 to ./logs\9nineM\D_22000.pth
2023-01-30 18:19:51,123	9nineM	INFO	====> Epoch: 26
2023-01-30 18:20:29,464	9nineM	INFO	Train Epoch: 27 [3%]
2023-01-30 18:20:29,465	9nineM	INFO	[2.6391866207122803, 2.0543909072875977, 3.5250117778778076, 20.959144592285156, 1.9019776582717896, 1.7802704572677612, 22200, 0.00019922645137067577]
2023-01-30 18:23:15,861	9nineM	INFO	Train Epoch: 27 [26%]
2023-01-30 18:23:15,861	9nineM	INFO	[2.5170674324035645, 2.090766191482544, 4.516193866729736, 24.13702964782715, 1.7424182891845703, 1.6825942993164062, 22400, 0.00019922645137067577]
2023-01-30 18:23:39,074	9nineM	INFO	Saving model and optimizer state at iteration 27 to ./logs\9nineM\G_22400.pth
2023-01-30 18:23:39,826	9nineM	INFO	Saving model and optimizer state at iteration 27 to ./logs\9nineM\D_22400.pth
2023-01-30 18:26:23,799	9nineM	INFO	Train Epoch: 27 [49%]
2023-01-30 18:26:23,800	9nineM	INFO	[2.547278881072998, 1.9589873552322388, 4.607811450958252, 25.4031982421875, 1.9924721717834473, 1.5493937730789185, 22600, 0.00019922645137067577]
2023-01-30 18:29:08,934	9nineM	INFO	Train Epoch: 27 [73%]
2023-01-30 18:29:08,935	9nineM	INFO	[2.5946264266967773, 2.019632339477539, 3.988851547241211, 23.66800308227539, 1.797306776046753, 1.6523672342300415, 22800, 0.00019922645137067577]
2023-01-30 18:29:32,238	9nineM	INFO	Saving model and optimizer state at iteration 27 to ./logs\9nineM\G_22800.pth
2023-01-30 18:29:32,841	9nineM	INFO	Saving model and optimizer state at iteration 27 to ./logs\9nineM\D_22800.pth
2023-01-30 18:32:17,705	9nineM	INFO	Train Epoch: 27 [96%]
2023-01-30 18:32:17,705	9nineM	INFO	[2.547029733657837, 2.055783987045288, 4.41702127456665, 23.861553192138672, 1.7669410705566406, 1.7388036251068115, 23000, 0.00019922645137067577]
2023-01-30 18:32:43,688	9nineM	INFO	====> Epoch: 27
2023-01-30 18:35:21,166	9nineM	INFO	Train Epoch: 28 [20%]
2023-01-30 18:35:21,167	9nineM	INFO	[2.7444093227386475, 1.7981352806091309, 3.0811824798583984, 20.980642318725586, 1.913151502609253, 1.5842145681381226, 23200, 0.00019920154806425444]
2023-01-30 18:35:41,774	9nineM	INFO	Saving model and optimizer state at iteration 28 to ./logs\9nineM\G_23200.pth
2023-01-30 18:35:42,381	9nineM	INFO	Saving model and optimizer state at iteration 28 to ./logs\9nineM\D_23200.pth
2023-01-30 18:38:26,005	9nineM	INFO	Train Epoch: 28 [43%]
2023-01-30 18:38:26,006	9nineM	INFO	[2.6017751693725586, 2.223775625228882, 3.6733932495117188, 22.91482162475586, 1.9081027507781982, 1.4144500494003296, 23400, 0.00019920154806425444]
2023-01-30 18:41:10,378	9nineM	INFO	Train Epoch: 28 [67%]
2023-01-30 18:41:10,379	9nineM	INFO	[2.670208692550659, 1.9337886571884155, 4.112267017364502, 26.20232582092285, 1.8177591562271118, 1.6691386699676514, 23600, 0.00019920154806425444]
2023-01-30 18:41:31,000	9nineM	INFO	Saving model and optimizer state at iteration 28 to ./logs\9nineM\G_23600.pth
2023-01-30 18:41:31,643	9nineM	INFO	Saving model and optimizer state at iteration 28 to ./logs\9nineM\D_23600.pth
2023-01-30 18:44:14,911	9nineM	INFO	Train Epoch: 28 [90%]
2023-01-30 18:44:15,550	9nineM	INFO	[2.633009672164917, 1.9814497232437134, 3.7151012420654297, 22.778528213500977, 1.764923095703125, 1.6637474298477173, 23800, 0.00019920154806425444]
2023-01-30 18:45:25,479	9nineM	INFO	====> Epoch: 28
2023-01-30 18:47:21,988	9nineM	INFO	Train Epoch: 29 [14%]
2023-01-30 18:47:21,988	9nineM	INFO	[2.649714469909668, 2.1912989616394043, 4.456567764282227, 26.76620101928711, 1.807680606842041, 1.6745903491973877, 24000, 0.0001991766478707464]
2023-01-30 18:47:42,427	9nineM	INFO	Saving model and optimizer state at iteration 29 to ./logs\9nineM\G_24000.pth
2023-01-30 18:47:43,051	9nineM	INFO	Saving model and optimizer state at iteration 29 to ./logs\9nineM\D_24000.pth
2023-01-30 18:50:28,999	9nineM	INFO	Train Epoch: 29 [37%]
2023-01-30 18:50:28,999	9nineM	INFO	[2.6999549865722656, 1.72980535030365, 3.750908613204956, 21.631378173828125, 1.8146204948425293, 1.8793796300888062, 24200, 0.0001991766478707464]
2023-01-30 18:53:16,206	9nineM	INFO	Train Epoch: 29 [60%]
2023-01-30 18:53:16,207	9nineM	INFO	[2.6130964756011963, 2.2319231033325195, 3.7719619274139404, 23.3356990814209, 1.9559910297393799, 1.5747816562652588, 24400, 0.0001991766478707464]
2023-01-30 18:53:37,035	9nineM	INFO	Saving model and optimizer state at iteration 29 to ./logs\9nineM\G_24400.pth
2023-01-30 18:53:37,742	9nineM	INFO	Saving model and optimizer state at iteration 29 to ./logs\9nineM\D_24400.pth
2023-01-30 18:56:24,358	9nineM	INFO	Train Epoch: 29 [84%]
2023-01-30 18:56:24,359	9nineM	INFO	[2.4868788719177246, 2.1619656085968018, 3.933049440383911, 22.357912063598633, 1.8085817098617554, 1.6935052871704102, 24600, 0.0001991766478707464]
2023-01-30 18:58:19,433	9nineM	INFO	====> Epoch: 29
2023-01-30 18:59:31,794	9nineM	INFO	Train Epoch: 30 [7%]
2023-01-30 18:59:31,795	9nineM	INFO	[2.499490261077881, 2.3587687015533447, 5.103172779083252, 25.08675193786621, 1.7192392349243164, 1.5048335790634155, 24800, 0.00019915175078976256]
2023-01-30 18:59:52,771	9nineM	INFO	Saving model and optimizer state at iteration 30 to ./logs\9nineM\G_24800.pth
2023-01-30 18:59:53,387	9nineM	INFO	Saving model and optimizer state at iteration 30 to ./logs\9nineM\D_24800.pth
2023-01-30 19:02:38,186	9nineM	INFO	Train Epoch: 30 [31%]
2023-01-30 19:02:38,186	9nineM	INFO	[2.583420753479004, 2.1125028133392334, 3.964524984359741, 23.267152786254883, 1.8850966691970825, 1.6562895774841309, 25000, 0.00019915175078976256]
2023-01-31 04:49:25,531	9nineM	INFO	{'train': {'log_interval': 200, 'eval_interval': 400, 'seed': 1234, 'epochs': 1000, 'learning_rate': 0.0002, 'betas': [0.8, 0.99], 'eps': 1e-09, 'batch_size': 16, 'fp16_run': False, 'lr_decay': 0.999875, 'segment_size': 8192, 'init_lr_ratio': 1, 'warmup_epochs': 0, 'c_mel': 45, 'c_kl': 1.0}, 'data': {'training_files': 'filelists/9nine_multi/filelists/MultiNoHaru_train.txt.cleaned', 'validation_files': 'filelists/9nine_multi/filelists/MultiNoHaru_valid.txt.cleaned', 'text_cleaners': ['japanese_cleaners2'], 'max_wav_value': 32768.0, 'sampling_rate': 22050, 'filter_length': 1024, 'hop_length': 256, 'win_length': 1024, 'n_mel_channels': 80, 'mel_fmin': 0.0, 'mel_fmax': None, 'add_blank': True, 'n_speakers': 5, 'cleaned_text': True}, 'model': {'inter_channels': 192, 'hidden_channels': 192, 'filter_channels': 768, 'n_heads': 2, 'n_layers': 6, 'kernel_size': 3, 'p_dropout': 0.1, 'resblock': '1', 'resblock_kernel_sizes': [3, 7, 11], 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'upsample_rates': [8, 8, 2, 2], 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [16, 16, 4, 4], 'n_layers_q': 3, 'use_spectral_norm': False, 'gin_channels': 256}, 'model_dir': './logs\\9nineM', 'ckptG': None, 'ckptD': None}
2023-01-31 04:49:35,110	9nineM	INFO	Loaded checkpoint './logs\9nineM\G_24800.pth' (iteration 30)
2023-01-31 04:49:35,569	9nineM	INFO	Loaded checkpoint './logs\9nineM\D_24800.pth' (iteration 30)
2023-01-31 04:51:15,260	9nineM	INFO	Train Epoch: 30 [7%]
2023-01-31 04:51:15,260	9nineM	INFO	[2.6226367950439453, 2.27891206741333, 4.0941691398620605, 23.037940979003906, 1.7086595296859741, 1.4919545650482178, 24800, 0.00019912685682091382]
2023-01-31 04:51:36,640	9nineM	INFO	Saving model and optimizer state at iteration 30 to ./logs\9nineM\G_24800.pth
2023-01-31 04:51:37,318	9nineM	INFO	Saving model and optimizer state at iteration 30 to ./logs\9nineM\D_24800.pth
2023-01-31 04:54:43,694	9nineM	INFO	Train Epoch: 30 [31%]
2023-01-31 04:54:43,695	9nineM	INFO	[2.5988283157348633, 1.9622220993041992, 4.1986165046691895, 24.72119140625, 1.8875558376312256, 1.4754257202148438, 25000, 0.00019912685682091382]
2023-01-31 04:57:37,570	9nineM	INFO	Train Epoch: 30 [54%]
2023-01-31 04:57:37,570	9nineM	INFO	[2.561371088027954, 2.0544097423553467, 4.946720600128174, 25.388317108154297, 1.6937508583068848, 1.4395828247070312, 25200, 0.00019912685682091382]
2023-01-31 04:57:57,142	9nineM	INFO	Saving model and optimizer state at iteration 30 to ./logs\9nineM\G_25200.pth
2023-01-31 04:57:57,831	9nineM	INFO	Saving model and optimizer state at iteration 30 to ./logs\9nineM\D_25200.pth
2023-01-31 05:00:46,785	9nineM	INFO	Train Epoch: 30 [78%]
2023-01-31 05:00:46,786	9nineM	INFO	[2.680049180984497, 1.9173710346221924, 3.4602537155151367, 21.217208862304688, 1.7393698692321777, 1.491133213043213, 25400, 0.00019912685682091382]
2023-01-31 05:03:25,215	9nineM	INFO	====> Epoch: 30
2023-01-31 05:03:54,977	9nineM	INFO	Train Epoch: 31 [1%]
2023-01-31 05:03:54,978	9nineM	INFO	[2.5413079261779785, 2.105044364929199, 5.600437164306641, 25.1304874420166, 1.7264471054077148, 1.8673486709594727, 25600, 0.0001991019659638112]
2023-01-31 05:04:16,603	9nineM	INFO	Saving model and optimizer state at iteration 31 to ./logs\9nineM\G_25600.pth
2023-01-31 05:04:17,299	9nineM	INFO	Saving model and optimizer state at iteration 31 to ./logs\9nineM\D_25600.pth
2023-01-31 05:07:05,801	9nineM	INFO	Train Epoch: 31 [25%]
2023-01-31 05:07:05,802	9nineM	INFO	[2.3959808349609375, 2.241203784942627, 5.791626453399658, 25.418806076049805, 1.9717110395431519, 1.7215012311935425, 25800, 0.0001991019659638112]
2023-01-31 05:09:51,162	9nineM	INFO	Train Epoch: 31 [48%]
2023-01-31 05:09:51,162	9nineM	INFO	[2.6000561714172363, 2.079279661178589, 4.181294918060303, 22.890228271484375, 1.8438432216644287, 1.5096122026443481, 26000, 0.0001991019659638112]
2023-01-31 05:10:11,010	9nineM	INFO	Saving model and optimizer state at iteration 31 to ./logs\9nineM\G_26000.pth
2023-01-31 05:10:11,637	9nineM	INFO	Saving model and optimizer state at iteration 31 to ./logs\9nineM\D_26000.pth
2023-01-31 05:12:59,049	9nineM	INFO	Train Epoch: 31 [72%]
2023-01-31 05:12:59,049	9nineM	INFO	[2.6699235439300537, 2.1806726455688477, 5.055631160736084, 24.23531723022461, 1.797062635421753, 1.7649749517440796, 26200, 0.0001991019659638112]
2023-01-31 05:15:46,363	9nineM	INFO	Train Epoch: 31 [95%]
2023-01-31 05:15:46,363	9nineM	INFO	[2.6502323150634766, 2.0901808738708496, 3.862999200820923, 22.471010208129883, 1.7703263759613037, 1.6136788129806519, 26400, 0.0001991019659638112]
2023-01-31 05:16:06,340	9nineM	INFO	Saving model and optimizer state at iteration 31 to ./logs\9nineM\G_26400.pth
2023-01-31 05:16:06,965	9nineM	INFO	Saving model and optimizer state at iteration 31 to ./logs\9nineM\D_26400.pth
2023-01-31 05:16:42,029	9nineM	INFO	====> Epoch: 31
2023-01-31 05:19:12,147	9nineM	INFO	Train Epoch: 32 [18%]
2023-01-31 05:19:12,147	9nineM	INFO	[2.6070947647094727, 2.0558505058288574, 4.700134754180908, 25.00912094116211, 1.792651653289795, 1.6968674659729004, 26600, 0.0001990770782180657]
2023-01-31 05:21:57,844	9nineM	INFO	Train Epoch: 32 [42%]
2023-01-31 05:21:57,845	9nineM	INFO	[2.65460467338562, 2.012608051300049, 3.73614501953125, 22.191423416137695, 1.8420199155807495, 1.6775685548782349, 26800, 0.0001990770782180657]
2023-01-31 05:22:17,933	9nineM	INFO	Saving model and optimizer state at iteration 32 to ./logs\9nineM\G_26800.pth
2023-01-31 05:22:18,570	9nineM	INFO	Saving model and optimizer state at iteration 32 to ./logs\9nineM\D_26800.pth
2023-01-31 05:25:05,714	9nineM	INFO	Train Epoch: 32 [65%]
2023-01-31 05:25:05,715	9nineM	INFO	[2.508659839630127, 1.9928182363510132, 4.465345859527588, 23.401477813720703, 1.8576054573059082, 1.9069682359695435, 27000, 0.0001990770782180657]
2023-01-31 05:27:48,723	9nineM	INFO	Train Epoch: 32 [89%]
2023-01-31 05:27:48,724	9nineM	INFO	[2.682878255844116, 2.067652940750122, 5.124716758728027, 24.11802101135254, 1.7524895668029785, 1.6737695932388306, 27200, 0.0001990770782180657]
2023-01-31 05:28:09,228	9nineM	INFO	Saving model and optimizer state at iteration 32 to ./logs\9nineM\G_27200.pth
2023-01-31 05:28:09,926	9nineM	INFO	Saving model and optimizer state at iteration 32 to ./logs\9nineM\D_27200.pth
2023-01-31 05:29:29,049	9nineM	INFO	====> Epoch: 32
2023-01-31 14:47:22,857	9nineM	INFO	Train Epoch: 33 [12%]
2023-01-31 14:47:22,857	9nineM	INFO	[2.700671911239624, 2.1198341846466064, 3.753757953643799, 20.68313980102539, 1.7996970415115356, 1.574100136756897, 27400, 0.00019905219358328844]
2023-02-01 04:21:25,016	9nineM	INFO	{'train': {'log_interval': 200, 'eval_interval': 400, 'seed': 1234, 'epochs': 1000, 'learning_rate': 0.0002, 'betas': [0.8, 0.99], 'eps': 1e-09, 'batch_size': 16, 'fp16_run': False, 'lr_decay': 0.999875, 'segment_size': 8192, 'init_lr_ratio': 1, 'warmup_epochs': 0, 'c_mel': 45, 'c_kl': 1.0}, 'data': {'training_files': 'filelists/9nine_multi/filelists/MultiNoHaru_train.txt.cleaned', 'validation_files': 'filelists/9nine_multi/filelists/MultiNoHaru_valid.txt.cleaned', 'text_cleaners': ['japanese_cleaners2'], 'max_wav_value': 32768.0, 'sampling_rate': 22050, 'filter_length': 1024, 'hop_length': 256, 'win_length': 1024, 'n_mel_channels': 80, 'mel_fmin': 0.0, 'mel_fmax': None, 'add_blank': True, 'n_speakers': 5, 'cleaned_text': True}, 'model': {'inter_channels': 192, 'hidden_channels': 192, 'filter_channels': 768, 'n_heads': 2, 'n_layers': 6, 'kernel_size': 3, 'p_dropout': 0.1, 'resblock': '1', 'resblock_kernel_sizes': [3, 7, 11], 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'upsample_rates': [8, 8, 2, 2], 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [16, 16, 4, 4], 'n_layers_q': 3, 'use_spectral_norm': False, 'gin_channels': 256}, 'model_dir': './logs\\9nineM', 'ckptG': None, 'ckptD': None}
2023-02-01 04:21:33,771	9nineM	INFO	Loaded checkpoint './logs\9nineM\G_27200.pth' (iteration 32)
2023-02-01 04:21:34,210	9nineM	INFO	Loaded checkpoint './logs\9nineM\D_27200.pth' (iteration 32)
2023-02-01 04:24:26,163	9nineM	INFO	Train Epoch: 32 [18%]
2023-02-01 04:24:26,163	9nineM	INFO	[2.48793363571167, 2.2525389194488525, 4.615845680236816, 23.471406936645508, 1.8075923919677734, 1.2398854494094849, 26600, 0.00019905219358328844]
2023-02-01 04:27:17,258	9nineM	INFO	Train Epoch: 32 [42%]
2023-02-01 04:27:17,258	9nineM	INFO	[2.8085086345672607, 1.9309682846069336, 3.242536783218384, 19.992431640625, 1.8259313106536865, 1.75313138961792, 26800, 0.00019905219358328844]
2023-02-01 04:27:36,984	9nineM	INFO	Saving model and optimizer state at iteration 32 to ./logs\9nineM\G_26800.pth
2023-02-01 04:27:37,607	9nineM	INFO	Saving model and optimizer state at iteration 32 to ./logs\9nineM\D_26800.pth
2023-02-01 04:30:27,759	9nineM	INFO	Train Epoch: 32 [65%]
2023-02-01 04:30:27,760	9nineM	INFO	[2.512181520462036, 2.1234545707702637, 4.441719055175781, 23.193981170654297, 1.8304362297058105, 1.2039990425109863, 27000, 0.00019905219358328844]
2023-02-01 04:33:11,405	9nineM	INFO	Train Epoch: 32 [89%]
2023-02-01 04:33:11,406	9nineM	INFO	[2.4839420318603516, 2.347658395767212, 5.918729782104492, 24.70970916748047, 1.751023530960083, 1.626118540763855, 27200, 0.00019905219358328844]
2023-02-01 04:33:31,473	9nineM	INFO	Saving model and optimizer state at iteration 32 to ./logs\9nineM\G_27200.pth
2023-02-01 04:33:32,109	9nineM	INFO	Saving model and optimizer state at iteration 32 to ./logs\9nineM\D_27200.pth
2023-02-01 04:34:50,506	9nineM	INFO	====> Epoch: 32
2023-02-01 04:36:34,629	9nineM	INFO	Train Epoch: 33 [12%]
2023-02-01 04:36:34,629	9nineM	INFO	[2.789337396621704, 1.9480953216552734, 3.569427013397217, 19.851818084716797, 1.7902283668518066, 1.5726020336151123, 27400, 0.0001990273120590905]
2023-02-01 04:39:19,633	9nineM	INFO	Train Epoch: 33 [36%]
2023-02-01 04:39:19,633	9nineM	INFO	[2.5463850498199463, 2.106318473815918, 4.98954439163208, 23.31874656677246, 1.740237832069397, 1.4912023544311523, 27600, 0.0001990273120590905]
2023-02-01 04:39:39,767	9nineM	INFO	Saving model and optimizer state at iteration 33 to ./logs\9nineM\G_27600.pth
2023-02-01 04:39:40,460	9nineM	INFO	Saving model and optimizer state at iteration 33 to ./logs\9nineM\D_27600.pth
2023-02-01 04:42:24,582	9nineM	INFO	Train Epoch: 33 [59%]
2023-02-01 04:42:24,583	9nineM	INFO	[2.5366666316986084, 2.304074764251709, 5.535372734069824, 25.677494049072266, 1.8105485439300537, 1.6906741857528687, 27800, 0.0001990273120590905]
2023-02-01 04:45:10,402	9nineM	INFO	Train Epoch: 33 [83%]
2023-02-01 04:45:10,402	9nineM	INFO	[2.5908730030059814, 2.0369601249694824, 3.4531235694885254, 21.35690689086914, 1.712050437927246, 1.7326159477233887, 28000, 0.0001990273120590905]
2023-02-01 04:45:30,840	9nineM	INFO	Saving model and optimizer state at iteration 33 to ./logs\9nineM\G_28000.pth
2023-02-01 04:45:31,536	9nineM	INFO	Saving model and optimizer state at iteration 33 to ./logs\9nineM\D_28000.pth
2023-02-01 04:47:34,384	9nineM	INFO	====> Epoch: 33
2023-02-01 04:48:34,814	9nineM	INFO	Train Epoch: 34 [6%]
2023-02-01 04:48:34,814	9nineM	INFO	[2.682081937789917, 2.1056137084960938, 3.03806209564209, 20.2428035736084, 1.8532049655914307, 1.7690595388412476, 28200, 0.00019900243364508313]
2023-02-01 04:51:19,132	9nineM	INFO	Train Epoch: 34 [29%]
2023-02-01 04:51:19,133	9nineM	INFO	[2.638190507888794, 1.9988296031951904, 3.910902738571167, 21.806364059448242, 1.6923742294311523, 1.890233039855957, 28400, 0.00019900243364508313]
2023-02-01 04:51:39,019	9nineM	INFO	Saving model and optimizer state at iteration 34 to ./logs\9nineM\G_28400.pth
2023-02-01 04:51:39,655	9nineM	INFO	Saving model and optimizer state at iteration 34 to ./logs\9nineM\D_28400.pth
2023-02-01 04:54:26,885	9nineM	INFO	Train Epoch: 34 [53%]
2023-02-01 04:54:26,885	9nineM	INFO	[2.4265389442443848, 2.2317376136779785, 5.2667341232299805, 23.620227813720703, 1.7587745189666748, 1.4747239351272583, 28600, 0.00019900243364508313]
2023-02-01 04:57:10,543	9nineM	INFO	Train Epoch: 34 [76%]
2023-02-01 04:57:10,544	9nineM	INFO	[2.699652910232544, 2.020946502685547, 3.3295412063598633, 21.935319900512695, 2.068636178970337, 1.361405611038208, 28800, 0.00019900243364508313]
2023-02-01 04:57:30,489	9nineM	INFO	Saving model and optimizer state at iteration 34 to ./logs\9nineM\G_28800.pth
2023-02-01 04:57:31,198	9nineM	INFO	Saving model and optimizer state at iteration 34 to ./logs\9nineM\D_28800.pth
2023-02-01 05:00:15,492	9nineM	INFO	Train Epoch: 34 [100%]
2023-02-01 05:00:15,494	9nineM	INFO	[2.6213345527648926, 2.156693935394287, 4.387364864349365, 21.24164390563965, 1.7850232124328613, 1.6613390445709229, 29000, 0.00019900243364508313]
2023-02-01 05:00:17,261	9nineM	INFO	====> Epoch: 34
2023-02-01 05:03:20,006	9nineM	INFO	Train Epoch: 35 [23%]
2023-02-01 05:03:20,007	9nineM	INFO	[2.516507625579834, 2.2165496349334717, 5.759872913360596, 24.848791122436523, 1.8999265432357788, 1.5627009868621826, 29200, 0.0001989775583408775]
2023-02-01 05:03:39,809	9nineM	INFO	Saving model and optimizer state at iteration 35 to ./logs\9nineM\G_29200.pth
2023-02-01 05:03:40,426	9nineM	INFO	Saving model and optimizer state at iteration 35 to ./logs\9nineM\D_29200.pth
2023-02-01 12:33:05,510	9nineM	INFO	Train Epoch: 35 [47%]
2023-02-01 12:33:05,510	9nineM	INFO	[2.5423824787139893, 2.025073528289795, 3.994418144226074, 22.05137825012207, 1.7776260375976562, 1.5611302852630615, 29400, 0.0001989775583408775]
2023-02-01 12:35:52,822	9nineM	INFO	Train Epoch: 35 [70%]
2023-02-01 12:35:52,823	9nineM	INFO	[2.6309142112731934, 1.976047396659851, 5.686556816101074, 24.51500129699707, 1.7515478134155273, 1.64219069480896, 29600, 0.0001989775583408775]
2023-02-01 12:36:20,975	9nineM	INFO	Saving model and optimizer state at iteration 35 to ./logs\9nineM\G_29600.pth
2023-02-01 12:36:21,668	9nineM	INFO	Saving model and optimizer state at iteration 35 to ./logs\9nineM\D_29600.pth
2023-02-01 12:39:09,483	9nineM	INFO	Train Epoch: 35 [94%]
2023-02-01 12:39:09,483	9nineM	INFO	[2.6399784088134766, 2.0212554931640625, 4.624053955078125, 24.235794067382812, 1.6122325658798218, 1.8134409189224243, 29800, 0.0001989775583408775]
2023-02-01 12:39:55,536	9nineM	INFO	====> Epoch: 35
2023-02-01 12:42:17,621	9nineM	INFO	Train Epoch: 36 [17%]
2023-02-01 12:42:17,622	9nineM	INFO	[2.7085700035095215, 1.9565938711166382, 3.421661376953125, 20.876976013183594, 1.7802507877349854, 1.489966630935669, 30000, 0.00019895268614608487]
2023-02-01 12:42:41,751	9nineM	INFO	Saving model and optimizer state at iteration 36 to ./logs\9nineM\G_30000.pth
2023-02-01 12:42:42,555	9nineM	INFO	Saving model and optimizer state at iteration 36 to ./logs\9nineM\D_30000.pth
2023-02-01 12:45:30,464	9nineM	INFO	Train Epoch: 36 [40%]
2023-02-01 12:45:30,464	9nineM	INFO	[2.437509536743164, 2.3491921424865723, 5.127066135406494, 25.726490020751953, 1.7633036375045776, 1.4489428997039795, 30200, 0.00019895268614608487]
2023-02-01 12:48:16,161	9nineM	INFO	Train Epoch: 36 [64%]
2023-02-01 12:48:16,162	9nineM	INFO	[2.3928329944610596, 2.101041555404663, 5.352329254150391, 27.370100021362305, 1.8160617351531982, 1.6697053909301758, 30400, 0.00019895268614608487]
2023-02-01 12:48:39,509	9nineM	INFO	Saving model and optimizer state at iteration 36 to ./logs\9nineM\G_30400.pth
2023-02-01 12:48:40,196	9nineM	INFO	Saving model and optimizer state at iteration 36 to ./logs\9nineM\D_30400.pth
2023-02-01 12:51:27,729	9nineM	INFO	Train Epoch: 36 [87%]
2023-02-01 12:51:27,729	9nineM	INFO	[2.61594557762146, 2.1400556564331055, 5.137139797210693, 23.10220718383789, 1.6802095174789429, 1.7627167701721191, 30600, 0.00019895268614608487]
2023-02-01 12:52:59,177	9nineM	INFO	====> Epoch: 36
2023-02-01 12:54:35,488	9nineM	INFO	Train Epoch: 37 [11%]
2023-02-01 12:54:35,488	9nineM	INFO	[2.5741822719573975, 2.1620121002197266, 4.317616939544678, 22.92330551147461, 1.829906940460205, 1.4284659624099731, 30800, 0.0001989278170603166]
2023-02-01 12:54:57,689	9nineM	INFO	Saving model and optimizer state at iteration 37 to ./logs\9nineM\G_30800.pth
2023-02-01 12:54:58,437	9nineM	INFO	Saving model and optimizer state at iteration 37 to ./logs\9nineM\D_30800.pth
2023-02-01 12:57:45,024	9nineM	INFO	Train Epoch: 37 [34%]
2023-02-01 12:57:45,025	9nineM	INFO	[2.6818103790283203, 1.954439640045166, 3.375948905944824, 20.640331268310547, 1.8592307567596436, 1.7136640548706055, 31000, 0.0001989278170603166]
2023-02-01 13:00:32,094	9nineM	INFO	Train Epoch: 37 [58%]
2023-02-01 13:00:32,095	9nineM	INFO	[2.459219455718994, 2.320885181427002, 5.924901008605957, 26.83432960510254, 1.7563282251358032, 1.726936936378479, 31200, 0.0001989278170603166]
2023-02-01 17:01:39,949	9nineM	INFO	Saving model and optimizer state at iteration 37 to ./logs\9nineM\G_31200.pth
2023-02-01 17:01:40,916	9nineM	INFO	Saving model and optimizer state at iteration 37 to ./logs\9nineM\D_31200.pth
2023-02-01 17:04:25,245	9nineM	INFO	Train Epoch: 37 [81%]
2023-02-01 17:04:25,246	9nineM	INFO	[2.669224977493286, 1.9848904609680176, 4.381429672241211, 21.905603408813477, 1.6953556537628174, 1.6629891395568848, 31400, 0.0001989278170603166]
2023-02-01 17:06:48,635	9nineM	INFO	====> Epoch: 37
2023-02-01 17:07:50,247	9nineM	INFO	Train Epoch: 38 [5%]
2023-02-01 17:07:50,248	9nineM	INFO	[2.744645118713379, 1.8825947046279907, 3.460026264190674, 19.298295974731445, 1.788069248199463, 1.6396377086639404, 31600, 0.00019890295108318404]
2023-02-01 17:08:15,740	9nineM	INFO	Saving model and optimizer state at iteration 38 to ./logs\9nineM\G_31600.pth
2023-02-01 17:08:16,556	9nineM	INFO	Saving model and optimizer state at iteration 38 to ./logs\9nineM\D_31600.pth
2023-02-01 17:11:31,453	9nineM	INFO	Train Epoch: 38 [28%]
2023-02-01 17:11:31,453	9nineM	INFO	[2.6138646602630615, 2.050747871398926, 4.864589691162109, 22.69951820373535, 1.6681349277496338, 1.475082516670227, 31800, 0.00019890295108318404]
2023-02-01 17:14:45,203	9nineM	INFO	Train Epoch: 38 [51%]
2023-02-01 17:14:45,204	9nineM	INFO	[2.683239698410034, 1.9788589477539062, 4.138528347015381, 21.01311492919922, 1.7413430213928223, 1.6159683465957642, 32000, 0.00019890295108318404]
2023-02-01 17:15:09,399	9nineM	INFO	Saving model and optimizer state at iteration 38 to ./logs\9nineM\G_32000.pth
2023-02-01 17:15:10,172	9nineM	INFO	Saving model and optimizer state at iteration 38 to ./logs\9nineM\D_32000.pth
2023-02-01 17:18:25,226	9nineM	INFO	Train Epoch: 38 [75%]
2023-02-01 17:18:25,227	9nineM	INFO	[2.2311863899230957, 2.3713438510894775, 7.4914231300354, 26.72603416442871, 1.717178463935852, 1.9362727403640747, 32200, 0.00019890295108318404]
2023-02-01 17:21:38,370	9nineM	INFO	Train Epoch: 38 [98%]
2023-02-01 17:21:38,370	9nineM	INFO	[2.2777528762817383, 2.499821901321411, 5.831307411193848, 25.2869873046875, 1.7486741542816162, 1.70828378200531, 32400, 0.00019890295108318404]
2023-02-01 17:22:02,852	9nineM	INFO	Saving model and optimizer state at iteration 38 to ./logs\9nineM\G_32400.pth
2023-02-01 17:22:03,619	9nineM	INFO	Saving model and optimizer state at iteration 38 to ./logs\9nineM\D_32400.pth
2023-02-01 17:22:18,040	9nineM	INFO	====> Epoch: 38
2023-02-01 17:25:41,201	9nineM	INFO	Train Epoch: 39 [22%]
2023-02-01 17:25:41,201	9nineM	INFO	[2.454498529434204, 2.2587172985076904, 4.199381351470947, 20.6919002532959, 1.872959852218628, 1.6013412475585938, 32600, 0.00019887808821429862]
2023-02-01 17:28:52,987	9nineM	INFO	Train Epoch: 39 [45%]
2023-02-01 17:28:52,988	9nineM	INFO	[2.5843074321746826, 2.146446943283081, 4.491590976715088, 22.461898803710938, 1.7938328981399536, 1.3982316255569458, 32800, 0.00019887808821429862]
2023-02-01 17:29:17,756	9nineM	INFO	Saving model and optimizer state at iteration 39 to ./logs\9nineM\G_32800.pth
2023-02-01 17:29:18,657	9nineM	INFO	Saving model and optimizer state at iteration 39 to ./logs\9nineM\D_32800.pth
2023-02-01 17:32:34,733	9nineM	INFO	Train Epoch: 39 [69%]
2023-02-01 17:32:34,734	9nineM	INFO	[2.636389970779419, 1.8629508018493652, 3.6903533935546875, 20.31201171875, 1.9865062236785889, 1.7532310485839844, 33000, 0.00019887808821429862]
2023-02-01 17:35:51,704	9nineM	INFO	Train Epoch: 39 [92%]
2023-02-01 17:35:51,704	9nineM	INFO	[2.5792219638824463, 2.140162467956543, 4.547505855560303, 22.884021759033203, 1.7655047178268433, 1.5471705198287964, 33200, 0.00019887808821429862]
2023-02-01 17:36:16,461	9nineM	INFO	Saving model and optimizer state at iteration 39 to ./logs\9nineM\G_33200.pth
2023-02-01 17:36:17,207	9nineM	INFO	Saving model and optimizer state at iteration 39 to ./logs\9nineM\D_33200.pth
2023-02-01 17:37:24,421	9nineM	INFO	====> Epoch: 39
2023-02-01 17:39:57,213	9nineM	INFO	Train Epoch: 40 [16%]
2023-02-01 17:39:57,213	9nineM	INFO	[2.6288318634033203, 2.0972135066986084, 4.934540748596191, 21.877552032470703, 1.8201842308044434, 1.7888994216918945, 33400, 0.00019885322845327182]
2023-02-01 17:43:11,434	9nineM	INFO	Train Epoch: 40 [39%]
2023-02-01 17:43:11,434	9nineM	INFO	[2.658141613006592, 2.331437587738037, 4.835916519165039, 24.727418899536133, 1.7370905876159668, 1.5689709186553955, 33600, 0.00019885322845327182]
2023-02-01 17:43:35,679	9nineM	INFO	Saving model and optimizer state at iteration 40 to ./logs\9nineM\G_33600.pth
2023-02-01 17:43:36,435	9nineM	INFO	Saving model and optimizer state at iteration 40 to ./logs\9nineM\D_33600.pth
2023-02-01 17:46:51,670	9nineM	INFO	Train Epoch: 40 [62%]
2023-02-01 17:46:51,670	9nineM	INFO	[2.719942569732666, 1.9539000988006592, 4.045953750610352, 21.547697067260742, 1.72672700881958, 1.4675304889678955, 33800, 0.00019885322845327182]
2023-02-01 17:50:06,556	9nineM	INFO	Train Epoch: 40 [86%]
2023-02-01 17:50:06,557	9nineM	INFO	[2.674190044403076, 1.8533728122711182, 4.508209228515625, 24.51169776916504, 1.9194777011871338, 1.4392437934875488, 34000, 0.00019885322845327182]
2023-02-01 17:50:30,976	9nineM	INFO	Saving model and optimizer state at iteration 40 to ./logs\9nineM\G_34000.pth
2023-02-01 17:50:31,753	9nineM	INFO	Saving model and optimizer state at iteration 40 to ./logs\9nineM\D_34000.pth
2023-02-01 17:52:28,580	9nineM	INFO	====> Epoch: 40
2023-02-01 17:54:10,333	9nineM	INFO	Train Epoch: 41 [9%]
2023-02-01 17:54:10,334	9nineM	INFO	[2.4937329292297363, 2.29134464263916, 5.422130584716797, 26.12571144104004, 1.6666078567504883, 1.6672056913375854, 34200, 0.00019882837179971516]
2023-02-01 17:57:26,955	9nineM	INFO	Train Epoch: 41 [33%]
2023-02-01 17:57:26,955	9nineM	INFO	[2.5611343383789062, 2.043212652206421, 4.211092472076416, 21.851240158081055, 1.88693106174469, 1.5488057136535645, 34400, 0.00019882837179971516]
2023-02-01 17:57:51,881	9nineM	INFO	Saving model and optimizer state at iteration 41 to ./logs\9nineM\G_34400.pth
2023-02-01 17:57:52,685	9nineM	INFO	Saving model and optimizer state at iteration 41 to ./logs\9nineM\D_34400.pth
2023-02-01 18:01:07,449	9nineM	INFO	Train Epoch: 41 [56%]
2023-02-01 18:01:07,450	9nineM	INFO	[2.7365357875823975, 2.3190486431121826, 5.0319600105285645, 24.26772689819336, 1.9242149591445923, 1.8268693685531616, 34600, 0.00019882837179971516]
2023-02-01 18:04:22,110	9nineM	INFO	Train Epoch: 41 [80%]
2023-02-01 18:04:22,110	9nineM	INFO	[2.6296262741088867, 2.133437156677246, 3.676952600479126, 22.365764617919922, 1.8542792797088623, 1.6401487588882446, 34800, 0.00019882837179971516]
2023-02-01 18:04:46,390	9nineM	INFO	Saving model and optimizer state at iteration 41 to ./logs\9nineM\G_34800.pth
2023-02-01 18:04:47,172	9nineM	INFO	Saving model and optimizer state at iteration 41 to ./logs\9nineM\D_34800.pth
2023-02-01 18:07:36,276	9nineM	INFO	====> Epoch: 41
2023-02-01 18:08:26,099	9nineM	INFO	Train Epoch: 42 [3%]
2023-02-01 18:08:26,099	9nineM	INFO	[2.49212384223938, 2.24872088432312, 5.995089530944824, 25.848262786865234, 1.8010799884796143, 1.7120336294174194, 35000, 0.00019880351825324018]
2023-02-01 18:11:40,918	9nineM	INFO	Train Epoch: 42 [27%]
2023-02-01 18:11:40,919	9nineM	INFO	[2.537590503692627, 2.167124032974243, 5.7935333251953125, 25.775712966918945, 1.7429431676864624, 1.6175198554992676, 35200, 0.00019880351825324018]
2023-02-01 18:12:05,791	9nineM	INFO	Saving model and optimizer state at iteration 42 to ./logs\9nineM\G_35200.pth
2023-02-01 18:12:06,605	9nineM	INFO	Saving model and optimizer state at iteration 42 to ./logs\9nineM\D_35200.pth
2023-02-01 18:15:22,961	9nineM	INFO	Train Epoch: 42 [50%]
2023-02-01 18:15:22,962	9nineM	INFO	[2.3782966136932373, 2.4973931312561035, 4.8738603591918945, 22.93027687072754, 1.7586393356323242, 2.159142255783081, 35400, 0.00019880351825324018]
2023-02-01 18:18:23,070	9nineM	INFO	Train Epoch: 42 [74%]
2023-02-01 18:18:23,070	9nineM	INFO	[2.4745311737060547, 2.271057605743408, 5.654489040374756, 24.812362670898438, 1.8334579467773438, 1.743791937828064, 35600, 0.00019880351825324018]
2023-02-01 18:18:45,126	9nineM	INFO	Saving model and optimizer state at iteration 42 to ./logs\9nineM\G_35600.pth
2023-02-01 18:18:45,801	9nineM	INFO	Saving model and optimizer state at iteration 42 to ./logs\9nineM\D_35600.pth
2023-02-01 18:21:42,106	9nineM	INFO	Train Epoch: 42 [97%]
2023-02-01 18:21:42,106	9nineM	INFO	[2.4542994499206543, 2.2062954902648926, 4.680228233337402, 24.260759353637695, 1.9141931533813477, 1.696622610092163, 35800, 0.00019880351825324018]
2023-02-01 18:22:04,385	9nineM	INFO	====> Epoch: 42
2023-02-01 18:24:54,179	9nineM	INFO	Train Epoch: 43 [20%]
2023-02-01 18:24:54,179	9nineM	INFO	[2.4901843070983887, 2.1824638843536377, 4.524713039398193, 23.826526641845703, 1.8937201499938965, 1.5252604484558105, 36000, 0.00019877866781345852]
2023-02-01 18:25:15,459	9nineM	INFO	Saving model and optimizer state at iteration 43 to ./logs\9nineM\G_36000.pth
2023-02-01 18:25:16,122	9nineM	INFO	Saving model and optimizer state at iteration 43 to ./logs\9nineM\D_36000.pth
2023-02-01 18:28:11,499	9nineM	INFO	Train Epoch: 43 [44%]
2023-02-01 18:28:11,500	9nineM	INFO	[2.5362308025360107, 2.1723272800445557, 4.864365100860596, 25.04405403137207, 1.7278116941452026, 1.450219750404358, 36200, 0.00019877866781345852]
2023-02-01 18:31:04,060	9nineM	INFO	Train Epoch: 43 [67%]
2023-02-01 18:31:04,061	9nineM	INFO	[2.588315486907959, 2.1376588344573975, 4.551021575927734, 23.533817291259766, 1.7103817462921143, 1.5531283617019653, 36400, 0.00019877866781345852]
2023-02-01 18:31:25,618	9nineM	INFO	Saving model and optimizer state at iteration 43 to ./logs\9nineM\G_36400.pth
2023-02-01 18:31:26,369	9nineM	INFO	Saving model and optimizer state at iteration 43 to ./logs\9nineM\D_36400.pth
2023-02-01 18:34:22,241	9nineM	INFO	Train Epoch: 43 [91%]
2023-02-01 18:34:22,241	9nineM	INFO	[2.6047894954681396, 2.174082040786743, 4.949742317199707, 22.14706039428711, 1.8383907079696655, 1.641648530960083, 36600, 0.00019877866781345852]
2023-02-01 18:35:30,868	9nineM	INFO	====> Epoch: 43
2023-02-01 18:37:37,461	9nineM	INFO	Train Epoch: 44 [14%]
2023-02-01 18:37:37,462	9nineM	INFO	[2.572986125946045, 2.136593818664551, 4.04355525970459, 21.91054916381836, 1.7879250049591064, 1.7294100522994995, 36800, 0.00019875382047998183]
2023-02-01 18:37:58,884	9nineM	INFO	Saving model and optimizer state at iteration 44 to ./logs\9nineM\G_36800.pth
2023-02-01 18:37:59,543	9nineM	INFO	Saving model and optimizer state at iteration 44 to ./logs\9nineM\D_36800.pth
2023-02-01 18:40:53,316	9nineM	INFO	Train Epoch: 44 [38%]
2023-02-01 18:40:53,317	9nineM	INFO	[2.443532705307007, 2.1952812671661377, 4.759227275848389, 23.227327346801758, 1.9656598567962646, 1.3196086883544922, 37000, 0.00019875382047998183]
2023-02-01 18:43:46,101	9nineM	INFO	Train Epoch: 44 [61%]
2023-02-01 18:43:46,101	9nineM	INFO	[2.671976327896118, 2.075054407119751, 3.9347307682037354, 20.804964065551758, 1.7300915718078613, 1.7508121728897095, 37200, 0.00019875382047998183]
2023-02-01 18:44:07,502	9nineM	INFO	Saving model and optimizer state at iteration 44 to ./logs\9nineM\G_37200.pth
2023-02-01 18:44:08,267	9nineM	INFO	Saving model and optimizer state at iteration 44 to ./logs\9nineM\D_37200.pth
2023-02-01 18:47:02,250	9nineM	INFO	Train Epoch: 44 [85%]
2023-02-01 18:47:02,250	9nineM	INFO	[2.498908519744873, 2.361504554748535, 4.3354291915893555, 23.576732635498047, 1.9297654628753662, 1.4986674785614014, 37400, 0.00019875382047998183]
2023-02-01 18:48:56,808	9nineM	INFO	====> Epoch: 44
2023-02-01 18:50:15,677	9nineM	INFO	Train Epoch: 45 [8%]
2023-02-01 18:50:15,678	9nineM	INFO	[2.5694923400878906, 2.2049150466918945, 5.820436954498291, 25.611148834228516, 1.7650712728500366, 1.8910866975784302, 37600, 0.00019872897625242182]
2023-02-01 18:50:36,934	9nineM	INFO	Saving model and optimizer state at iteration 45 to ./logs\9nineM\G_37600.pth
2023-02-01 18:50:37,594	9nineM	INFO	Saving model and optimizer state at iteration 45 to ./logs\9nineM\D_37600.pth
2023-02-01 18:53:30,854	9nineM	INFO	Train Epoch: 45 [31%]
2023-02-01 18:53:30,855	9nineM	INFO	[2.5845606327056885, 2.144784450531006, 4.971654415130615, 23.590980529785156, 1.735672116279602, 1.156941294670105, 37800, 0.00019872897625242182]
2023-02-01 18:56:23,275	9nineM	INFO	Train Epoch: 45 [55%]
2023-02-01 18:56:23,276	9nineM	INFO	[2.5556178092956543, 2.0318026542663574, 4.260959148406982, 22.016450881958008, 1.7320380210876465, 1.5642647743225098, 38000, 0.00019872897625242182]
2023-02-01 18:56:44,886	9nineM	INFO	Saving model and optimizer state at iteration 45 to ./logs\9nineM\G_38000.pth
2023-02-01 18:56:45,540	9nineM	INFO	Saving model and optimizer state at iteration 45 to ./logs\9nineM\D_38000.pth
2023-02-01 18:59:42,477	9nineM	INFO	Train Epoch: 45 [78%]
2023-02-01 18:59:42,478	9nineM	INFO	[2.6331942081451416, 1.9731080532073975, 4.094152450561523, 20.55365562438965, 1.7299214601516724, 1.466010332107544, 38200, 0.00019872897625242182]
2023-02-01 19:02:22,842	9nineM	INFO	====> Epoch: 45
2023-02-01 19:02:56,955	9nineM	INFO	Train Epoch: 46 [2%]
2023-02-01 19:02:56,956	9nineM	INFO	[2.580018997192383, 1.909645438194275, 4.006155014038086, 20.815174102783203, 1.6976667642593384, 1.8680051565170288, 38400, 0.00019870413513039026]
2023-02-01 19:03:18,363	9nineM	INFO	Saving model and optimizer state at iteration 46 to ./logs\9nineM\G_38400.pth
2023-02-01 19:03:19,018	9nineM	INFO	Saving model and optimizer state at iteration 46 to ./logs\9nineM\D_38400.pth
2023-02-01 19:06:14,736	9nineM	INFO	Train Epoch: 46 [25%]
2023-02-01 19:06:14,737	9nineM	INFO	[2.4910054206848145, 2.1749205589294434, 5.119393348693848, 24.179704666137695, 1.8285729885101318, 1.8427361249923706, 38600, 0.00019870413513039026]
2023-02-02 14:19:19,757	9nineM	INFO	{'train': {'log_interval': 200, 'eval_interval': 400, 'seed': 1234, 'epochs': 1000, 'learning_rate': 0.0002, 'betas': [0.8, 0.99], 'eps': 1e-09, 'batch_size': 16, 'fp16_run': False, 'lr_decay': 0.999875, 'segment_size': 8192, 'init_lr_ratio': 1, 'warmup_epochs': 0, 'c_mel': 45, 'c_kl': 1.0}, 'data': {'training_files': 'filelists/9nine_multi/filelists/MultiNoHaru_train.txt.cleaned', 'validation_files': 'filelists/9nine_multi/filelists/MultiNoHaru_valid.txt.cleaned', 'text_cleaners': ['japanese_cleaners2'], 'max_wav_value': 32768.0, 'sampling_rate': 22050, 'filter_length': 1024, 'hop_length': 256, 'win_length': 1024, 'n_mel_channels': 80, 'mel_fmin': 0.0, 'mel_fmax': None, 'add_blank': True, 'n_speakers': 5, 'cleaned_text': True}, 'model': {'inter_channels': 192, 'hidden_channels': 192, 'filter_channels': 768, 'n_heads': 2, 'n_layers': 6, 'kernel_size': 3, 'p_dropout': 0.1, 'resblock': '1', 'resblock_kernel_sizes': [3, 7, 11], 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'upsample_rates': [8, 8, 2, 2], 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [16, 16, 4, 4], 'n_layers_q': 3, 'use_spectral_norm': False, 'gin_channels': 256}, 'model_dir': './logs\\9nineM', 'ckptG': None, 'ckptD': None}
2023-02-02 14:19:27,564	9nineM	INFO	Loaded checkpoint './logs\9nineM\G_38400.pth' (iteration 46)
2023-02-02 14:19:28,037	9nineM	INFO	Loaded checkpoint './logs\9nineM\D_38400.pth' (iteration 46)
2023-02-02 14:20:19,238	9nineM	INFO	Train Epoch: 46 [2%]
2023-02-02 14:20:19,238	9nineM	INFO	[2.5456185340881348, 1.9604990482330322, 4.332867622375488, 21.53057289123535, 1.6935052871704102, 1.8282264471054077, 38400, 0.00019867929711349895]
2023-02-02 14:20:48,380	9nineM	INFO	Saving model and optimizer state at iteration 46 to ./logs\9nineM\G_38400.pth
2023-02-02 14:20:49,168	9nineM	INFO	Saving model and optimizer state at iteration 46 to ./logs\9nineM\D_38400.pth
2023-02-02 14:24:21,456	9nineM	INFO	Train Epoch: 46 [25%]
2023-02-02 14:24:21,457	9nineM	INFO	[2.6468706130981445, 2.0880415439605713, 4.406847953796387, 23.967500686645508, 1.8634170293807983, 1.6117606163024902, 38600, 0.00019867929711349895]
2023-02-02 14:27:22,687	9nineM	INFO	Train Epoch: 46 [49%]
2023-02-02 14:27:22,688	9nineM	INFO	[2.638824939727783, 2.0292012691497803, 3.1536033153533936, 19.555471420288086, 1.7480350732803345, 1.6857563257217407, 38800, 0.00019867929711349895]
2023-02-02 14:27:47,089	9nineM	INFO	Saving model and optimizer state at iteration 46 to ./logs\9nineM\G_38800.pth
2023-02-02 14:27:47,835	9nineM	INFO	Saving model and optimizer state at iteration 46 to ./logs\9nineM\D_38800.pth
2023-02-02 14:30:40,719	9nineM	INFO	Train Epoch: 46 [72%]
2023-02-02 14:30:40,719	9nineM	INFO	[2.6516051292419434, 2.1540942192077637, 3.694066047668457, 22.016237258911133, 1.843416690826416, 1.5230393409729004, 39000, 0.00019867929711349895]
2023-02-02 14:33:35,763	9nineM	INFO	Train Epoch: 46 [96%]
2023-02-02 14:33:35,764	9nineM	INFO	[2.5915274620056152, 2.1095948219299316, 4.336780071258545, 22.916271209716797, 1.8784198760986328, 1.7309505939483643, 39200, 0.00019867929711349895]
2023-02-02 14:34:00,397	9nineM	INFO	Saving model and optimizer state at iteration 46 to ./logs\9nineM\G_39200.pth
2023-02-02 14:34:01,110	9nineM	INFO	Saving model and optimizer state at iteration 46 to ./logs\9nineM\D_39200.pth
2023-02-02 14:34:34,594	9nineM	INFO	====> Epoch: 46
2023-02-02 14:37:22,242	9nineM	INFO	Train Epoch: 47 [19%]
2023-02-02 14:37:22,242	9nineM	INFO	[2.527169704437256, 2.1185073852539062, 4.635430812835693, 22.395965576171875, 1.7306945323944092, 1.831665277481079, 39400, 0.00019865446220135974]
2023-02-02 14:40:43,044	9nineM	INFO	Train Epoch: 47 [42%]
2023-02-02 14:40:43,044	9nineM	INFO	[2.4761626720428467, 2.311478614807129, 4.725570201873779, 22.31679916381836, 1.7371221780776978, 1.631006121635437, 39600, 0.00019865446220135974]
2023-02-02 14:41:13,167	9nineM	INFO	Saving model and optimizer state at iteration 47 to ./logs\9nineM\G_39600.pth
2023-02-02 14:41:14,127	9nineM	INFO	Saving model and optimizer state at iteration 47 to ./logs\9nineM\D_39600.pth
2023-02-02 14:44:29,374	9nineM	INFO	Train Epoch: 47 [66%]
2023-02-02 14:44:29,375	9nineM	INFO	[2.6012582778930664, 2.1873228549957275, 4.013382434844971, 21.424766540527344, 1.859406590461731, 1.5569621324539185, 39800, 0.00019865446220135974]
2023-02-02 14:47:40,416	9nineM	INFO	Train Epoch: 47 [89%]
2023-02-02 14:47:40,416	9nineM	INFO	[2.537325143814087, 2.2917749881744385, 4.962913513183594, 22.40337562561035, 1.802056908607483, 1.8988395929336548, 40000, 0.00019865446220135974]
2023-02-02 14:48:10,030	9nineM	INFO	Saving model and optimizer state at iteration 47 to ./logs\9nineM\G_40000.pth
2023-02-02 14:48:10,831	9nineM	INFO	Saving model and optimizer state at iteration 47 to ./logs\9nineM\D_40000.pth
2023-02-02 14:49:39,030	9nineM	INFO	====> Epoch: 47
2023-02-02 14:51:56,765	9nineM	INFO	Train Epoch: 48 [13%]
2023-02-02 14:51:56,775	9nineM	INFO	[2.460188150405884, 2.198483943939209, 5.61447811126709, 24.503917694091797, 1.6865628957748413, 1.7873073816299438, 40200, 0.00019862963039358455]
2023-02-02 14:55:12,982	9nineM	INFO	Train Epoch: 48 [36%]
2023-02-02 14:55:12,983	9nineM	INFO	[2.6686158180236816, 2.1743640899658203, 3.8630940914154053, 21.379125595092773, 1.75010085105896, 1.4420665502548218, 40400, 0.00019862963039358455]
2023-02-02 14:55:42,607	9nineM	INFO	Saving model and optimizer state at iteration 48 to ./logs\9nineM\G_40400.pth
2023-02-02 14:55:43,445	9nineM	INFO	Saving model and optimizer state at iteration 48 to ./logs\9nineM\D_40400.pth
2023-02-02 14:58:58,566	9nineM	INFO	Train Epoch: 48 [60%]
2023-02-02 14:58:58,567	9nineM	INFO	[2.4863743782043457, 2.1956119537353516, 4.977295398712158, 24.05885124206543, 1.7768304347991943, 1.7557754516601562, 40600, 0.00019862963039358455]
2023-02-02 15:02:19,720	9nineM	INFO	Train Epoch: 48 [83%]
2023-02-02 15:02:19,720	9nineM	INFO	[2.5187461376190186, 2.2432589530944824, 5.117112636566162, 24.116090774536133, 1.727491021156311, 1.378271460533142, 40800, 0.00019862963039358455]
2023-02-02 15:02:49,673	9nineM	INFO	Saving model and optimizer state at iteration 48 to ./logs\9nineM\G_40800.pth
2023-02-02 15:02:50,489	9nineM	INFO	Saving model and optimizer state at iteration 48 to ./logs\9nineM\D_40800.pth
2023-02-02 15:05:16,480	9nineM	INFO	====> Epoch: 48
2023-02-02 15:06:41,482	9nineM	INFO	Train Epoch: 49 [7%]
2023-02-02 15:06:41,483	9nineM	INFO	[2.1785848140716553, 2.7064008712768555, 8.207569122314453, 29.388254165649414, 1.765810489654541, 1.8694885969161987, 41000, 0.00019860480168978534]
2023-02-02 15:10:02,709	9nineM	INFO	Train Epoch: 49 [30%]
2023-02-02 15:10:02,710	9nineM	INFO	[2.3721823692321777, 2.299171209335327, 5.626714706420898, 26.651338577270508, 1.777482271194458, 1.8020421266555786, 41200, 0.00019860480168978534]
2023-02-02 15:10:32,740	9nineM	INFO	Saving model and optimizer state at iteration 49 to ./logs\9nineM\G_41200.pth
2023-02-02 15:10:33,604	9nineM	INFO	Saving model and optimizer state at iteration 49 to ./logs\9nineM\D_41200.pth
2023-02-02 15:13:33,381	9nineM	INFO	Train Epoch: 49 [53%]
2023-02-02 15:13:33,381	9nineM	INFO	[2.486915349960327, 2.3128888607025146, 4.383050441741943, 20.96324920654297, 1.733113408088684, 1.8083713054656982, 41400, 0.00019860480168978534]
2023-02-02 15:16:16,956	9nineM	INFO	Train Epoch: 49 [77%]
2023-02-02 15:16:16,957	9nineM	INFO	[2.6879286766052246, 2.271017074584961, 4.922100067138672, 24.012542724609375, 1.7113662958145142, 1.7479090690612793, 41600, 0.00019860480168978534]
2023-02-02 15:16:42,055	9nineM	INFO	Saving model and optimizer state at iteration 49 to ./logs\9nineM\G_41600.pth
2023-02-02 15:16:42,691	9nineM	INFO	Saving model and optimizer state at iteration 49 to ./logs\9nineM\D_41600.pth
2023-02-02 15:19:24,612	9nineM	INFO	====> Epoch: 49
2023-02-02 15:19:51,775	9nineM	INFO	Train Epoch: 50 [0%]
2023-02-02 15:19:51,777	9nineM	INFO	[2.463775157928467, 2.184429407119751, 4.749098300933838, 24.9190673828125, 1.793853521347046, 1.369109869003296, 41800, 0.0001985799760895741]
2023-02-02 15:22:35,769	9nineM	INFO	Train Epoch: 50 [24%]
2023-02-02 15:22:35,770	9nineM	INFO	[2.6144039630889893, 2.0969908237457275, 4.495172023773193, 22.01717758178711, 1.685788631439209, 1.6401894092559814, 42000, 0.0001985799760895741]
2023-02-02 15:23:00,837	9nineM	INFO	Saving model and optimizer state at iteration 50 to ./logs\9nineM\G_42000.pth
2023-02-02 15:23:01,489	9nineM	INFO	Saving model and optimizer state at iteration 50 to ./logs\9nineM\D_42000.pth
2023-02-02 15:25:43,864	9nineM	INFO	Train Epoch: 50 [47%]
2023-02-02 15:25:43,865	9nineM	INFO	[2.700957775115967, 2.116952657699585, 4.502313613891602, 23.029130935668945, 1.7644517421722412, 1.8445117473602295, 42200, 0.0001985799760895741]
2023-02-02 15:28:29,857	9nineM	INFO	Train Epoch: 50 [71%]
2023-02-02 15:28:29,858	9nineM	INFO	[2.456376552581787, 2.299602746963501, 6.077450275421143, 25.025371551513672, 1.7823113203048706, 1.8349579572677612, 42400, 0.0001985799760895741]
2023-02-02 15:28:57,158	9nineM	INFO	Saving model and optimizer state at iteration 50 to ./logs\9nineM\G_42400.pth
2023-02-02 15:28:57,897	9nineM	INFO	Saving model and optimizer state at iteration 50 to ./logs\9nineM\D_42400.pth
2023-02-02 15:31:44,944	9nineM	INFO	Train Epoch: 50 [94%]
2023-02-02 15:31:44,945	9nineM	INFO	[2.4654319286346436, 2.4112114906311035, 6.451958656311035, 26.50853729248047, 1.706529140472412, 1.7248282432556152, 42600, 0.0001985799760895741]
2023-02-02 15:32:27,113	9nineM	INFO	====> Epoch: 50
2023-02-02 15:34:55,644	9nineM	INFO	Train Epoch: 51 [18%]
2023-02-02 15:34:55,645	9nineM	INFO	[2.805753231048584, 2.028660297393799, 3.341474771499634, 20.90137481689453, 1.753252625465393, 1.6976696252822876, 42800, 0.0001985551535925629]
2023-02-02 15:35:22,106	9nineM	INFO	Saving model and optimizer state at iteration 51 to ./logs\9nineM\G_42800.pth
2023-02-02 15:35:22,773	9nineM	INFO	Saving model and optimizer state at iteration 51 to ./logs\9nineM\D_42800.pth
2023-02-02 15:38:08,535	9nineM	INFO	Train Epoch: 51 [41%]
2023-02-02 15:38:08,536	9nineM	INFO	[2.664698839187622, 1.9130167961120605, 4.023746967315674, 20.181114196777344, 1.710791826248169, 1.5688831806182861, 43000, 0.0001985551535925629]
2023-02-02 15:40:55,351	9nineM	INFO	Train Epoch: 51 [64%]
2023-02-02 15:40:55,353	9nineM	INFO	[2.577136754989624, 2.080090284347534, 4.574312210083008, 24.65957260131836, 1.8054012060165405, 1.6363075971603394, 43200, 0.0001985551535925629]
2023-02-02 15:41:22,338	9nineM	INFO	Saving model and optimizer state at iteration 51 to ./logs\9nineM\G_43200.pth
2023-02-02 15:41:23,084	9nineM	INFO	Saving model and optimizer state at iteration 51 to ./logs\9nineM\D_43200.pth
2023-02-02 15:44:10,433	9nineM	INFO	Train Epoch: 51 [88%]
2023-02-02 15:44:10,433	9nineM	INFO	[2.5996923446655273, 2.2468984127044678, 4.06203031539917, 20.609617233276367, 1.8627171516418457, 1.5727742910385132, 43400, 0.0001985551535925629]
2023-02-02 15:45:35,675	9nineM	INFO	====> Epoch: 51
2023-02-02 15:47:21,283	9nineM	INFO	Train Epoch: 52 [11%]
2023-02-02 15:47:21,293	9nineM	INFO	[2.6132054328918457, 2.051703929901123, 4.673154830932617, 24.30799674987793, 1.7467679977416992, 1.7793018817901611, 43600, 0.00019853033419836382]
2023-02-02 15:47:48,595	9nineM	INFO	Saving model and optimizer state at iteration 52 to ./logs\9nineM\G_43600.pth
2023-02-02 15:47:49,360	9nineM	INFO	Saving model and optimizer state at iteration 52 to ./logs\9nineM\D_43600.pth
2023-02-02 15:50:36,771	9nineM	INFO	Train Epoch: 52 [35%]
2023-02-02 15:50:36,771	9nineM	INFO	[2.6676881313323975, 1.9795176982879639, 3.616584062576294, 19.46588706970215, 1.839368224143982, 1.296882152557373, 43800, 0.00019853033419836382]
2023-02-02 15:53:20,658	9nineM	INFO	Train Epoch: 52 [58%]
2023-02-02 15:53:20,659	9nineM	INFO	[2.509068250656128, 2.095923900604248, 5.1803879737854, 22.69829750061035, 1.7495630979537964, 1.5732603073120117, 44000, 0.00019853033419836382]
2023-02-02 15:53:47,135	9nineM	INFO	Saving model and optimizer state at iteration 52 to ./logs\9nineM\G_44000.pth
2023-02-02 15:53:47,808	9nineM	INFO	Saving model and optimizer state at iteration 52 to ./logs\9nineM\D_44000.pth
2023-02-02 15:56:33,551	9nineM	INFO	Train Epoch: 52 [82%]
2023-02-02 15:56:33,551	9nineM	INFO	[2.5284931659698486, 2.1809816360473633, 4.142852783203125, 20.85040855407715, 1.8455588817596436, 1.4270213842391968, 44200, 0.00019853033419836382]
2023-02-02 15:58:42,860	9nineM	INFO	====> Epoch: 52
2023-02-02 15:59:44,790	9nineM	INFO	Train Epoch: 53 [5%]
2023-02-02 15:59:44,791	9nineM	INFO	[2.564565896987915, 2.054443597793579, 4.55912971496582, 23.13440704345703, 1.6704975366592407, 1.541869044303894, 44400, 0.000198505517906589]
2023-02-02 16:00:11,151	9nineM	INFO	Saving model and optimizer state at iteration 53 to ./logs\9nineM\G_44400.pth
2023-02-02 16:00:11,901	9nineM	INFO	Saving model and optimizer state at iteration 53 to ./logs\9nineM\D_44400.pth
2023-02-02 16:02:57,194	9nineM	INFO	Train Epoch: 53 [29%]
2023-02-02 16:02:57,204	9nineM	INFO	[2.3977904319763184, 2.3497087955474854, 6.685423851013184, 27.520832061767578, 1.7616844177246094, 1.935625433921814, 44600, 0.000198505517906589]
2023-02-02 16:05:41,516	9nineM	INFO	Train Epoch: 53 [52%]
2023-02-02 16:05:41,516	9nineM	INFO	[2.6922078132629395, 2.2271242141723633, 4.273469924926758, 20.765108108520508, 1.725816249847412, 1.4365458488464355, 44800, 0.000198505517906589]
2023-02-02 16:06:07,955	9nineM	INFO	Saving model and optimizer state at iteration 53 to ./logs\9nineM\G_44800.pth
2023-02-02 16:06:08,650	9nineM	INFO	Saving model and optimizer state at iteration 53 to ./logs\9nineM\D_44800.pth
2023-02-02 16:08:54,321	9nineM	INFO	Train Epoch: 53 [75%]
2023-02-02 16:08:54,321	9nineM	INFO	[2.4816393852233887, 2.250178098678589, 4.750300407409668, 23.00159454345703, 1.9175653457641602, 1.7297017574310303, 45000, 0.000198505517906589]
2023-02-02 16:11:41,810	9nineM	INFO	Train Epoch: 53 [99%]
2023-02-02 16:11:41,810	9nineM	INFO	[2.644486665725708, 2.002166986465454, 3.7238545417785645, 20.601802825927734, 1.9655804634094238, 1.1942297220230103, 45200, 0.000198505517906589]
2023-02-02 16:12:10,558	9nineM	INFO	Saving model and optimizer state at iteration 53 to ./logs\9nineM\G_45200.pth
2023-02-02 16:12:11,255	9nineM	INFO	Saving model and optimizer state at iteration 53 to ./logs\9nineM\D_45200.pth
2023-02-02 16:12:19,688	9nineM	INFO	====> Epoch: 53
2023-02-02 16:15:24,771	9nineM	INFO	Train Epoch: 54 [22%]
2023-02-02 16:15:24,782	9nineM	INFO	[1.9965319633483887, 2.8392884731292725, 8.502004623413086, 29.19854164123535, 2.0257582664489746, 2.058742046356201, 45400, 0.00019848070471685067]
2023-02-02 16:18:13,134	9nineM	INFO	Train Epoch: 54 [46%]
2023-02-02 16:18:13,135	9nineM	INFO	[2.5347115993499756, 2.2828731536865234, 4.994711399078369, 22.087730407714844, 1.8718558549880981, 1.5664105415344238, 45600, 0.00019848070471685067]
2023-02-02 16:18:40,828	9nineM	INFO	Saving model and optimizer state at iteration 54 to ./logs\9nineM\G_45600.pth
2023-02-02 16:18:41,505	9nineM	INFO	Saving model and optimizer state at iteration 54 to ./logs\9nineM\D_45600.pth
2023-02-02 16:21:28,503	9nineM	INFO	Train Epoch: 54 [69%]
2023-02-02 16:21:28,503	9nineM	INFO	[2.6793789863586426, 2.0097861289978027, 3.7003061771392822, 18.602724075317383, 1.7506279945373535, 1.499576449394226, 45800, 0.00019848070471685067]
2023-02-02 16:24:16,524	9nineM	INFO	Train Epoch: 54 [93%]
2023-02-02 16:24:16,526	9nineM	INFO	[2.4813101291656494, 2.2298691272735596, 4.734545707702637, 22.057920455932617, 1.744640827178955, 1.5977402925491333, 46000, 0.00019848070471685067]
2023-02-02 16:24:44,547	9nineM	INFO	Saving model and optimizer state at iteration 54 to ./logs\9nineM\G_46000.pth
2023-02-02 16:24:45,243	9nineM	INFO	Saving model and optimizer state at iteration 54 to ./logs\9nineM\D_46000.pth
2023-02-02 16:25:36,975	9nineM	INFO	====> Epoch: 54
2023-02-02 16:27:57,670	9nineM	INFO	Train Epoch: 55 [16%]
2023-02-02 16:27:57,670	9nineM	INFO	[2.5409350395202637, 2.2759337425231934, 5.337271213531494, 23.66328239440918, 1.7852931022644043, 1.6941461563110352, 46200, 0.00019845589462876104]
2023-02-02 16:30:45,982	9nineM	INFO	Train Epoch: 55 [40%]
2023-02-02 16:30:45,982	9nineM	INFO	[2.5152130126953125, 2.3854804039001465, 4.660080909729004, 22.114763259887695, 1.690419316291809, 1.7361944913864136, 46400, 0.00019845589462876104]
2023-02-02 16:31:13,172	9nineM	INFO	Saving model and optimizer state at iteration 55 to ./logs\9nineM\G_46400.pth
2023-02-02 16:31:14,013	9nineM	INFO	Saving model and optimizer state at iteration 55 to ./logs\9nineM\D_46400.pth
2023-02-02 16:34:01,754	9nineM	INFO	Train Epoch: 55 [63%]
2023-02-02 16:34:01,755	9nineM	INFO	[2.653305768966675, 2.309873104095459, 3.7192981243133545, 17.845861434936523, 1.8192013502120972, 1.4677693843841553, 46600, 0.00019845589462876104]
2023-02-02 16:36:46,198	9nineM	INFO	Train Epoch: 55 [87%]
2023-02-02 16:36:46,198	9nineM	INFO	[2.3867712020874023, 2.7563436031341553, 5.9804511070251465, 20.136432647705078, 1.6614503860473633, 1.5255028009414673, 46800, 0.00019845589462876104]
2023-02-02 16:37:12,981	9nineM	INFO	Saving model and optimizer state at iteration 55 to ./logs\9nineM\G_46800.pth
2023-02-02 16:37:13,670	9nineM	INFO	Saving model and optimizer state at iteration 55 to ./logs\9nineM\D_46800.pth
2023-02-02 16:38:48,470	9nineM	INFO	====> Epoch: 55
2023-02-02 16:40:25,286	9nineM	INFO	Train Epoch: 56 [10%]
2023-02-02 16:40:25,287	9nineM	INFO	[2.5249319076538086, 2.1532249450683594, 3.879249095916748, 21.559656143188477, 1.8102107048034668, 1.5574270486831665, 47000, 0.00019843108764193245]
2023-02-02 16:43:10,479	9nineM	INFO	Train Epoch: 56 [33%]
2023-02-02 16:43:10,479	9nineM	INFO	[2.5880095958709717, 1.922254204750061, 4.0028252601623535, 20.93564796447754, 1.9858158826828003, 1.760013222694397, 47200, 0.00019843108764193245]
2023-02-02 16:43:37,053	9nineM	INFO	Saving model and optimizer state at iteration 56 to ./logs\9nineM\G_47200.pth
2023-02-02 16:43:37,741	9nineM	INFO	Saving model and optimizer state at iteration 56 to ./logs\9nineM\D_47200.pth
2023-02-02 16:46:22,741	9nineM	INFO	Train Epoch: 56 [57%]
2023-02-02 16:46:22,741	9nineM	INFO	[2.9637508392333984, 2.096416711807251, 4.352644920349121, 20.849790573120117, 1.6902706623077393, 1.75706946849823, 47400, 0.00019843108764193245]
2023-02-02 16:49:07,118	9nineM	INFO	Train Epoch: 56 [80%]
2023-02-02 16:49:07,118	9nineM	INFO	[2.1476147174835205, 2.6701338291168213, 6.902968406677246, 24.535120010375977, 1.9021955728530884, 1.9492253065109253, 47600, 0.00019843108764193245]
2023-02-02 16:49:33,816	9nineM	INFO	Saving model and optimizer state at iteration 56 to ./logs\9nineM\G_47600.pth
2023-02-02 16:49:34,491	9nineM	INFO	Saving model and optimizer state at iteration 56 to ./logs\9nineM\D_47600.pth
2023-02-02 16:51:55,017	9nineM	INFO	====> Epoch: 56
2023-02-02 16:52:46,283	9nineM	INFO	Train Epoch: 57 [4%]
2023-02-02 16:52:46,284	9nineM	INFO	[2.5692505836486816, 1.8915231227874756, 3.525790214538574, 16.598825454711914, 1.866289496421814, 1.5789271593093872, 47800, 0.0001984062837559772]
2023-02-03 00:59:09,197	9nineM	INFO	{'train': {'log_interval': 200, 'eval_interval': 400, 'seed': 1234, 'epochs': 1000, 'learning_rate': 0.0002, 'betas': [0.8, 0.99], 'eps': 1e-09, 'batch_size': 16, 'fp16_run': False, 'lr_decay': 0.999875, 'segment_size': 8192, 'init_lr_ratio': 1, 'warmup_epochs': 0, 'c_mel': 45, 'c_kl': 1.0}, 'data': {'training_files': 'filelists/9nine_multi/filelists/MultiNoHaru_train.txt.cleaned', 'validation_files': 'filelists/9nine_multi/filelists/MultiNoHaru_valid.txt.cleaned', 'text_cleaners': ['japanese_cleaners2'], 'max_wav_value': 32768.0, 'sampling_rate': 22050, 'filter_length': 1024, 'hop_length': 256, 'win_length': 1024, 'n_mel_channels': 80, 'mel_fmin': 0.0, 'mel_fmax': None, 'add_blank': True, 'n_speakers': 5, 'cleaned_text': True}, 'model': {'inter_channels': 192, 'hidden_channels': 192, 'filter_channels': 768, 'n_heads': 2, 'n_layers': 6, 'kernel_size': 3, 'p_dropout': 0.1, 'resblock': '1', 'resblock_kernel_sizes': [3, 7, 11], 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'upsample_rates': [8, 8, 2, 2], 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [16, 16, 4, 4], 'n_layers_q': 3, 'use_spectral_norm': False, 'gin_channels': 256}, 'model_dir': './logs\\9nineM', 'ckptG': None, 'ckptD': None}
2023-02-03 00:59:19,434	9nineM	INFO	Loaded checkpoint './logs\9nineM\G_47600.pth' (iteration 56)
2023-02-03 00:59:20,042	9nineM	INFO	Loaded checkpoint './logs\9nineM\D_47600.pth' (iteration 56)
2023-02-03 01:01:32,258	9nineM	INFO	Train Epoch: 56 [10%]
2023-02-03 01:01:32,259	9nineM	INFO	[2.672912120819092, 2.103388547897339, 3.3316500186920166, 18.46944236755371, 1.8204302787780762, 1.5436434745788574, 47000, 0.0001984062837559772]
2023-02-03 01:04:51,809	9nineM	INFO	Train Epoch: 56 [33%]
2023-02-03 01:04:51,810	9nineM	INFO	[2.5974044799804688, 2.219480514526367, 4.528825759887695, 22.80307388305664, 1.9853324890136719, 1.827863335609436, 47200, 0.0001984062837559772]
2023-02-03 01:05:26,880	9nineM	INFO	Saving model and optimizer state at iteration 56 to ./logs\9nineM\G_47200.pth
2023-02-03 01:05:27,870	9nineM	INFO	Saving model and optimizer state at iteration 56 to ./logs\9nineM\D_47200.pth
2023-02-03 01:08:37,022	9nineM	INFO	Train Epoch: 56 [57%]
2023-02-03 01:08:37,022	9nineM	INFO	[2.5025136470794678, 2.3158249855041504, 5.260532855987549, 23.464736938476562, 1.7083802223205566, 1.42533540725708, 47400, 0.0001984062837559772]
2023-02-03 01:11:50,836	9nineM	INFO	Train Epoch: 56 [80%]
2023-02-03 01:11:50,837	9nineM	INFO	[2.3016281127929688, 2.4068126678466797, 6.510300636291504, 24.71748924255371, 1.8946081399917603, 1.96099853515625, 47600, 0.0001984062837559772]
2023-02-03 01:12:27,402	9nineM	INFO	Saving model and optimizer state at iteration 56 to ./logs\9nineM\G_47600.pth
2023-02-03 01:12:28,293	9nineM	INFO	Saving model and optimizer state at iteration 56 to ./logs\9nineM\D_47600.pth
2023-02-03 01:15:08,052	9nineM	INFO	====> Epoch: 56
2023-02-03 01:16:11,617	9nineM	INFO	Train Epoch: 57 [4%]
2023-02-03 01:16:11,618	9nineM	INFO	[2.4532408714294434, 2.4832754135131836, 4.645760536193848, 20.386123657226562, 1.8714056015014648, 1.524889588356018, 47800, 0.00019838148297050769]
2023-02-03 01:19:25,368	9nineM	INFO	Train Epoch: 57 [27%]
2023-02-03 01:19:25,369	9nineM	INFO	[2.6601028442382812, 2.1023452281951904, 2.7675955295562744, 17.59121322631836, 1.9114729166030884, 1.8272740840911865, 48000, 0.00019838148297050769]
2023-02-03 01:20:02,274	9nineM	INFO	Saving model and optimizer state at iteration 57 to ./logs\9nineM\G_48000.pth
2023-02-03 01:20:03,225	9nineM	INFO	Saving model and optimizer state at iteration 57 to ./logs\9nineM\D_48000.pth
2023-02-03 01:23:17,264	9nineM	INFO	Train Epoch: 57 [51%]
2023-02-03 01:23:17,265	9nineM	INFO	[2.4948978424072266, 2.387098789215088, 4.183628082275391, 21.69224739074707, 2.01405668258667, 1.340806484222412, 48200, 0.00019838148297050769]
2023-02-03 01:26:39,774	9nineM	INFO	Train Epoch: 57 [74%]
2023-02-03 01:26:39,775	9nineM	INFO	[2.624905824661255, 1.9847757816314697, 4.182816982269287, 19.71246910095215, 1.7404658794403076, 1.610998272895813, 48400, 0.00019838148297050769]
2023-02-03 01:27:16,349	9nineM	INFO	Saving model and optimizer state at iteration 57 to ./logs\9nineM\G_48400.pth
2023-02-03 01:27:17,311	9nineM	INFO	Saving model and optimizer state at iteration 57 to ./logs\9nineM\D_48400.pth
2023-02-03 01:30:29,876	9nineM	INFO	Train Epoch: 57 [98%]
2023-02-03 01:30:29,876	9nineM	INFO	[2.5206167697906494, 2.4818015098571777, 5.280219554901123, 23.578548431396484, 1.8270213603973389, 1.692426323890686, 48600, 0.00019838148297050769]
2023-02-03 01:30:51,035	9nineM	INFO	====> Epoch: 57
2023-02-03 01:34:17,897	9nineM	INFO	Train Epoch: 58 [21%]
2023-02-03 01:34:17,898	9nineM	INFO	[2.44883394241333, 2.3168745040893555, 5.455172061920166, 23.473800659179688, 1.6408716440200806, 1.8296802043914795, 48800, 0.00019835668528513637]
2023-02-03 01:34:53,578	9nineM	INFO	Saving model and optimizer state at iteration 58 to ./logs\9nineM\G_48800.pth
2023-02-03 01:34:54,574	9nineM	INFO	Saving model and optimizer state at iteration 58 to ./logs\9nineM\D_48800.pth
2023-02-03 01:38:07,164	9nineM	INFO	Train Epoch: 58 [44%]
2023-02-03 01:38:07,164	9nineM	INFO	[2.432213544845581, 2.2860658168792725, 4.691568374633789, 20.705219268798828, 1.737753987312317, 1.2836068868637085, 49000, 0.00019835668528513637]
2023-02-03 01:41:24,273	9nineM	INFO	Train Epoch: 58 [68%]
2023-02-03 01:41:24,275	9nineM	INFO	[2.493086814880371, 2.4042367935180664, 5.666842460632324, 23.14779281616211, 1.7413671016693115, 1.5422581434249878, 49200, 0.00019835668528513637]
2023-02-03 01:42:00,153	9nineM	INFO	Saving model and optimizer state at iteration 58 to ./logs\9nineM\G_49200.pth
2023-02-03 01:42:01,223	9nineM	INFO	Saving model and optimizer state at iteration 58 to ./logs\9nineM\D_49200.pth
2023-02-03 01:45:15,474	9nineM	INFO	Train Epoch: 58 [91%]
2023-02-03 01:45:15,475	9nineM	INFO	[2.4014031887054443, 2.3078725337982178, 5.170658111572266, 22.265106201171875, 1.8241097927093506, 1.5589284896850586, 49400, 0.00019835668528513637]
2023-02-03 01:46:30,030	9nineM	INFO	====> Epoch: 58
2023-02-03 01:49:06,827	9nineM	INFO	Train Epoch: 59 [15%]
2023-02-03 01:49:06,828	9nineM	INFO	[2.2942590713500977, 2.28958797454834, 6.129242420196533, 24.966899871826172, 1.9432786703109741, 1.4881407022476196, 49600, 0.00019833189069947573]
2023-02-03 01:49:42,533	9nineM	INFO	Saving model and optimizer state at iteration 59 to ./logs\9nineM\G_49600.pth
2023-02-03 01:49:43,509	9nineM	INFO	Saving model and optimizer state at iteration 59 to ./logs\9nineM\D_49600.pth
2023-02-03 01:52:55,392	9nineM	INFO	Train Epoch: 59 [38%]
2023-02-03 01:52:55,393	9nineM	INFO	[2.5896387100219727, 2.2113804817199707, 4.515007495880127, 21.540569305419922, 1.9031330347061157, 1.8028725385665894, 49800, 0.00019833189069947573]
2023-02-03 01:56:10,170	9nineM	INFO	Train Epoch: 59 [62%]
2023-02-03 01:56:10,171	9nineM	INFO	[2.4506797790527344, 2.2908849716186523, 5.1710357666015625, 23.37103843688965, 1.758582353591919, 1.8202123641967773, 50000, 0.00019833189069947573]
2023-02-03 01:56:46,124	9nineM	INFO	Saving model and optimizer state at iteration 59 to ./logs\9nineM\G_50000.pth
2023-02-03 01:56:47,149	9nineM	INFO	Saving model and optimizer state at iteration 59 to ./logs\9nineM\D_50000.pth
2023-02-03 01:59:59,819	9nineM	INFO	Train Epoch: 59 [85%]
2023-02-03 01:59:59,820	9nineM	INFO	[2.5517823696136475, 2.0422005653381348, 4.879603385925293, 22.73113441467285, 1.7835543155670166, 1.543338656425476, 50200, 0.00019833189069947573]
2023-02-03 02:02:04,251	9nineM	INFO	====> Epoch: 59
2023-02-03 02:03:50,099	9nineM	INFO	Train Epoch: 60 [9%]
2023-02-03 02:03:50,100	9nineM	INFO	[2.3278772830963135, 2.625412940979004, 5.421267032623291, 24.34024429321289, 1.9122364521026611, 1.6058098077774048, 50400, 0.0001983070992131383]
2023-02-03 02:04:27,039	9nineM	INFO	Saving model and optimizer state at iteration 60 to ./logs\9nineM\G_50400.pth
2023-02-03 02:04:28,004	9nineM	INFO	Saving model and optimizer state at iteration 60 to ./logs\9nineM\D_50400.pth
2023-02-03 02:07:39,388	9nineM	INFO	Train Epoch: 60 [32%]
2023-02-03 02:07:39,388	9nineM	INFO	[2.5196664333343506, 2.361819267272949, 4.481662750244141, 19.837209701538086, 1.731720209121704, 1.2567310333251953, 50600, 0.0001983070992131383]
2023-02-03 02:10:55,322	9nineM	INFO	Train Epoch: 60 [55%]
2023-02-03 02:10:55,322	9nineM	INFO	[2.6364035606384277, 2.042539119720459, 4.1252899169921875, 19.209779739379883, 1.7461036443710327, 1.5589686632156372, 50800, 0.0001983070992131383]
2023-02-03 02:11:31,920	9nineM	INFO	Saving model and optimizer state at iteration 60 to ./logs\9nineM\G_50800.pth
2023-02-03 02:11:32,960	9nineM	INFO	Saving model and optimizer state at iteration 60 to ./logs\9nineM\D_50800.pth
2023-02-03 02:14:46,326	9nineM	INFO	Train Epoch: 60 [79%]
2023-02-03 02:14:46,336	9nineM	INFO	[2.5692458152770996, 2.1167807579040527, 4.07194709777832, 21.36824607849121, 1.70513916015625, 1.6159950494766235, 51000, 0.0001983070992131383]
2023-02-03 02:17:44,816	9nineM	INFO	====> Epoch: 60
2023-02-03 02:18:39,025	9nineM	INFO	Train Epoch: 61 [2%]
2023-02-03 02:18:39,026	9nineM	INFO	[2.3709635734558105, 2.7240004539489746, 5.342936992645264, 23.202199935913086, 1.8721204996109009, 1.9001024961471558, 51200, 0.00019828231082573666]
2023-02-03 02:19:16,138	9nineM	INFO	Saving model and optimizer state at iteration 61 to ./logs\9nineM\G_51200.pth
2023-02-03 02:19:17,256	9nineM	INFO	Saving model and optimizer state at iteration 61 to ./logs\9nineM\D_51200.pth
2023-02-03 02:22:28,102	9nineM	INFO	Train Epoch: 61 [26%]
2023-02-03 02:22:28,103	9nineM	INFO	[2.1359126567840576, 2.51208758354187, 6.858147621154785, 24.276992797851562, 1.6832128763198853, 1.4411396980285645, 51400, 0.00019828231082573666]
2023-02-03 02:25:43,105	9nineM	INFO	Train Epoch: 61 [49%]
2023-02-03 02:25:43,106	9nineM	INFO	[2.5365309715270996, 1.978432536125183, 4.31061315536499, 19.38656997680664, 1.7489607334136963, 1.7873587608337402, 51600, 0.00019828231082573666]
2023-02-03 02:26:18,993	9nineM	INFO	Saving model and optimizer state at iteration 61 to ./logs\9nineM\G_51600.pth
2023-02-03 02:26:19,943	9nineM	INFO	Saving model and optimizer state at iteration 61 to ./logs\9nineM\D_51600.pth
2023-02-03 02:29:31,466	9nineM	INFO	Train Epoch: 61 [73%]
2023-02-03 02:29:31,467	9nineM	INFO	[2.633056163787842, 2.2176268100738525, 4.984248638153076, 22.168758392333984, 1.791223168373108, 1.8201674222946167, 51800, 0.00019828231082573666]
2023-02-03 02:32:45,473	9nineM	INFO	Train Epoch: 61 [96%]
2023-02-03 02:32:45,474	9nineM	INFO	[2.523571491241455, 2.285471200942993, 4.605067729949951, 22.316648483276367, 1.8400073051452637, 1.5887786149978638, 52000, 0.00019828231082573666]
2023-02-03 02:33:22,300	9nineM	INFO	Saving model and optimizer state at iteration 61 to ./logs\9nineM\G_52000.pth
2023-02-03 02:33:23,304	9nineM	INFO	Saving model and optimizer state at iteration 61 to ./logs\9nineM\D_52000.pth
2023-02-03 02:33:55,802	9nineM	INFO	====> Epoch: 61
2023-02-03 02:37:06,959	9nineM	INFO	Train Epoch: 62 [20%]
2023-02-03 02:37:06,959	9nineM	INFO	[2.5635805130004883, 2.379089593887329, 6.037509918212891, 22.901443481445312, 1.7330048084259033, 1.8591387271881104, 52200, 0.00019825752553688343]
2023-02-03 02:40:20,118	9nineM	INFO	Train Epoch: 62 [43%]
2023-02-03 02:40:20,118	9nineM	INFO	[2.1720409393310547, 2.5727460384368896, 5.852151870727539, 22.293659210205078, 1.8660407066345215, 1.5443339347839355, 52400, 0.00019825752553688343]
2023-02-03 02:40:55,967	9nineM	INFO	Saving model and optimizer state at iteration 62 to ./logs\9nineM\G_52400.pth
2023-02-03 02:40:56,945	9nineM	INFO	Saving model and optimizer state at iteration 62 to ./logs\9nineM\D_52400.pth
2023-02-03 02:44:09,537	9nineM	INFO	Train Epoch: 62 [66%]
2023-02-03 02:44:09,539	9nineM	INFO	[2.4269766807556152, 2.2607569694519043, 5.32930326461792, 22.98223114013672, 1.7921234369277954, 1.46768057346344, 52600, 0.00019825752553688343]
2023-02-03 02:47:25,697	9nineM	INFO	Train Epoch: 62 [90%]
2023-02-03 02:47:25,698	9nineM	INFO	[2.4384925365448, 2.3430049419403076, 4.934988498687744, 22.603134155273438, 1.7610344886779785, 1.4807937145233154, 52800, 0.00019825752553688343]
2023-02-03 02:48:02,559	9nineM	INFO	Saving model and optimizer state at iteration 62 to ./logs\9nineM\G_52800.pth
2023-02-03 02:48:03,513	9nineM	INFO	Saving model and optimizer state at iteration 62 to ./logs\9nineM\D_52800.pth
2023-02-03 02:49:26,324	9nineM	INFO	====> Epoch: 62
2023-02-03 02:51:48,737	9nineM	INFO	Train Epoch: 63 [13%]
2023-02-03 02:51:48,738	9nineM	INFO	[2.3474180698394775, 2.426311731338501, 5.142326831817627, 23.166309356689453, 1.6758217811584473, 1.5445367097854614, 53000, 0.0001982327433461913]
2023-02-03 02:55:02,542	9nineM	INFO	Train Epoch: 63 [37%]
2023-02-03 02:55:02,543	9nineM	INFO	[2.5135583877563477, 2.421907424926758, 4.6314616203308105, 20.88935089111328, 1.7283380031585693, 1.6252825260162354, 53200, 0.0001982327433461913]
2023-02-03 02:55:39,117	9nineM	INFO	Saving model and optimizer state at iteration 63 to ./logs\9nineM\G_53200.pth
2023-02-03 02:55:40,072	9nineM	INFO	Saving model and optimizer state at iteration 63 to ./logs\9nineM\D_53200.pth
2023-02-03 02:58:51,720	9nineM	INFO	Train Epoch: 63 [60%]
2023-02-03 02:58:51,722	9nineM	INFO	[2.370335102081299, 2.406524658203125, 5.648592948913574, 22.969852447509766, 1.8121955394744873, 1.631996989250183, 53400, 0.0001982327433461913]
2023-02-03 03:02:08,206	9nineM	INFO	Train Epoch: 63 [84%]
2023-02-03 03:02:08,206	9nineM	INFO	[2.431915521621704, 2.2778375148773193, 5.556666851043701, 24.222270965576172, 1.6881029605865479, 1.5792791843414307, 53600, 0.0001982327433461913]
2023-02-03 03:02:45,504	9nineM	INFO	Saving model and optimizer state at iteration 63 to ./logs\9nineM\G_53600.pth
2023-02-03 03:02:46,490	9nineM	INFO	Saving model and optimizer state at iteration 63 to ./logs\9nineM\D_53600.pth
2023-02-03 03:05:00,571	9nineM	INFO	====> Epoch: 63
2023-02-03 03:06:33,216	9nineM	INFO	Train Epoch: 64 [7%]
2023-02-03 03:06:33,217	9nineM	INFO	[2.5584421157836914, 2.261146068572998, 5.403614044189453, 21.70271110534668, 3.9270589351654053, 1.7977157831192017, 53800, 0.00019820796425327303]
2023-02-03 03:09:45,697	9nineM	INFO	Train Epoch: 64 [31%]
2023-02-03 03:09:45,697	9nineM	INFO	[2.506709575653076, 2.453068733215332, 6.043850421905518, 24.06352996826172, 1.7487577199935913, 1.6727933883666992, 54000, 0.00019820796425327303]
2023-02-03 03:10:22,174	9nineM	INFO	Saving model and optimizer state at iteration 64 to ./logs\9nineM\G_54000.pth
2023-02-03 03:10:23,220	9nineM	INFO	Saving model and optimizer state at iteration 64 to ./logs\9nineM\D_54000.pth
2023-02-03 03:13:34,178	9nineM	INFO	Train Epoch: 64 [54%]
2023-02-03 03:13:34,178	9nineM	INFO	[2.5988712310791016, 2.013223171234131, 3.8378477096557617, 19.70365333557129, 1.9744824171066284, 1.527276873588562, 54200, 0.00019820796425327303]
2023-02-03 03:16:50,298	9nineM	INFO	Train Epoch: 64 [77%]
2023-02-03 03:16:50,298	9nineM	INFO	[2.5508663654327393, 2.197441816329956, 5.278398513793945, 21.889907836914062, 1.6981452703475952, 1.7705457210540771, 54400, 0.00019820796425327303]
2023-02-03 03:17:30,770	9nineM	INFO	Saving model and optimizer state at iteration 64 to ./logs\9nineM\G_54400.pth
2023-02-03 03:17:31,579	9nineM	INFO	Saving model and optimizer state at iteration 64 to ./logs\9nineM\D_54400.pth
2023-02-03 03:21:41,911	9nineM	INFO	====> Epoch: 64
2023-02-03 03:22:22,015	9nineM	INFO	Train Epoch: 65 [1%]
2023-02-03 03:22:22,016	9nineM	INFO	[2.11804461479187, 2.680095911026001, 5.810821056365967, 20.727031707763672, 1.8702524900436401, 1.68907630443573, 54600, 0.00019818318825774137]
2023-02-03 03:27:20,692	9nineM	INFO	Train Epoch: 65 [24%]
2023-02-03 03:27:20,693	9nineM	INFO	[2.377493143081665, 2.5573155879974365, 5.29105806350708, 23.006086349487305, 3.8652234077453613, 1.7418180704116821, 54800, 0.00019818318825774137]
2023-02-03 03:27:56,525	9nineM	INFO	Saving model and optimizer state at iteration 65 to ./logs\9nineM\G_54800.pth
2023-02-03 03:27:57,351	9nineM	INFO	Saving model and optimizer state at iteration 65 to ./logs\9nineM\D_54800.pth
2023-02-03 03:32:47,303	9nineM	INFO	Train Epoch: 65 [48%]
2023-02-03 03:32:47,304	9nineM	INFO	[2.51495623588562, 2.165210247039795, 4.879878044128418, 22.3475399017334, 1.8575648069381714, 2.0317447185516357, 55000, 0.00019818318825774137]
2023-02-03 03:36:22,977	9nineM	INFO	Train Epoch: 65 [71%]
2023-02-03 03:36:22,978	9nineM	INFO	[2.4218292236328125, 2.371192693710327, 5.4800286293029785, 21.835460662841797, 1.8553683757781982, 1.3339478969573975, 55200, 0.00019818318825774137]
2023-02-03 03:36:57,075	9nineM	INFO	Saving model and optimizer state at iteration 65 to ./logs\9nineM\G_55200.pth
2023-02-03 03:36:58,130	9nineM	INFO	Saving model and optimizer state at iteration 65 to ./logs\9nineM\D_55200.pth
2023-02-03 03:41:02,853	9nineM	INFO	Train Epoch: 65 [95%]
2023-02-03 03:41:02,854	9nineM	INFO	[2.4818830490112305, 2.2685413360595703, 5.177450180053711, 21.700761795043945, 1.832390308380127, 1.9992364645004272, 55400, 0.00019818318825774137]
2023-02-03 03:41:47,561	9nineM	INFO	====> Epoch: 65
2023-02-03 03:44:49,439	9nineM	INFO	Train Epoch: 66 [18%]
2023-02-03 03:44:49,439	9nineM	INFO	[2.459707260131836, 2.284942150115967, 4.610323905944824, 20.99444007873535, 1.7494850158691406, 1.8644267320632935, 55600, 0.00019815841535920914]
2023-02-03 03:45:24,611	9nineM	INFO	Saving model and optimizer state at iteration 66 to ./logs\9nineM\G_55600.pth
2023-02-03 03:45:25,573	9nineM	INFO	Saving model and optimizer state at iteration 66 to ./logs\9nineM\D_55600.pth
2023-02-03 03:48:38,191	9nineM	INFO	Train Epoch: 66 [42%]
2023-02-03 03:48:38,192	9nineM	INFO	[2.7035176753997803, 2.3940021991729736, 4.859534740447998, 21.582319259643555, 1.8283841609954834, 1.7707816362380981, 55800, 0.00019815841535920914]
2023-02-03 03:51:49,359	9nineM	INFO	Train Epoch: 66 [65%]
2023-02-03 03:51:49,359	9nineM	INFO	[2.607867479324341, 2.1679699420928955, 4.986110210418701, 22.950368881225586, 1.8008973598480225, 1.8243170976638794, 56000, 0.00019815841535920914]
2023-02-03 03:52:25,199	9nineM	INFO	Saving model and optimizer state at iteration 66 to ./logs\9nineM\G_56000.pth
2023-02-03 03:52:26,192	9nineM	INFO	Saving model and optimizer state at iteration 66 to ./logs\9nineM\D_56000.pth
2023-02-03 03:55:37,026	9nineM	INFO	Train Epoch: 66 [89%]
2023-02-03 03:55:37,036	9nineM	INFO	[2.4055895805358887, 2.4035286903381348, 5.224339962005615, 23.526596069335938, 1.7499163150787354, 1.6318963766098022, 56200, 0.00019815841535920914]
2023-02-03 03:57:10,552	9nineM	INFO	====> Epoch: 66
2023-02-03 03:59:20,747	9nineM	INFO	Train Epoch: 67 [12%]
2023-02-03 03:59:20,748	9nineM	INFO	[2.2657783031463623, 2.4371931552886963, 7.117774486541748, 25.306419372558594, 1.7295277118682861, 1.7502403259277344, 56400, 0.00019813364555728923]
2023-02-03 03:59:56,552	9nineM	INFO	Saving model and optimizer state at iteration 67 to ./logs\9nineM\G_56400.pth
2023-02-03 03:59:57,508	9nineM	INFO	Saving model and optimizer state at iteration 67 to ./logs\9nineM\D_56400.pth
2023-02-03 04:03:09,072	9nineM	INFO	Train Epoch: 67 [35%]
2023-02-03 04:03:09,073	9nineM	INFO	[2.767900228500366, 2.1692662239074707, 4.149256229400635, 21.174406051635742, 1.8470003604888916, 1.7838845252990723, 56600, 0.00019813364555728923]
2023-02-03 04:06:18,640	9nineM	INFO	Train Epoch: 67 [59%]
2023-02-03 04:06:18,641	9nineM	INFO	[2.5033888816833496, 2.0516786575317383, 4.635260105133057, 20.66300392150879, 1.9004969596862793, 1.2426483631134033, 56800, 0.00019813364555728923]
2023-02-03 04:06:54,574	9nineM	INFO	Saving model and optimizer state at iteration 67 to ./logs\9nineM\G_56800.pth
2023-02-03 04:06:55,602	9nineM	INFO	Saving model and optimizer state at iteration 67 to ./logs\9nineM\D_56800.pth
2023-02-03 04:10:05,886	9nineM	INFO	Train Epoch: 67 [82%]
2023-02-03 04:10:05,886	9nineM	INFO	[2.275343894958496, 2.5893187522888184, 6.625726699829102, 25.04363250732422, 1.7368674278259277, 1.6008716821670532, 57000, 0.00019813364555728923]
2023-02-03 04:12:30,861	9nineM	INFO	====> Epoch: 67
2023-02-03 04:13:50,275	9nineM	INFO	Train Epoch: 68 [6%]
2023-02-03 04:13:50,276	9nineM	INFO	[2.5386765003204346, 2.440680980682373, 5.077262878417969, 22.269128799438477, 1.749283790588379, 1.5236108303070068, 57200, 0.00019810887885159456]
2023-02-03 04:14:25,787	9nineM	INFO	Saving model and optimizer state at iteration 68 to ./logs\9nineM\G_57200.pth
2023-02-03 04:14:26,752	9nineM	INFO	Saving model and optimizer state at iteration 68 to ./logs\9nineM\D_57200.pth
2023-02-03 04:17:38,378	9nineM	INFO	Train Epoch: 68 [29%]
2023-02-03 04:17:38,379	9nineM	INFO	[2.5833661556243896, 2.1460273265838623, 5.135639190673828, 23.69635581970215, 1.7779978513717651, 1.9164893627166748, 57400, 0.00019810887885159456]
2023-02-03 04:20:50,177	9nineM	INFO	Train Epoch: 68 [53%]
2023-02-03 04:20:50,177	9nineM	INFO	[2.4862895011901855, 2.279574394226074, 5.097471237182617, 21.17926788330078, 1.7066378593444824, 1.8012689352035522, 57600, 0.00019810887885159456]
2023-02-03 04:21:26,004	9nineM	INFO	Saving model and optimizer state at iteration 68 to ./logs\9nineM\G_57600.pth
2023-02-03 04:21:26,997	9nineM	INFO	Saving model and optimizer state at iteration 68 to ./logs\9nineM\D_57600.pth
2023-02-03 04:24:39,212	9nineM	INFO	Train Epoch: 68 [76%]
2023-02-03 04:24:39,213	9nineM	INFO	[2.193986415863037, 2.6489603519439697, 6.275017261505127, 23.127561569213867, 1.6875288486480713, 1.6145249605178833, 57800, 0.00019810887885159456]
2023-02-03 04:27:49,754	9nineM	INFO	Train Epoch: 68 [100%]
2023-02-03 04:27:49,756	9nineM	INFO	[2.584716796875, 2.1586058139801025, 3.7279787063598633, 19.764524459838867, 1.6812318563461304, 1.5582759380340576, 58000, 0.00019810887885159456]
2023-02-03 04:28:25,577	9nineM	INFO	Saving model and optimizer state at iteration 68 to ./logs\9nineM\G_58000.pth
2023-02-03 04:28:26,556	9nineM	INFO	Saving model and optimizer state at iteration 68 to ./logs\9nineM\D_58000.pth
2023-02-03 04:28:31,711	9nineM	INFO	====> Epoch: 68
2023-02-03 04:32:12,824	9nineM	INFO	Train Epoch: 69 [23%]
2023-02-03 04:32:12,825	9nineM	INFO	[2.393617868423462, 2.3776895999908447, 5.664454936981201, 23.724445343017578, 1.8494908809661865, 1.3909265995025635, 58200, 0.0001980841152417381]
2023-02-03 04:35:23,554	9nineM	INFO	Train Epoch: 69 [46%]
2023-02-03 04:35:23,554	9nineM	INFO	[2.5609912872314453, 2.114701509475708, 4.657586097717285, 21.051551818847656, 1.6989542245864868, 1.7439806461334229, 58400, 0.0001980841152417381]
2023-02-03 04:35:59,512	9nineM	INFO	Saving model and optimizer state at iteration 69 to ./logs\9nineM\G_58400.pth
2023-02-03 04:36:00,491	9nineM	INFO	Saving model and optimizer state at iteration 69 to ./logs\9nineM\D_58400.pth
2023-02-03 04:39:10,453	9nineM	INFO	Train Epoch: 69 [70%]
2023-02-03 04:39:10,453	9nineM	INFO	[2.5410313606262207, 2.229185104370117, 5.6162109375, 21.478355407714844, 1.8260700702667236, 1.6734628677368164, 58600, 0.0001980841152417381]
2023-02-03 04:42:20,309	9nineM	INFO	Train Epoch: 69 [93%]
2023-02-03 04:42:20,310	9nineM	INFO	[2.5465710163116455, 2.2258176803588867, 4.023758411407471, 19.937156677246094, 1.7602260112762451, 1.5172138214111328, 58800, 0.0001980841152417381]
2023-02-03 04:42:56,481	9nineM	INFO	Saving model and optimizer state at iteration 69 to ./logs\9nineM\G_58800.pth
2023-02-03 04:42:57,493	9nineM	INFO	Saving model and optimizer state at iteration 69 to ./logs\9nineM\D_58800.pth
2023-02-03 04:43:52,221	9nineM	INFO	====> Epoch: 69
2023-02-03 04:46:41,280	9nineM	INFO	Train Epoch: 70 [17%]
2023-02-03 04:46:41,281	9nineM	INFO	[2.4627819061279297, 2.3296258449554443, 5.925930023193359, 24.470354080200195, 1.8671823740005493, 1.89864182472229, 59000, 0.00019805935472733287]
2023-02-03 04:49:51,875	9nineM	INFO	Train Epoch: 70 [40%]
2023-02-03 04:49:51,876	9nineM	INFO	[2.6727185249328613, 2.013561964035034, 3.91961669921875, 19.693506240844727, 1.796967625617981, 1.5389909744262695, 59200, 0.00019805935472733287]
2023-02-03 04:50:27,592	9nineM	INFO	Saving model and optimizer state at iteration 70 to ./logs\9nineM\G_59200.pth
2023-02-03 04:50:28,535	9nineM	INFO	Saving model and optimizer state at iteration 70 to ./logs\9nineM\D_59200.pth
2023-02-03 04:53:32,963	9nineM	INFO	Train Epoch: 70 [64%]
2023-02-03 04:53:32,964	9nineM	INFO	[2.6429226398468018, 2.2939488887786865, 5.161586284637451, 22.10187530517578, 1.583906650543213, 1.728223204612732, 59400, 0.00019805935472733287]
2023-02-03 04:56:17,586	9nineM	INFO	Train Epoch: 70 [87%]
2023-02-03 04:56:17,586	9nineM	INFO	[2.4202473163604736, 2.5460360050201416, 5.590799808502197, 22.982948303222656, 1.7700634002685547, 1.489729642868042, 59600, 0.00019805935472733287]
2023-02-03 04:56:44,645	9nineM	INFO	Saving model and optimizer state at iteration 70 to ./logs\9nineM\G_59600.pth
2023-02-03 04:56:45,298	9nineM	INFO	Saving model and optimizer state at iteration 70 to ./logs\9nineM\D_59600.pth
2023-02-03 04:58:17,075	9nineM	INFO	====> Epoch: 70
2023-02-03 04:59:58,463	9nineM	INFO	Train Epoch: 71 [11%]
2023-02-03 04:59:58,463	9nineM	INFO	[2.582427740097046, 2.1536905765533447, 4.7381911277771, 20.809873580932617, 1.6572215557098389, 1.4732290506362915, 59800, 0.00019803459730799195]
2023-02-03 05:02:45,830	9nineM	INFO	Train Epoch: 71 [34%]
2023-02-03 05:02:45,831	9nineM	INFO	[2.4081552028656006, 2.325221538543701, 5.1794538497924805, 22.750572204589844, 1.6821101903915405, 1.5753097534179688, 60000, 0.00019803459730799195]
2023-02-03 05:03:13,356	9nineM	INFO	Saving model and optimizer state at iteration 71 to ./logs\9nineM\G_60000.pth
2023-02-03 05:03:14,019	9nineM	INFO	Saving model and optimizer state at iteration 71 to ./logs\9nineM\D_60000.pth
2023-02-03 05:06:00,180	9nineM	INFO	Train Epoch: 71 [57%]
2023-02-03 05:06:00,180	9nineM	INFO	[2.515235185623169, 2.389220952987671, 4.70564079284668, 21.365650177001953, 1.8769023418426514, 1.3444002866744995, 60200, 0.00019803459730799195]
2023-02-03 05:08:45,422	9nineM	INFO	Train Epoch: 71 [81%]
2023-02-03 05:08:45,432	9nineM	INFO	[2.3964056968688965, 2.4605460166931152, 5.22156286239624, 22.29313087463379, 1.717556118965149, 1.6100229024887085, 60400, 0.00019803459730799195]
2023-02-03 05:09:12,854	9nineM	INFO	Saving model and optimizer state at iteration 71 to ./logs\9nineM\G_60400.pth
2023-02-03 05:09:13,518	9nineM	INFO	Saving model and optimizer state at iteration 71 to ./logs\9nineM\D_60400.pth
2023-02-03 05:11:30,482	9nineM	INFO	====> Epoch: 71
2023-02-03 05:12:27,666	9nineM	INFO	Train Epoch: 72 [4%]
2023-02-03 05:12:27,667	9nineM	INFO	[2.5781455039978027, 2.2156596183776855, 4.438287258148193, 21.295211791992188, 1.7262805700302124, 1.6773481369018555, 60600, 0.00019800984298332845]
2023-02-03 05:15:14,714	9nineM	INFO	Train Epoch: 72 [28%]
2023-02-03 05:15:14,714	9nineM	INFO	[2.0034523010253906, 2.7177186012268066, 8.564760208129883, 24.744157791137695, 1.79685378074646, 2.0481743812561035, 60800, 0.00019800984298332845]
2023-02-03 05:15:42,508	9nineM	INFO	Saving model and optimizer state at iteration 72 to ./logs\9nineM\G_60800.pth
2023-02-03 05:15:43,369	9nineM	INFO	Saving model and optimizer state at iteration 72 to ./logs\9nineM\D_60800.pth
2023-02-03 05:18:28,279	9nineM	INFO	Train Epoch: 72 [51%]
2023-02-03 05:18:28,280	9nineM	INFO	[2.4995293617248535, 2.5850839614868164, 5.889671325683594, 23.41088104248047, 1.725574254989624, 1.8313080072402954, 61000, 0.00019800984298332845]
2023-02-03 05:21:15,809	9nineM	INFO	Train Epoch: 72 [75%]
2023-02-03 05:21:15,810	9nineM	INFO	[2.5919060707092285, 2.217766046524048, 4.825982093811035, 21.60723114013672, 1.6928209066390991, 1.6144503355026245, 61200, 0.00019800984298332845]
2023-02-03 05:21:43,645	9nineM	INFO	Saving model and optimizer state at iteration 72 to ./logs\9nineM\G_61200.pth
2023-02-03 05:21:44,298	9nineM	INFO	Saving model and optimizer state at iteration 72 to ./logs\9nineM\D_61200.pth
2023-02-03 19:58:13,560	9nineM	INFO	Train Epoch: 72 [98%]
2023-02-03 19:58:13,561	9nineM	INFO	[2.799675703048706, 1.876345157623291, 2.7222440242767334, 17.285810470581055, 1.807011604309082, 1.583828091621399, 61400, 0.00019800984298332845]
2023-02-03 19:58:29,596	9nineM	INFO	====> Epoch: 72
2023-02-06 04:19:23,087	9nineM	INFO	{'train': {'log_interval': 200, 'eval_interval': 400, 'seed': 1234, 'epochs': 1000, 'learning_rate': 0.0002, 'betas': [0.8, 0.99], 'eps': 1e-09, 'batch_size': 16, 'fp16_run': False, 'lr_decay': 0.999875, 'segment_size': 8192, 'init_lr_ratio': 1, 'warmup_epochs': 0, 'c_mel': 45, 'c_kl': 1.0}, 'data': {'training_files': 'filelists/9nine_multi/filelists/MultiNoHaru_train.txt.cleaned', 'validation_files': 'filelists/9nine_multi/filelists/MultiNoHaru_valid.txt.cleaned', 'text_cleaners': ['japanese_cleaners2'], 'max_wav_value': 32768.0, 'sampling_rate': 22050, 'filter_length': 1024, 'hop_length': 256, 'win_length': 1024, 'n_mel_channels': 80, 'mel_fmin': 0.0, 'mel_fmax': None, 'add_blank': True, 'n_speakers': 5, 'cleaned_text': True}, 'model': {'inter_channels': 192, 'hidden_channels': 192, 'filter_channels': 768, 'n_heads': 2, 'n_layers': 6, 'kernel_size': 3, 'p_dropout': 0.1, 'resblock': '1', 'resblock_kernel_sizes': [3, 7, 11], 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'upsample_rates': [8, 8, 2, 2], 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [16, 16, 4, 4], 'n_layers_q': 3, 'use_spectral_norm': False, 'gin_channels': 256}, 'model_dir': './logs\\9nineM', 'ckptG': None, 'ckptD': None}
2023-02-06 04:19:33,701	9nineM	INFO	Loaded checkpoint './logs\9nineM\G_61200.pth' (iteration 72)
2023-02-06 04:19:34,481	9nineM	INFO	Loaded checkpoint './logs\9nineM\D_61200.pth' (iteration 72)
2023-02-06 04:20:52,238	9nineM	INFO	Train Epoch: 72 [4%]
2023-02-06 04:20:52,240	9nineM	INFO	[2.4905245304107666, 2.4353814125061035, 4.857059478759766, 21.026994705200195, 1.728440523147583, 1.6196600198745728, 60600, 0.00019798509175295552]
2023-02-06 04:23:55,642	9nineM	INFO	Train Epoch: 72 [28%]
2023-02-06 04:23:55,643	9nineM	INFO	[2.456995725631714, 2.3115909099578857, 6.684133529663086, 24.83147621154785, 1.795435905456543, 1.773382544517517, 60800, 0.00019798509175295552]
2023-02-06 04:24:29,246	9nineM	INFO	Saving model and optimizer state at iteration 72 to ./logs\9nineM\G_60800.pth
2023-02-06 04:24:30,145	9nineM	INFO	Saving model and optimizer state at iteration 72 to ./logs\9nineM\D_60800.pth
2023-02-06 04:27:24,219	9nineM	INFO	Train Epoch: 72 [51%]
2023-02-06 04:27:24,220	9nineM	INFO	[2.3354060649871826, 2.769453287124634, 5.869713306427002, 22.62506103515625, 1.706385850906372, 1.8073004484176636, 61000, 0.00019798509175295552]
2023-02-06 04:30:18,799	9nineM	INFO	Train Epoch: 72 [75%]
2023-02-06 04:30:18,799	9nineM	INFO	[2.2391738891601562, 2.6108973026275635, 5.128167629241943, 21.239099502563477, 1.7100787162780762, 1.8996784687042236, 61200, 0.00019798509175295552]
2023-02-06 04:30:51,424	9nineM	INFO	Saving model and optimizer state at iteration 72 to ./logs\9nineM\G_61200.pth
2023-02-06 04:30:52,136	9nineM	INFO	Saving model and optimizer state at iteration 72 to ./logs\9nineM\D_61200.pth
2023-02-06 04:33:40,605	9nineM	INFO	Train Epoch: 72 [98%]
2023-02-06 04:33:40,606	9nineM	INFO	[2.6712112426757812, 2.091658353805542, 2.7821426391601562, 17.237686157226562, 1.82709801197052, 1.3094412088394165, 61400, 0.00019798509175295552]
2023-02-06 04:33:54,254	9nineM	INFO	====> Epoch: 72
2023-02-06 04:36:58,123	9nineM	INFO	Train Epoch: 73 [22%]
2023-02-06 04:36:58,124	9nineM	INFO	[2.4204890727996826, 2.2256619930267334, 5.238700866699219, 21.909423828125, 1.688030481338501, 1.5041248798370361, 61600, 0.0001979603436164864]
2023-02-06 04:37:31,074	9nineM	INFO	Saving model and optimizer state at iteration 73 to ./logs\9nineM\G_61600.pth
2023-02-06 04:37:31,913	9nineM	INFO	Saving model and optimizer state at iteration 73 to ./logs\9nineM\D_61600.pth
2023-02-06 04:40:20,691	9nineM	INFO	Train Epoch: 73 [45%]
2023-02-06 04:40:20,692	9nineM	INFO	[2.297163724899292, 2.347593069076538, 5.843701362609863, 21.70340919494629, 1.6715729236602783, 1.7778856754302979, 61800, 0.0001979603436164864]
2023-02-06 04:43:07,830	9nineM	INFO	Train Epoch: 73 [68%]
2023-02-06 04:43:07,830	9nineM	INFO	[2.466874122619629, 2.3205671310424805, 5.398853302001953, 22.586332321166992, 1.7785080671310425, 1.6443525552749634, 62000, 0.0001979603436164864]
2023-02-06 04:43:39,933	9nineM	INFO	Saving model and optimizer state at iteration 73 to ./logs\9nineM\G_62000.pth
2023-02-06 04:43:40,965	9nineM	INFO	Saving model and optimizer state at iteration 73 to ./logs\9nineM\D_62000.pth
2023-02-06 04:46:26,421	9nineM	INFO	Train Epoch: 73 [92%]
2023-02-06 04:46:26,422	9nineM	INFO	[2.499178886413574, 2.3824784755706787, 4.614241123199463, 20.497652053833008, 1.9082872867584229, 1.589255452156067, 62200, 0.0001979603436164864]
2023-02-06 04:47:24,497	9nineM	INFO	====> Epoch: 73
2023-02-06 04:49:43,316	9nineM	INFO	Train Epoch: 74 [15%]
2023-02-06 04:49:43,316	9nineM	INFO	[2.432863473892212, 2.816837787628174, 5.711406230926514, 22.893400192260742, 1.7619438171386719, 1.6729869842529297, 62400, 0.00019793559857353432]
2023-02-06 04:50:14,830	9nineM	INFO	Saving model and optimizer state at iteration 74 to ./logs\9nineM\G_62400.pth
2023-02-06 04:50:15,554	9nineM	INFO	Saving model and optimizer state at iteration 74 to ./logs\9nineM\D_62400.pth
2023-02-06 04:53:00,016	9nineM	INFO	Train Epoch: 74 [39%]
2023-02-06 04:53:00,016	9nineM	INFO	[2.2945990562438965, 2.665768623352051, 6.332032203674316, 23.053686141967773, 1.8312345743179321, 1.5201756954193115, 62600, 0.00019793559857353432]
2023-02-06 04:55:44,533	9nineM	INFO	Train Epoch: 74 [62%]
2023-02-06 04:55:44,533	9nineM	INFO	[2.482102155685425, 2.410092830657959, 5.942013263702393, 22.24520492553711, 1.692725419998169, 1.5181009769439697, 62800, 0.00019793559857353432]
2023-02-06 04:56:14,794	9nineM	INFO	Saving model and optimizer state at iteration 74 to ./logs\9nineM\G_62800.pth
2023-02-06 04:56:15,479	9nineM	INFO	Saving model and optimizer state at iteration 74 to ./logs\9nineM\D_62800.pth
2023-02-06 04:59:02,260	9nineM	INFO	Train Epoch: 74 [86%]
2023-02-06 04:59:02,260	9nineM	INFO	[2.519771099090576, 2.0773379802703857, 4.821554660797119, 21.217731475830078, 1.8580095767974854, 1.7496412992477417, 63000, 0.00019793559857353432]
2023-02-06 05:00:43,224	9nineM	INFO	====> Epoch: 74
2023-02-06 05:02:16,834	9nineM	INFO	Train Epoch: 75 [9%]
2023-02-06 05:02:16,835	9nineM	INFO	[2.4103803634643555, 2.195044755935669, 4.877587795257568, 21.299474716186523, 1.725413203239441, 1.654306411743164, 63200, 0.00019791085662371262]
2023-02-06 05:02:48,357	9nineM	INFO	Saving model and optimizer state at iteration 75 to ./logs\9nineM\G_63200.pth
2023-02-06 05:02:49,051	9nineM	INFO	Saving model and optimizer state at iteration 75 to ./logs\9nineM\D_63200.pth
2023-02-06 05:05:34,596	9nineM	INFO	Train Epoch: 75 [33%]
2023-02-06 05:05:34,597	9nineM	INFO	[2.401853084564209, 2.258467674255371, 5.803826808929443, 21.338125228881836, 1.8000590801239014, 1.4500749111175537, 63400, 0.00019791085662371262]
2023-02-06 05:08:19,457	9nineM	INFO	Train Epoch: 75 [56%]
2023-02-06 05:08:19,457	9nineM	INFO	[2.5368406772613525, 2.3413407802581787, 6.009054183959961, 23.420373916625977, 1.695863962173462, 1.942280650138855, 63600, 0.00019791085662371262]
2023-02-06 05:08:50,372	9nineM	INFO	Saving model and optimizer state at iteration 75 to ./logs\9nineM\G_63600.pth
2023-02-06 05:08:51,405	9nineM	INFO	Saving model and optimizer state at iteration 75 to ./logs\9nineM\D_63600.pth
2023-02-06 05:11:38,046	9nineM	INFO	Train Epoch: 75 [79%]
2023-02-06 05:11:38,047	9nineM	INFO	[2.731710433959961, 2.398693561553955, 4.9033613204956055, 20.635700225830078, 1.6762090921401978, 1.7057929039001465, 63800, 0.00019791085662371262]
2023-02-06 05:14:04,588	9nineM	INFO	====> Epoch: 75
2023-02-06 05:14:56,290	9nineM	INFO	Train Epoch: 76 [3%]
2023-02-06 05:14:56,291	9nineM	INFO	[2.266551971435547, 2.4041476249694824, 6.241879940032959, 20.23375701904297, 1.739053726196289, 1.4617226123809814, 64000, 0.00019788611776663464]
2023-02-06 05:15:28,171	9nineM	INFO	Saving model and optimizer state at iteration 76 to ./logs\9nineM\G_64000.pth
2023-02-06 05:15:28,900	9nineM	INFO	Saving model and optimizer state at iteration 76 to ./logs\9nineM\D_64000.pth
2023-02-06 05:18:13,967	9nineM	INFO	Train Epoch: 76 [26%]
2023-02-06 05:18:13,967	9nineM	INFO	[2.608781099319458, 2.4489901065826416, 4.1126251220703125, 19.619564056396484, 1.7689703702926636, 1.865809440612793, 64200, 0.00019788611776663464]
2023-02-06 05:20:56,605	9nineM	INFO	Train Epoch: 76 [50%]
2023-02-06 05:20:56,606	9nineM	INFO	[2.385148525238037, 2.502060890197754, 6.575152397155762, 24.20307159423828, 1.674390196800232, 1.6329617500305176, 64400, 0.00019788611776663464]
2023-02-06 05:21:25,733	9nineM	INFO	Saving model and optimizer state at iteration 76 to ./logs\9nineM\G_64400.pth
2023-02-06 05:21:26,481	9nineM	INFO	Saving model and optimizer state at iteration 76 to ./logs\9nineM\D_64400.pth
2023-02-06 05:24:10,848	9nineM	INFO	Train Epoch: 76 [73%]
2023-02-06 05:24:10,848	9nineM	INFO	[2.4705684185028076, 2.2331924438476562, 4.316597938537598, 21.17183494567871, 1.8557251691818237, 1.450272798538208, 64600, 0.00019788611776663464]
2023-02-06 05:26:54,935	9nineM	INFO	Train Epoch: 76 [97%]
2023-02-06 05:26:54,936	9nineM	INFO	[2.601595878601074, 2.2771596908569336, 5.144861221313477, 22.146696090698242, 1.7484124898910522, 1.5043407678604126, 64800, 0.00019788611776663464]
2023-02-06 05:27:23,905	9nineM	INFO	Saving model and optimizer state at iteration 76 to ./logs\9nineM\G_64800.pth
2023-02-06 05:27:24,936	9nineM	INFO	Saving model and optimizer state at iteration 76 to ./logs\9nineM\D_64800.pth
2023-02-06 05:27:48,334	9nineM	INFO	====> Epoch: 76
2023-02-06 05:30:37,137	9nineM	INFO	Train Epoch: 77 [20%]
2023-02-06 05:30:37,137	9nineM	INFO	[2.365074634552002, 2.463613271713257, 5.400785446166992, 20.98668098449707, 1.7013943195343018, 1.6169242858886719, 65000, 0.0001978613820019138]
2023-02-06 05:33:20,757	9nineM	INFO	Train Epoch: 77 [44%]
2023-02-06 05:33:20,758	9nineM	INFO	[2.445028066635132, 2.237590789794922, 5.2281293869018555, 23.237245559692383, 1.736968755722046, 1.720275640487671, 65200, 0.0001978613820019138]
2023-02-06 05:33:50,107	9nineM	INFO	Saving model and optimizer state at iteration 77 to ./logs\9nineM\G_65200.pth
2023-02-06 05:33:50,773	9nineM	INFO	Saving model and optimizer state at iteration 77 to ./logs\9nineM\D_65200.pth
2023-02-06 05:36:35,113	9nineM	INFO	Train Epoch: 77 [67%]
2023-02-06 05:36:35,114	9nineM	INFO	[2.5210564136505127, 2.193607807159424, 4.394340991973877, 21.00632095336914, 1.795645833015442, 1.6523388624191284, 65400, 0.0001978613820019138]
2023-02-06 05:39:18,849	9nineM	INFO	Train Epoch: 77 [91%]
2023-02-06 05:39:18,849	9nineM	INFO	[2.5398499965667725, 2.335365056991577, 4.490217208862305, 19.484638214111328, 1.7037937641143799, 1.7897189855575562, 65600, 0.0001978613820019138]
2023-02-06 05:39:48,452	9nineM	INFO	Saving model and optimizer state at iteration 77 to ./logs\9nineM\G_65600.pth
2023-02-06 05:39:49,125	9nineM	INFO	Saving model and optimizer state at iteration 77 to ./logs\9nineM\D_65600.pth
2023-02-06 05:40:55,486	9nineM	INFO	====> Epoch: 77
2023-02-06 05:42:59,001	9nineM	INFO	Train Epoch: 78 [14%]
2023-02-06 05:42:59,003	9nineM	INFO	[2.4388952255249023, 2.405015230178833, 4.805449962615967, 20.763015747070312, 1.807286024093628, 1.7616719007492065, 65800, 0.00019783664932916355]
2023-02-06 05:45:43,988	9nineM	INFO	Train Epoch: 78 [37%]
2023-02-06 05:45:43,988	9nineM	INFO	[2.264955759048462, 2.2813100814819336, 5.926263332366943, 24.083023071289062, 1.579649806022644, 1.7028638124465942, 66000, 0.00019783664932916355]
2023-02-06 05:46:14,480	9nineM	INFO	Saving model and optimizer state at iteration 78 to ./logs\9nineM\G_66000.pth
2023-02-06 05:46:15,162	9nineM	INFO	Saving model and optimizer state at iteration 78 to ./logs\9nineM\D_66000.pth
2023-02-06 05:49:00,678	9nineM	INFO	Train Epoch: 78 [61%]
2023-02-06 05:49:00,679	9nineM	INFO	[2.3051817417144775, 2.6702542304992676, 5.46689510345459, 22.072662353515625, 1.9787356853485107, 1.7422808408737183, 66200, 0.00019783664932916355]
2023-02-06 05:51:43,708	9nineM	INFO	Train Epoch: 78 [84%]
2023-02-06 05:51:43,709	9nineM	INFO	[2.4244790077209473, 2.3375325202941895, 5.385674953460693, 21.36229133605957, 1.8320544958114624, 1.6734129190444946, 66400, 0.00019783664932916355]
2023-02-06 05:52:12,773	9nineM	INFO	Saving model and optimizer state at iteration 78 to ./logs\9nineM\G_66400.pth
2023-02-06 05:52:13,541	9nineM	INFO	Saving model and optimizer state at iteration 78 to ./logs\9nineM\D_66400.pth
2023-02-06 05:54:03,122	9nineM	INFO	====> Epoch: 78
2023-02-06 05:55:26,532	9nineM	INFO	Train Epoch: 79 [8%]
2023-02-06 05:55:26,532	9nineM	INFO	[2.3645448684692383, 2.5583982467651367, 5.855003833770752, 21.44668197631836, 1.8052489757537842, 1.861608862876892, 66600, 0.0001978119197479974]
2023-02-06 05:58:09,323	9nineM	INFO	Train Epoch: 79 [31%]
2023-02-06 05:58:09,324	9nineM	INFO	[2.2633349895477295, 2.7029590606689453, 6.055595397949219, 20.4661865234375, 1.68825101852417, 1.40994131565094, 66800, 0.0001978119197479974]
2023-02-06 05:58:38,869	9nineM	INFO	Saving model and optimizer state at iteration 79 to ./logs\9nineM\G_66800.pth
2023-02-06 05:58:39,561	9nineM	INFO	Saving model and optimizer state at iteration 79 to ./logs\9nineM\D_66800.pth
2023-02-06 06:01:24,574	9nineM	INFO	Train Epoch: 79 [55%]
2023-02-06 06:01:24,575	9nineM	INFO	[2.553617238998413, 2.3292808532714844, 5.63338041305542, 22.44329071044922, 1.7927372455596924, 1.6714777946472168, 67000, 0.0001978119197479974]
2023-02-06 06:04:09,185	9nineM	INFO	Train Epoch: 79 [78%]
2023-02-06 06:04:09,186	9nineM	INFO	[2.2242395877838135, 2.42453670501709, 6.259720802307129, 24.094356536865234, 1.759538173675537, 2.102372169494629, 67200, 0.0001978119197479974]
2023-02-06 06:04:39,911	9nineM	INFO	Saving model and optimizer state at iteration 79 to ./logs\9nineM\G_67200.pth
2023-02-06 06:04:40,945	9nineM	INFO	Saving model and optimizer state at iteration 79 to ./logs\9nineM\D_67200.pth
2023-02-06 06:07:13,955	9nineM	INFO	====> Epoch: 79
2023-02-06 06:07:52,662	9nineM	INFO	Train Epoch: 80 [2%]
2023-02-06 06:07:52,663	9nineM	INFO	[2.4591546058654785, 2.247199535369873, 4.015508651733398, 19.516265869140625, 1.7036457061767578, 1.6470491886138916, 67400, 0.0001977871932580289]
2023-02-06 06:10:36,108	9nineM	INFO	Train Epoch: 80 [25%]
2023-02-06 06:10:36,109	9nineM	INFO	[2.5015718936920166, 2.36966872215271, 5.009028434753418, 20.039779663085938, 1.8621348142623901, 1.8031896352767944, 67600, 0.0001977871932580289]
2023-02-06 06:11:06,229	9nineM	INFO	Saving model and optimizer state at iteration 80 to ./logs\9nineM\G_67600.pth
2023-02-06 06:11:06,887	9nineM	INFO	Saving model and optimizer state at iteration 80 to ./logs\9nineM\D_67600.pth
2023-02-06 06:13:50,944	9nineM	INFO	Train Epoch: 80 [48%]
2023-02-06 06:13:50,945	9nineM	INFO	[2.483105182647705, 2.1891396045684814, 4.582153797149658, 20.420331954956055, 1.7401020526885986, 1.8074232339859009, 67800, 0.0001977871932580289]
2023-02-06 06:16:34,914	9nineM	INFO	Train Epoch: 80 [72%]
2023-02-06 06:16:34,915	9nineM	INFO	[2.465446949005127, 2.326713800430298, 4.555657386779785, 19.09385871887207, 1.7095659971237183, 1.7812799215316772, 68000, 0.0001977871932580289]
2023-02-06 06:17:04,264	9nineM	INFO	Saving model and optimizer state at iteration 80 to ./logs\9nineM\G_68000.pth
2023-02-06 06:17:04,974	9nineM	INFO	Saving model and optimizer state at iteration 80 to ./logs\9nineM\D_68000.pth
2023-02-06 06:19:49,384	9nineM	INFO	Train Epoch: 80 [95%]
2023-02-06 06:19:49,385	9nineM	INFO	[2.534393548965454, 2.290717363357544, 4.47852897644043, 18.6915283203125, 1.8048498630523682, 1.5194993019104004, 68200, 0.0001977871932580289]
2023-02-06 06:20:22,954	9nineM	INFO	====> Epoch: 80
2023-02-06 06:23:01,154	9nineM	INFO	Train Epoch: 81 [19%]
2023-02-06 06:23:01,155	9nineM	INFO	[2.447075843811035, 2.4602949619293213, 5.389459133148193, 22.743417739868164, 1.6735265254974365, 1.9042701721191406, 68400, 0.00019776246985887165]
2023-02-06 06:23:30,658	9nineM	INFO	Saving model and optimizer state at iteration 81 to ./logs\9nineM\G_68400.pth
2023-02-06 06:23:31,317	9nineM	INFO	Saving model and optimizer state at iteration 81 to ./logs\9nineM\D_68400.pth
2023-02-06 06:26:15,683	9nineM	INFO	Train Epoch: 81 [42%]
2023-02-06 06:26:15,683	9nineM	INFO	[2.463613986968994, 2.263181686401367, 5.198321342468262, 20.553791046142578, 1.7596567869186401, 1.6983942985534668, 68600, 0.00019776246985887165]
2023-02-06 06:28:59,102	9nineM	INFO	Train Epoch: 81 [66%]
2023-02-06 06:28:59,102	9nineM	INFO	[2.4809608459472656, 2.0485968589782715, 5.3793439865112305, 21.732845306396484, 1.7214068174362183, 1.644992470741272, 68800, 0.00019776246985887165]
2023-02-06 06:29:29,318	9nineM	INFO	Saving model and optimizer state at iteration 81 to ./logs\9nineM\G_68800.pth
2023-02-06 06:29:30,299	9nineM	INFO	Saving model and optimizer state at iteration 81 to ./logs\9nineM\D_68800.pth
2023-02-06 06:32:15,266	9nineM	INFO	Train Epoch: 81 [89%]
2023-02-06 06:32:15,266	9nineM	INFO	[2.6072030067443848, 2.166703939437866, 4.1110992431640625, 22.301462173461914, 1.8661930561065674, 1.7933987379074097, 69000, 0.00019776246985887165]
2023-02-06 06:33:32,306	9nineM	INFO	====> Epoch: 81
2023-02-06 06:35:29,074	9nineM	INFO	Train Epoch: 82 [13%]
2023-02-06 06:35:29,075	9nineM	INFO	[2.3665108680725098, 2.451719284057617, 5.408698558807373, 22.32443618774414, 1.7192881107330322, 1.540388584136963, 69200, 0.0001977377495501393]
2023-02-06 06:35:58,332	9nineM	INFO	Saving model and optimizer state at iteration 82 to ./logs\9nineM\G_69200.pth
2023-02-06 06:35:59,293	9nineM	INFO	Saving model and optimizer state at iteration 82 to ./logs\9nineM\D_69200.pth
2023-02-06 06:38:42,664	9nineM	INFO	Train Epoch: 82 [36%]
2023-02-06 06:38:42,665	9nineM	INFO	[2.7151167392730713, 2.011469841003418, 5.684447765350342, 22.217403411865234, 1.6232354640960693, 1.2984273433685303, 69400, 0.0001977377495501393]
2023-02-06 06:41:27,151	9nineM	INFO	Train Epoch: 82 [59%]
2023-02-06 06:41:27,152	9nineM	INFO	[2.4808833599090576, 2.1504311561584473, 4.597093105316162, 23.039443969726562, 1.7188286781311035, 1.7281453609466553, 69600, 0.0001977377495501393]
2023-02-06 06:41:56,782	9nineM	INFO	Saving model and optimizer state at iteration 82 to ./logs\9nineM\G_69600.pth
2023-02-06 06:41:57,829	9nineM	INFO	Saving model and optimizer state at iteration 82 to ./logs\9nineM\D_69600.pth
2023-02-06 06:44:41,047	9nineM	INFO	Train Epoch: 82 [83%]
2023-02-06 06:44:41,048	9nineM	INFO	[2.5977725982666016, 2.1633665561676025, 4.614894866943359, 20.658193588256836, 1.7138280868530273, 1.6857067346572876, 69800, 0.0001977377495501393]
2023-02-06 06:46:41,369	9nineM	INFO	====> Epoch: 82
2023-02-06 06:47:53,130	9nineM	INFO	Train Epoch: 83 [6%]
2023-02-06 06:47:53,131	9nineM	INFO	[2.5026674270629883, 2.5217862129211426, 5.649263381958008, 22.40220069885254, 1.8129355907440186, 1.6959840059280396, 70000, 0.0001977130323314455]
2023-02-06 06:48:23,258	9nineM	INFO	Saving model and optimizer state at iteration 83 to ./logs\9nineM\G_70000.pth
2023-02-06 06:48:24,297	9nineM	INFO	Saving model and optimizer state at iteration 83 to ./logs\9nineM\D_70000.pth
2023-02-06 06:51:08,155	9nineM	INFO	Train Epoch: 83 [30%]
2023-02-06 06:51:08,155	9nineM	INFO	[2.1798133850097656, 2.7249562740325928, 6.645028114318848, 22.770557403564453, 1.7452046871185303, 1.8580926656723022, 70200, 0.0001977130323314455]
2023-02-06 06:53:53,498	9nineM	INFO	Train Epoch: 83 [53%]
2023-02-06 06:53:53,498	9nineM	INFO	[2.541210174560547, 2.201444625854492, 4.370961666107178, 19.41265296936035, 1.7169926166534424, 1.755746841430664, 70400, 0.0001977130323314455]
2023-02-06 06:54:22,407	9nineM	INFO	Saving model and optimizer state at iteration 83 to ./logs\9nineM\G_70400.pth
2023-02-06 06:54:23,076	9nineM	INFO	Saving model and optimizer state at iteration 83 to ./logs\9nineM\D_70400.pth
2023-02-06 06:57:05,720	9nineM	INFO	Train Epoch: 83 [77%]
2023-02-06 06:57:05,720	9nineM	INFO	[2.431915044784546, 2.4835550785064697, 5.7723283767700195, 21.41901969909668, 1.6493549346923828, 1.791164517402649, 70600, 0.0001977130323314455]
2023-02-06 06:59:49,534	9nineM	INFO	====> Epoch: 83
2023-02-06 07:00:18,748	9nineM	INFO	Train Epoch: 84 [0%]
2023-02-06 07:00:18,749	9nineM	INFO	[2.513869285583496, 2.107764959335327, 4.408920764923096, 19.62989044189453, 1.6258065700531006, 1.6767607927322388, 70800, 0.00019768831820240408]
2023-02-06 07:00:48,180	9nineM	INFO	Saving model and optimizer state at iteration 84 to ./logs\9nineM\G_70800.pth
2023-02-06 07:00:49,224	9nineM	INFO	Saving model and optimizer state at iteration 84 to ./logs\9nineM\D_70800.pth
2023-02-06 07:03:32,265	9nineM	INFO	Train Epoch: 84 [24%]
2023-02-06 07:03:32,265	9nineM	INFO	[2.4345879554748535, 2.309798002243042, 4.741629123687744, 21.760465621948242, 1.7242400646209717, 1.506618857383728, 71000, 0.00019768831820240408]
2023-02-06 07:06:16,502	9nineM	INFO	Train Epoch: 84 [47%]
2023-02-06 07:06:16,502	9nineM	INFO	[2.479665756225586, 2.433314085006714, 5.1933674812316895, 21.31283187866211, 1.6841895580291748, 1.7562897205352783, 71200, 0.00019768831820240408]
2023-02-06 07:06:46,812	9nineM	INFO	Saving model and optimizer state at iteration 84 to ./logs\9nineM\G_71200.pth
2023-02-06 07:06:47,500	9nineM	INFO	Saving model and optimizer state at iteration 84 to ./logs\9nineM\D_71200.pth
2023-02-06 07:09:32,538	9nineM	INFO	Train Epoch: 84 [70%]
2023-02-06 07:09:32,539	9nineM	INFO	[2.40413236618042, 2.5912506580352783, 6.041769981384277, 22.648101806640625, 1.771620512008667, 1.703296422958374, 71400, 0.00019768831820240408]
2023-02-06 07:12:17,435	9nineM	INFO	Train Epoch: 84 [94%]
2023-02-06 07:12:17,436	9nineM	INFO	[2.358267068862915, 2.385530710220337, 5.9982075691223145, 22.88961410522461, 1.7426775693893433, 1.8333910703659058, 71600, 0.00019768831820240408]
2023-02-06 07:12:47,102	9nineM	INFO	Saving model and optimizer state at iteration 84 to ./logs\9nineM\G_71600.pth
2023-02-06 07:12:47,766	9nineM	INFO	Saving model and optimizer state at iteration 84 to ./logs\9nineM\D_71600.pth
2023-02-06 07:13:30,563	9nineM	INFO	====> Epoch: 84
2023-02-06 07:16:01,426	9nineM	INFO	Train Epoch: 85 [17%]
2023-02-06 07:16:01,427	9nineM	INFO	[2.3528549671173096, 2.277402400970459, 5.613468647003174, 22.561620712280273, 1.7338169813156128, 1.8296408653259277, 71800, 0.00019766360716262876]
2023-02-06 07:18:45,800	9nineM	INFO	Train Epoch: 85 [41%]
2023-02-06 07:18:45,801	9nineM	INFO	[2.4195868968963623, 2.400357484817505, 6.125772953033447, 21.994230270385742, 1.966027021408081, 1.4489802122116089, 72000, 0.00019766360716262876]
2023-02-06 07:19:15,482	9nineM	INFO	Saving model and optimizer state at iteration 85 to ./logs\9nineM\G_72000.pth
2023-02-06 07:19:16,251	9nineM	INFO	Saving model and optimizer state at iteration 85 to ./logs\9nineM\D_72000.pth
2023-02-06 07:21:59,420	9nineM	INFO	Train Epoch: 85 [64%]
2023-02-06 07:21:59,421	9nineM	INFO	[2.51851487159729, 2.247016429901123, 6.0481486320495605, 23.90782928466797, 1.729480266571045, 1.576174020767212, 72200, 0.00019766360716262876]
2023-02-06 07:24:43,265	9nineM	INFO	Train Epoch: 85 [88%]
2023-02-06 07:24:43,266	9nineM	INFO	[2.529348850250244, 2.436415910720825, 4.762678146362305, 20.736583709716797, 1.6964658498764038, 1.4529114961624146, 72400, 0.00019766360716262876]
2023-02-06 07:25:13,730	9nineM	INFO	Saving model and optimizer state at iteration 85 to ./logs\9nineM\G_72400.pth
2023-02-06 07:25:14,397	9nineM	INFO	Saving model and optimizer state at iteration 85 to ./logs\9nineM\D_72400.pth
2023-02-06 07:26:40,149	9nineM	INFO	====> Epoch: 85
2023-02-06 07:28:25,427	9nineM	INFO	Train Epoch: 86 [11%]
2023-02-06 07:28:25,428	9nineM	INFO	[2.436279535293579, 2.2832374572753906, 6.255619525909424, 22.62698745727539, 1.695105791091919, 1.2563732862472534, 72600, 0.00019763889921173343]
2023-02-06 07:31:09,401	9nineM	INFO	Train Epoch: 86 [35%]
2023-02-06 07:31:09,401	9nineM	INFO	[2.3377299308776855, 2.6488444805145264, 6.051377773284912, 24.113723754882812, 1.6612577438354492, 1.7706013917922974, 72800, 0.00019763889921173343]
2023-02-06 07:31:39,220	9nineM	INFO	Saving model and optimizer state at iteration 86 to ./logs\9nineM\G_72800.pth
2023-02-06 07:31:39,893	9nineM	INFO	Saving model and optimizer state at iteration 86 to ./logs\9nineM\D_72800.pth
2023-02-06 07:34:23,301	9nineM	INFO	Train Epoch: 86 [58%]
2023-02-06 07:34:23,302	9nineM	INFO	[2.406329870223999, 2.486889123916626, 5.256746292114258, 21.62246322631836, 1.7571786642074585, 1.7853766679763794, 73000, 0.00019763889921173343]
2023-02-06 07:37:07,826	9nineM	INFO	Train Epoch: 86 [81%]
2023-02-06 07:37:07,827	9nineM	INFO	[2.551205635070801, 2.0159339904785156, 4.293013572692871, 18.935142517089844, 1.712545394897461, 1.5677807331085205, 73200, 0.00019763889921173343]
2023-02-06 07:37:37,650	9nineM	INFO	Saving model and optimizer state at iteration 86 to ./logs\9nineM\G_73200.pth
2023-02-06 07:37:38,325	9nineM	INFO	Saving model and optimizer state at iteration 86 to ./logs\9nineM\D_73200.pth
2023-02-06 07:39:48,837	9nineM	INFO	====> Epoch: 86
2023-02-06 07:40:51,655	9nineM	INFO	Train Epoch: 87 [5%]
2023-02-06 07:40:51,655	9nineM	INFO	[2.459545612335205, 2.432029962539673, 5.8289079666137695, 23.371789932250977, 1.6886625289916992, 2.1385974884033203, 73400, 0.00019761419434933197]
2023-02-06 07:43:35,967	9nineM	INFO	Train Epoch: 87 [28%]
2023-02-06 07:43:35,968	9nineM	INFO	[2.5478644371032715, 2.123600959777832, 4.178177356719971, 21.52782440185547, 1.669135570526123, 1.7438825368881226, 73600, 0.00019761419434933197]
2023-02-06 07:44:06,519	9nineM	INFO	Saving model and optimizer state at iteration 87 to ./logs\9nineM\G_73600.pth
2023-02-06 07:44:07,198	9nineM	INFO	Saving model and optimizer state at iteration 87 to ./logs\9nineM\D_73600.pth
2023-02-06 07:46:52,105	9nineM	INFO	Train Epoch: 87 [52%]
2023-02-06 07:46:52,105	9nineM	INFO	[2.4402291774749756, 2.3444480895996094, 5.813377857208252, 22.064144134521484, 1.8148679733276367, 1.6917070150375366, 73800, 0.00019761419434933197]
2023-02-06 07:49:35,273	9nineM	INFO	Train Epoch: 87 [75%]
2023-02-06 07:49:35,273	9nineM	INFO	[2.453408718109131, 2.390099048614502, 6.011960029602051, 23.739017486572266, 1.6957061290740967, 1.9181777238845825, 74000, 0.00019761419434933197]
2023-02-06 07:50:04,951	9nineM	INFO	Saving model and optimizer state at iteration 87 to ./logs\9nineM\G_74000.pth
2023-02-06 07:50:05,616	9nineM	INFO	Saving model and optimizer state at iteration 87 to ./logs\9nineM\D_74000.pth
2023-02-06 07:52:49,629	9nineM	INFO	Train Epoch: 87 [99%]
2023-02-06 07:52:49,630	9nineM	INFO	[2.774932861328125, 2.2087159156799316, 4.179932117462158, 20.815813064575195, 1.735036849975586, 1.7144614458084106, 74200, 0.00019761419434933197]
2023-02-06 07:52:58,863	9nineM	INFO	====> Epoch: 87
2023-02-06 07:56:01,332	9nineM	INFO	Train Epoch: 88 [22%]
2023-02-06 07:56:01,333	9nineM	INFO	[2.351933002471924, 2.399723768234253, 5.7615180015563965, 21.04006576538086, 1.8368992805480957, 1.5686800479888916, 74400, 0.0001975894925750383]
2023-02-06 07:56:31,382	9nineM	INFO	Saving model and optimizer state at iteration 88 to ./logs\9nineM\G_74400.pth
2023-02-06 07:56:32,418	9nineM	INFO	Saving model and optimizer state at iteration 88 to ./logs\9nineM\D_74400.pth
2023-02-06 07:59:17,214	9nineM	INFO	Train Epoch: 88 [46%]
2023-02-06 07:59:17,214	9nineM	INFO	[2.4161877632141113, 2.6639819145202637, 6.529877185821533, 22.935834884643555, 1.7379610538482666, 2.1611557006835938, 74600, 0.0001975894925750383]
2023-02-06 08:02:00,819	9nineM	INFO	Train Epoch: 88 [69%]
2023-02-06 08:02:00,819	9nineM	INFO	[2.620955467224121, 2.19480562210083, 3.8729798793792725, 18.966899871826172, 1.7245399951934814, 1.749035120010376, 74800, 0.0001975894925750383]
2023-02-06 08:02:31,484	9nineM	INFO	Saving model and optimizer state at iteration 88 to ./logs\9nineM\G_74800.pth
2023-02-06 08:02:32,289	9nineM	INFO	Saving model and optimizer state at iteration 88 to ./logs\9nineM\D_74800.pth
2023-02-06 08:05:16,380	9nineM	INFO	Train Epoch: 88 [92%]
2023-02-06 08:05:16,381	9nineM	INFO	[2.3153486251831055, 2.869502067565918, 6.9400739669799805, 25.257213592529297, 1.8956434726715088, 1.7915812730789185, 75000, 0.0001975894925750383]
2023-02-06 08:06:10,217	9nineM	INFO	====> Epoch: 88
2023-02-06 08:08:29,207	9nineM	INFO	Train Epoch: 89 [16%]
2023-02-06 08:08:29,207	9nineM	INFO	[2.563227891921997, 2.303346872329712, 5.9095845222473145, 20.591371536254883, 1.6575027704238892, 1.8249729871749878, 75200, 0.0001975647938884664]
2023-02-06 08:08:59,182	9nineM	INFO	Saving model and optimizer state at iteration 89 to ./logs\9nineM\G_75200.pth
2023-02-06 08:09:00,160	9nineM	INFO	Saving model and optimizer state at iteration 89 to ./logs\9nineM\D_75200.pth
2023-02-06 08:11:46,003	9nineM	INFO	Train Epoch: 89 [39%]
2023-02-06 08:11:46,004	9nineM	INFO	[2.429751396179199, 2.1531074047088623, 5.851095199584961, 21.706199645996094, 1.6220355033874512, 1.6162998676300049, 75400, 0.0001975647938884664]
2023-02-06 08:14:29,994	9nineM	INFO	Train Epoch: 89 [63%]
2023-02-06 08:14:30,004	9nineM	INFO	[2.330639123916626, 2.474106788635254, 6.4344162940979, 22.50442123413086, 1.6688852310180664, 1.5176169872283936, 75600, 0.0001975647938884664]
2023-02-06 08:15:00,097	9nineM	INFO	Saving model and optimizer state at iteration 89 to ./logs\9nineM\G_75600.pth
2023-02-06 08:15:01,127	9nineM	INFO	Saving model and optimizer state at iteration 89 to ./logs\9nineM\D_75600.pth
2023-02-06 08:17:44,416	9nineM	INFO	Train Epoch: 89 [86%]
2023-02-06 08:17:44,416	9nineM	INFO	[2.6924614906311035, 2.412978172302246, 5.988645076751709, 21.709091186523438, 1.6463394165039062, 1.858162522315979, 75800, 0.0001975647938884664]
2023-02-06 08:19:20,462	9nineM	INFO	====> Epoch: 89
2023-02-06 08:20:56,935	9nineM	INFO	Train Epoch: 90 [10%]
2023-02-06 08:20:56,936	9nineM	INFO	[2.7380805015563965, 2.1342973709106445, 4.8604416847229, 22.41645050048828, 1.649432897567749, 1.7473390102386475, 76000, 0.00019754009828923033]
2023-02-06 08:21:27,354	9nineM	INFO	Saving model and optimizer state at iteration 90 to ./logs\9nineM\G_76000.pth
2023-02-06 08:21:28,043	9nineM	INFO	Saving model and optimizer state at iteration 90 to ./logs\9nineM\D_76000.pth
2023-02-06 08:24:14,115	9nineM	INFO	Train Epoch: 90 [33%]
2023-02-06 08:24:14,115	9nineM	INFO	[2.4273974895477295, 2.4092748165130615, 5.792497634887695, 22.798677444458008, 1.831376314163208, 1.3821916580200195, 76200, 0.00019754009828923033]
2023-02-06 08:26:57,187	9nineM	INFO	Train Epoch: 90 [57%]
2023-02-06 08:26:57,188	9nineM	INFO	[2.442150831222534, 2.240342617034912, 3.9635114669799805, 19.100793838500977, 1.736262321472168, 1.6014679670333862, 76400, 0.00019754009828923033]
2023-02-06 08:27:27,431	9nineM	INFO	Saving model and optimizer state at iteration 90 to ./logs\9nineM\G_76400.pth
2023-02-06 08:27:28,107	9nineM	INFO	Saving model and optimizer state at iteration 90 to ./logs\9nineM\D_76400.pth
2023-02-06 08:30:12,423	9nineM	INFO	Train Epoch: 90 [80%]
2023-02-06 08:30:12,423	9nineM	INFO	[2.235164165496826, 2.598625421524048, 7.3009233474731445, 23.685441970825195, 1.9746477603912354, 1.9208588600158691, 76600, 0.00019754009828923033]
2023-02-06 08:32:31,914	9nineM	INFO	====> Epoch: 90
2023-02-06 08:33:24,576	9nineM	INFO	Train Epoch: 91 [4%]
2023-02-06 08:33:24,576	9nineM	INFO	[2.332494020462036, 2.453765630722046, 6.486380577087402, 23.615463256835938, 1.828294038772583, 1.5180131196975708, 76800, 0.00019751540577694416]
2023-02-06 08:33:54,087	9nineM	INFO	Saving model and optimizer state at iteration 91 to ./logs\9nineM\G_76800.pth
2023-02-06 08:33:54,749	9nineM	INFO	Saving model and optimizer state at iteration 91 to ./logs\9nineM\D_76800.pth
2023-02-06 08:36:39,783	9nineM	INFO	Train Epoch: 91 [27%]
2023-02-06 08:36:39,784	9nineM	INFO	[2.502366542816162, 2.4421446323394775, 5.533163070678711, 21.886863708496094, 1.6957695484161377, 1.537204623222351, 77000, 0.00019751540577694416]
2023-02-06 08:39:23,860	9nineM	INFO	Train Epoch: 91 [50%]
2023-02-06 08:39:23,861	9nineM	INFO	[2.708211660385132, 2.3591372966766357, 4.701547622680664, 20.629417419433594, 1.7782450914382935, 1.5841456651687622, 77200, 0.00019751540577694416]
2023-02-06 08:39:54,615	9nineM	INFO	Saving model and optimizer state at iteration 91 to ./logs\9nineM\G_77200.pth
2023-02-06 08:39:55,312	9nineM	INFO	Saving model and optimizer state at iteration 91 to ./logs\9nineM\D_77200.pth
2023-02-06 08:42:39,685	9nineM	INFO	Train Epoch: 91 [74%]
2023-02-06 08:42:39,685	9nineM	INFO	[2.6561498641967773, 1.8691446781158447, 4.050014019012451, 16.30718231201172, 1.6753971576690674, 1.5077694654464722, 77400, 0.00019751540577694416]
2023-02-06 08:45:24,048	9nineM	INFO	Train Epoch: 91 [97%]
2023-02-06 08:45:24,049	9nineM	INFO	[2.4711616039276123, 2.310570478439331, 5.5823845863342285, 21.722213745117188, 1.644073724746704, 1.7697749137878418, 77600, 0.00019751540577694416]
2023-02-06 08:45:53,976	9nineM	INFO	Saving model and optimizer state at iteration 91 to ./logs\9nineM\G_77600.pth
2023-02-06 08:45:54,647	9nineM	INFO	Saving model and optimizer state at iteration 91 to ./logs\9nineM\D_77600.pth
2023-02-06 08:46:14,032	9nineM	INFO	====> Epoch: 91
2023-02-06 08:49:07,467	9nineM	INFO	Train Epoch: 92 [21%]
2023-02-06 08:49:07,468	9nineM	INFO	[2.2348618507385254, 2.5985894203186035, 6.874838829040527, 24.005840301513672, 1.7192668914794922, 1.6330294609069824, 77800, 0.00019749071635122203]
2023-02-06 08:51:51,630	9nineM	INFO	Train Epoch: 92 [44%]
2023-02-06 08:51:51,631	9nineM	INFO	[2.4240803718566895, 2.4423389434814453, 5.2924299240112305, 21.001216888427734, 1.645182728767395, 1.7892088890075684, 78000, 0.00019749071635122203]
2023-02-06 08:52:22,287	9nineM	INFO	Saving model and optimizer state at iteration 92 to ./logs\9nineM\G_78000.pth
2023-02-06 08:52:22,971	9nineM	INFO	Saving model and optimizer state at iteration 92 to ./logs\9nineM\D_78000.pth
2023-02-06 08:55:07,023	9nineM	INFO	Train Epoch: 92 [68%]
2023-02-06 08:55:07,023	9nineM	INFO	[2.5800209045410156, 2.1491897106170654, 4.399610996246338, 18.640945434570312, 1.7993099689483643, 1.4998753070831299, 78200, 0.00019749071635122203]
2023-02-06 08:57:52,510	9nineM	INFO	Train Epoch: 92 [91%]
2023-02-06 08:57:52,511	9nineM	INFO	[2.5566086769104004, 2.0559134483337402, 4.5262346267700195, 19.169645309448242, 1.6868771314620972, 1.8564404249191284, 78400, 0.00019749071635122203]
2023-02-06 08:58:22,538	9nineM	INFO	Saving model and optimizer state at iteration 92 to ./logs\9nineM\G_78400.pth
2023-02-06 08:58:23,313	9nineM	INFO	Saving model and optimizer state at iteration 92 to ./logs\9nineM\D_78400.pth
2023-02-06 08:59:24,804	9nineM	INFO	====> Epoch: 92
2023-02-06 09:01:36,233	9nineM	INFO	Train Epoch: 93 [15%]
2023-02-06 09:01:36,234	9nineM	INFO	[2.39662504196167, 2.420403480529785, 5.744348526000977, 21.538177490234375, 1.8771326541900635, 1.5871466398239136, 78600, 0.00019746603001167813]
2023-02-06 09:04:20,741	9nineM	INFO	Train Epoch: 93 [38%]
2023-02-06 09:04:20,742	9nineM	INFO	[2.543275833129883, 2.5176210403442383, 5.027650833129883, 20.407011032104492, 1.7027983665466309, 1.605425238609314, 78800, 0.00019746603001167813]
2023-02-06 09:04:50,775	9nineM	INFO	Saving model and optimizer state at iteration 93 to ./logs\9nineM\G_78800.pth
2023-02-06 09:04:51,442	9nineM	INFO	Saving model and optimizer state at iteration 93 to ./logs\9nineM\D_78800.pth
2023-02-06 09:07:35,022	9nineM	INFO	Train Epoch: 93 [61%]
2023-02-06 09:07:35,023	9nineM	INFO	[2.6210103034973145, 2.4276318550109863, 4.3305768966674805, 19.075326919555664, 1.7570873498916626, 1.3267184495925903, 79000, 0.00019746603001167813]
2023-02-06 09:10:19,949	9nineM	INFO	Train Epoch: 93 [85%]
2023-02-06 09:10:19,950	9nineM	INFO	[2.3554506301879883, 2.321150064468384, 5.2854533195495605, 20.60268783569336, 1.6685529947280884, 1.5909291505813599, 79200, 0.00019746603001167813]
2023-02-06 09:10:50,190	9nineM	INFO	Saving model and optimizer state at iteration 93 to ./logs\9nineM\G_79200.pth
2023-02-06 09:10:51,238	9nineM	INFO	Saving model and optimizer state at iteration 93 to ./logs\9nineM\D_79200.pth
2023-02-06 09:12:36,594	9nineM	INFO	====> Epoch: 93
2023-02-06 09:14:02,167	9nineM	INFO	Train Epoch: 94 [8%]
2023-02-06 09:14:02,168	9nineM	INFO	[2.474219799041748, 2.1666572093963623, 5.405589580535889, 20.69824981689453, 1.6610714197158813, 1.8200420141220093, 79400, 0.00019744134675792665]
2023-02-06 09:16:46,176	9nineM	INFO	Train Epoch: 94 [32%]
2023-02-06 09:16:46,176	9nineM	INFO	[2.2707855701446533, 2.6161155700683594, 6.605481147766113, 23.567001342773438, 1.6379531621932983, 1.573609709739685, 79600, 0.00019744134675792665]
2023-02-06 09:17:16,412	9nineM	INFO	Saving model and optimizer state at iteration 94 to ./logs\9nineM\G_79600.pth
2023-02-06 09:17:17,085	9nineM	INFO	Saving model and optimizer state at iteration 94 to ./logs\9nineM\D_79600.pth
2023-02-06 09:20:02,914	9nineM	INFO	Train Epoch: 94 [55%]
2023-02-06 09:20:02,915	9nineM	INFO	[2.358057975769043, 2.419687271118164, 6.182150840759277, 21.989639282226562, 1.6308257579803467, 1.7845832109451294, 79800, 0.00019744134675792665]
2023-02-06 09:22:46,788	9nineM	INFO	Train Epoch: 94 [79%]
2023-02-06 09:22:46,788	9nineM	INFO	[2.5282747745513916, 2.2075276374816895, 5.014464378356934, 23.92791748046875, 1.7892478704452515, 1.9707386493682861, 80000, 0.00019744134675792665]
2023-02-06 09:23:16,660	9nineM	INFO	Saving model and optimizer state at iteration 94 to ./logs\9nineM\G_80000.pth
2023-02-06 09:23:17,635	9nineM	INFO	Saving model and optimizer state at iteration 94 to ./logs\9nineM\D_80000.pth
2023-02-06 09:25:47,060	9nineM	INFO	====> Epoch: 94
2023-02-06 09:26:31,328	9nineM	INFO	Train Epoch: 95 [2%]
2023-02-06 09:26:31,329	9nineM	INFO	[2.611557960510254, 2.1368024349212646, 4.674160957336426, 21.47587013244629, 1.7486618757247925, 1.8024684190750122, 80200, 0.0001974166665895819]
2023-02-06 09:29:14,949	9nineM	INFO	Train Epoch: 95 [26%]
2023-02-06 09:29:14,949	9nineM	INFO	[2.3544092178344727, 2.420233964920044, 4.87743616104126, 20.30710792541504, 1.7553374767303467, 1.753144383430481, 80400, 0.0001974166665895819]
2023-02-06 09:29:46,319	9nineM	INFO	Saving model and optimizer state at iteration 95 to ./logs\9nineM\G_80400.pth
2023-02-06 09:29:46,998	9nineM	INFO	Saving model and optimizer state at iteration 95 to ./logs\9nineM\D_80400.pth
2023-02-06 09:32:33,227	9nineM	INFO	Train Epoch: 95 [49%]
2023-02-06 09:32:33,227	9nineM	INFO	[2.563666582107544, 2.3308403491973877, 3.933803081512451, 18.542442321777344, 1.7422237396240234, 1.398514747619629, 80600, 0.0001974166665895819]
2023-02-06 09:35:17,038	9nineM	INFO	Train Epoch: 95 [72%]
2023-02-06 09:35:17,038	9nineM	INFO	[2.4261467456817627, 2.45843243598938, 6.599765777587891, 22.300697326660156, 1.5651326179504395, 2.066063404083252, 80800, 0.0001974166665895819]
2023-02-06 09:35:46,870	9nineM	INFO	Saving model and optimizer state at iteration 95 to ./logs\9nineM\G_80800.pth
2023-02-06 09:35:47,901	9nineM	INFO	Saving model and optimizer state at iteration 95 to ./logs\9nineM\D_80800.pth
2023-02-06 09:38:32,362	9nineM	INFO	Train Epoch: 95 [96%]
2023-02-06 09:38:32,363	9nineM	INFO	[2.578087091445923, 2.2593815326690674, 5.092343807220459, 20.626312255859375, 1.7683870792388916, 1.6862581968307495, 81000, 0.0001974166665895819]
2023-02-06 09:39:00,580	9nineM	INFO	====> Epoch: 95
2023-02-06 09:41:43,540	9nineM	INFO	Train Epoch: 96 [19%]
2023-02-06 09:41:43,541	9nineM	INFO	[2.463958740234375, 2.409057855606079, 4.879076957702637, 21.166793823242188, 1.8808834552764893, 1.5445358753204346, 81200, 0.0001973919895062582]
2023-02-06 09:42:14,429	9nineM	INFO	Saving model and optimizer state at iteration 96 to ./logs\9nineM\G_81200.pth
2023-02-06 09:42:15,461	9nineM	INFO	Saving model and optimizer state at iteration 96 to ./logs\9nineM\D_81200.pth
2023-02-06 09:44:59,900	9nineM	INFO	Train Epoch: 96 [43%]
2023-02-06 09:44:59,901	9nineM	INFO	[2.601001739501953, 2.3067445755004883, 4.806454658508301, 19.276342391967773, 1.7806379795074463, 1.5881966352462769, 81400, 0.0001973919895062582]
2023-02-06 09:47:43,682	9nineM	INFO	Train Epoch: 96 [66%]
2023-02-06 09:47:43,683	9nineM	INFO	[2.5201852321624756, 2.24310040473938, 5.889530181884766, 22.60037612915039, 1.6959882974624634, 1.7985490560531616, 81600, 0.0001973919895062582]
2023-02-06 09:48:13,153	9nineM	INFO	Saving model and optimizer state at iteration 96 to ./logs\9nineM\G_81600.pth
2023-02-06 09:48:13,962	9nineM	INFO	Saving model and optimizer state at iteration 96 to ./logs\9nineM\D_81600.pth
2023-02-06 09:50:59,027	9nineM	INFO	Train Epoch: 96 [90%]
2023-02-06 09:50:59,028	9nineM	INFO	[2.223468780517578, 2.3834099769592285, 5.985912799835205, 22.880109786987305, 1.9438378810882568, 1.3537657260894775, 81800, 0.0001973919895062582]
2023-02-06 09:52:12,250	9nineM	INFO	====> Epoch: 96
2023-02-06 09:54:13,665	9nineM	INFO	Train Epoch: 97 [13%]
2023-02-06 09:54:13,666	9nineM	INFO	[2.352487087249756, 2.4814560413360596, 5.062458515167236, 19.829917907714844, 1.7631676197052002, 1.4059443473815918, 82000, 0.0001973673155075699]
2023-02-06 09:54:43,761	9nineM	INFO	Saving model and optimizer state at iteration 97 to ./logs\9nineM\G_82000.pth
2023-02-06 09:54:44,436	9nineM	INFO	Saving model and optimizer state at iteration 97 to ./logs\9nineM\D_82000.pth
2023-02-06 09:57:27,479	9nineM	INFO	Train Epoch: 97 [37%]
2023-02-06 09:57:27,479	9nineM	INFO	[2.4364724159240723, 2.3127033710479736, 5.209924697875977, 20.141944885253906, 1.8136754035949707, 1.963226318359375, 82200, 0.0001973673155075699]
2023-02-06 10:00:12,229	9nineM	INFO	Train Epoch: 97 [60%]
2023-02-06 10:00:12,230	9nineM	INFO	[2.397002696990967, 2.158003330230713, 5.6529860496521, 23.534862518310547, 1.837640643119812, 2.124126434326172, 82400, 0.0001973673155075699]
2023-02-06 10:00:43,447	9nineM	INFO	Saving model and optimizer state at iteration 97 to ./logs\9nineM\G_82400.pth
2023-02-06 10:00:44,131	9nineM	INFO	Saving model and optimizer state at iteration 97 to ./logs\9nineM\D_82400.pth
2023-02-06 10:03:27,934	9nineM	INFO	Train Epoch: 97 [83%]
2023-02-06 10:03:27,934	9nineM	INFO	[2.4804859161376953, 2.191072940826416, 4.700316429138184, 19.811946868896484, 1.827562689781189, 1.6359989643096924, 82600, 0.0001973673155075699]
2023-02-06 10:05:24,542	9nineM	INFO	====> Epoch: 97
2023-02-06 10:06:41,042	9nineM	INFO	Train Epoch: 98 [7%]
2023-02-06 10:06:41,043	9nineM	INFO	[2.589195966720581, 2.1672840118408203, 3.9097087383270264, 15.982277870178223, 1.690781593322754, 1.3834786415100098, 82800, 0.00019734264459313146]
2023-02-06 10:07:10,698	9nineM	INFO	Saving model and optimizer state at iteration 98 to ./logs\9nineM\G_82800.pth
2023-02-06 10:07:11,388	9nineM	INFO	Saving model and optimizer state at iteration 98 to ./logs\9nineM\D_82800.pth
2023-02-06 10:09:56,132	9nineM	INFO	Train Epoch: 98 [30%]
2023-02-06 10:09:56,133	9nineM	INFO	[2.2744922637939453, 2.516529083251953, 6.178014278411865, 23.27471923828125, 1.8042044639587402, 1.5633985996246338, 83000, 0.00019734264459313146]
2023-02-06 10:12:39,711	9nineM	INFO	Train Epoch: 98 [54%]
2023-02-06 10:12:39,712	9nineM	INFO	[2.3667120933532715, 2.5111308097839355, 5.213499069213867, 19.3061466217041, 1.6293022632598877, 1.5213712453842163, 83200, 0.00019734264459313146]
2023-02-06 10:13:11,009	9nineM	INFO	Saving model and optimizer state at iteration 98 to ./logs\9nineM\G_83200.pth
2023-02-06 10:13:12,080	9nineM	INFO	Saving model and optimizer state at iteration 98 to ./logs\9nineM\D_83200.pth
2023-02-06 10:15:57,460	9nineM	INFO	Train Epoch: 98 [77%]
2023-02-06 10:15:57,461	9nineM	INFO	[2.1953697204589844, 2.7360687255859375, 6.203606128692627, 22.292343139648438, 1.657147765159607, 1.4958841800689697, 83400, 0.00019734264459313146]
2023-02-06 10:18:36,765	9nineM	INFO	====> Epoch: 98
2023-02-06 10:19:11,281	9nineM	INFO	Train Epoch: 99 [1%]
2023-02-06 10:19:11,282	9nineM	INFO	[2.451085329055786, 2.4639837741851807, 5.215527534484863, 22.481882095336914, 1.674523115158081, 1.8604766130447388, 83600, 0.0001973179767625573]
2023-02-06 10:19:40,733	9nineM	INFO	Saving model and optimizer state at iteration 99 to ./logs\9nineM\G_83600.pth
2023-02-06 10:19:41,516	9nineM	INFO	Saving model and optimizer state at iteration 99 to ./logs\9nineM\D_83600.pth
2023-02-06 10:22:25,452	9nineM	INFO	Train Epoch: 99 [24%]
2023-02-06 10:22:25,453	9nineM	INFO	[2.4752984046936035, 2.3966166973114014, 5.918449878692627, 21.627058029174805, 1.71543550491333, 1.565459132194519, 83800, 0.0001973179767625573]
2023-02-06 10:25:09,570	9nineM	INFO	Train Epoch: 99 [48%]
2023-02-06 10:25:09,570	9nineM	INFO	[2.568911075592041, 2.5234763622283936, 5.772751331329346, 21.747419357299805, 1.6511496305465698, 1.1468724012374878, 84000, 0.0001973179767625573]
2023-02-06 10:25:39,863	9nineM	INFO	Saving model and optimizer state at iteration 99 to ./logs\9nineM\G_84000.pth
2023-02-06 10:25:40,858	9nineM	INFO	Saving model and optimizer state at iteration 99 to ./logs\9nineM\D_84000.pth
2023-02-06 10:28:24,806	9nineM	INFO	Train Epoch: 99 [71%]
2023-02-06 10:28:24,806	9nineM	INFO	[2.125399589538574, 2.816816806793213, 6.9142374992370605, 25.68486213684082, 1.7990564107894897, 1.9879125356674194, 84200, 0.0001973179767625573]
2023-02-06 10:31:09,724	9nineM	INFO	Train Epoch: 99 [94%]
2023-02-06 10:31:09,725	9nineM	INFO	[2.2676405906677246, 2.59442400932312, 5.924431800842285, 22.553234100341797, 1.7911489009857178, 1.6102948188781738, 84400, 0.0001973179767625573]
2023-02-06 10:31:40,127	9nineM	INFO	Saving model and optimizer state at iteration 99 to ./logs\9nineM\G_84400.pth
2023-02-06 10:31:40,816	9nineM	INFO	Saving model and optimizer state at iteration 99 to ./logs\9nineM\D_84400.pth
2023-02-06 10:32:20,165	9nineM	INFO	====> Epoch: 99
2023-02-06 10:34:54,257	9nineM	INFO	Train Epoch: 100 [18%]
2023-02-06 10:34:54,258	9nineM	INFO	[2.5476250648498535, 2.2353858947753906, 4.74211311340332, 20.432907104492188, 1.6521961688995361, 1.5227948427200317, 84600, 0.00019729331201546197]
2023-02-06 10:37:37,164	9nineM	INFO	Train Epoch: 100 [41%]
2023-02-06 10:37:37,164	9nineM	INFO	[2.3216915130615234, 2.4710023403167725, 6.245323657989502, 24.969099044799805, 1.5494719743728638, 1.6234177350997925, 84800, 0.00019729331201546197]
2023-02-06 10:38:07,297	9nineM	INFO	Saving model and optimizer state at iteration 100 to ./logs\9nineM\G_84800.pth
2023-02-06 10:38:08,000	9nineM	INFO	Saving model and optimizer state at iteration 100 to ./logs\9nineM\D_84800.pth
2023-02-06 10:40:52,533	9nineM	INFO	Train Epoch: 100 [65%]
2023-02-06 10:40:52,533	9nineM	INFO	[2.5477421283721924, 2.298691511154175, 5.10249662399292, 21.817508697509766, 1.777747631072998, 1.809820294380188, 85000, 0.00019729331201546197]
2023-02-06 10:43:37,482	9nineM	INFO	Train Epoch: 100 [88%]
2023-02-06 10:43:37,482	9nineM	INFO	[2.5234744548797607, 2.2988555431365967, 4.506878852844238, 18.725780487060547, 1.8095089197158813, 1.669141173362732, 85200, 0.00019729331201546197]
2023-02-06 10:44:09,203	9nineM	INFO	Saving model and optimizer state at iteration 100 to ./logs\9nineM\G_85200.pth
2023-02-06 10:44:10,236	9nineM	INFO	Saving model and optimizer state at iteration 100 to ./logs\9nineM\D_85200.pth
2023-02-06 10:45:33,612	9nineM	INFO	====> Epoch: 100
2023-02-06 10:47:25,153	9nineM	INFO	Train Epoch: 101 [12%]
2023-02-06 10:47:25,153	9nineM	INFO	[2.544187545776367, 2.4020485877990723, 6.031364917755127, 22.315113067626953, 1.7466915845870972, 1.7877157926559448, 85400, 0.00019726865035146003]
2023-02-06 10:50:08,879	9nineM	INFO	Train Epoch: 101 [35%]
2023-02-06 10:50:08,880	9nineM	INFO	[2.6537857055664062, 2.2612950801849365, 4.77888822555542, 20.681739807128906, 1.6496939659118652, 1.7405048608779907, 85600, 0.00019726865035146003]
2023-02-06 10:50:39,052	9nineM	INFO	Saving model and optimizer state at iteration 101 to ./logs\9nineM\G_85600.pth
2023-02-06 10:50:39,716	9nineM	INFO	Saving model and optimizer state at iteration 101 to ./logs\9nineM\D_85600.pth
2023-02-06 10:53:23,840	9nineM	INFO	Train Epoch: 101 [59%]
2023-02-06 10:53:23,841	9nineM	INFO	[2.3079352378845215, 2.533984661102295, 5.961873531341553, 22.472530364990234, 1.8380146026611328, 1.473942518234253, 85800, 0.00019726865035146003]
2023-02-06 10:56:09,476	9nineM	INFO	Train Epoch: 101 [82%]
2023-02-06 10:56:09,476	9nineM	INFO	[2.5508816242218018, 2.2959938049316406, 5.255324363708496, 22.835617065429688, 1.8479453325271606, 1.771566390991211, 86000, 0.00019726865035146003]
2023-02-06 10:56:40,434	9nineM	INFO	Saving model and optimizer state at iteration 101 to ./logs\9nineM\G_86000.pth
2023-02-06 10:56:41,133	9nineM	INFO	Saving model and optimizer state at iteration 101 to ./logs\9nineM\D_86000.pth
2023-02-06 10:58:46,783	9nineM	INFO	====> Epoch: 101
2023-02-06 10:59:55,812	9nineM	INFO	Train Epoch: 102 [6%]
2023-02-06 10:59:55,813	9nineM	INFO	[2.6004433631896973, 2.0733160972595215, 5.038445949554443, 20.638139724731445, 1.6360429525375366, 1.7312970161437988, 86200, 0.0001972439917701661]
2023-02-06 11:02:40,275	9nineM	INFO	Train Epoch: 102 [29%]
2023-02-06 11:02:40,276	9nineM	INFO	[2.5770530700683594, 2.3011891841888428, 6.0666046142578125, 22.05961036682129, 1.729824185371399, 1.7705416679382324, 86400, 0.0001972439917701661]
2023-02-06 11:03:10,492	9nineM	INFO	Saving model and optimizer state at iteration 102 to ./logs\9nineM\G_86400.pth
2023-02-06 11:03:11,262	9nineM	INFO	Saving model and optimizer state at iteration 102 to ./logs\9nineM\D_86400.pth
2023-02-06 11:05:56,035	9nineM	INFO	Train Epoch: 102 [52%]
2023-02-06 11:05:56,036	9nineM	INFO	[2.349095344543457, 2.5271549224853516, 6.557182788848877, 22.814111709594727, 1.86641526222229, 1.6259549856185913, 86600, 0.0001972439917701661]
2023-02-06 11:08:41,047	9nineM	INFO	Train Epoch: 102 [76%]
2023-02-06 11:08:41,047	9nineM	INFO	[2.524496555328369, 2.219241142272949, 5.192203998565674, 20.76837921142578, 1.6769731044769287, 1.737959384918213, 86800, 0.0001972439917701661]
2023-02-06 11:09:12,287	9nineM	INFO	Saving model and optimizer state at iteration 102 to ./logs\9nineM\G_86800.pth
2023-02-06 11:09:13,205	9nineM	INFO	Saving model and optimizer state at iteration 102 to ./logs\9nineM\D_86800.pth
2023-02-06 11:11:56,898	9nineM	INFO	Train Epoch: 102 [99%]
2023-02-06 11:11:56,898	9nineM	INFO	[2.205711603164673, 2.617997169494629, 6.884082794189453, 25.529481887817383, 1.7504960298538208, 1.672400951385498, 87000, 0.0001972439917701661]
2023-02-06 11:12:02,213	9nineM	INFO	====> Epoch: 102
2023-02-06 11:15:09,764	9nineM	INFO	Train Epoch: 103 [23%]
2023-02-06 11:15:09,764	9nineM	INFO	[2.2377357482910156, 2.602341890335083, 7.447323799133301, 23.61313247680664, 1.7152796983718872, 1.8794821500778198, 87200, 0.0001972193362711948]
2023-02-06 11:15:40,223	9nineM	INFO	Saving model and optimizer state at iteration 103 to ./logs\9nineM\G_87200.pth
2023-02-06 11:15:41,168	9nineM	INFO	Saving model and optimizer state at iteration 103 to ./logs\9nineM\D_87200.pth
2023-02-06 11:18:27,520	9nineM	INFO	Train Epoch: 103 [46%]
2023-02-06 11:18:27,521	9nineM	INFO	[2.712226390838623, 2.2979068756103516, 5.092637062072754, 20.449615478515625, 1.737058162689209, 1.4950884580612183, 87400, 0.0001972193362711948]
2023-02-06 11:21:12,014	9nineM	INFO	Train Epoch: 103 [70%]
2023-02-06 11:21:12,014	9nineM	INFO	[2.30623197555542, 2.5487325191497803, 5.575582504272461, 20.675832748413086, 1.706954836845398, 1.6465661525726318, 87600, 0.0001972193362711948]
2023-02-06 11:21:43,820	9nineM	INFO	Saving model and optimizer state at iteration 103 to ./logs\9nineM\G_87600.pth
2023-02-06 11:21:44,853	9nineM	INFO	Saving model and optimizer state at iteration 103 to ./logs\9nineM\D_87600.pth
2023-02-06 11:24:28,298	9nineM	INFO	Train Epoch: 103 [93%]
2023-02-06 11:24:28,299	9nineM	INFO	[2.4253954887390137, 2.36098313331604, 5.977612495422363, 21.248291015625, 1.8056401014328003, 1.7103567123413086, 87800, 0.0001972193362711948]
2023-02-06 11:25:17,552	9nineM	INFO	====> Epoch: 103
2023-02-06 11:27:41,207	9nineM	INFO	Train Epoch: 104 [17%]
2023-02-06 11:27:41,207	9nineM	INFO	[2.463886260986328, 2.316082715988159, 5.195700168609619, 20.788217544555664, 1.651336431503296, 1.5984183549880981, 88000, 0.0001971946838541609]
2023-02-06 11:28:11,486	9nineM	INFO	Saving model and optimizer state at iteration 104 to ./logs\9nineM\G_88000.pth
2023-02-06 11:28:12,165	9nineM	INFO	Saving model and optimizer state at iteration 104 to ./logs\9nineM\D_88000.pth
2023-02-06 11:30:56,757	9nineM	INFO	Train Epoch: 104 [40%]
2023-02-06 11:30:56,758	9nineM	INFO	[2.375288963317871, 2.3273239135742188, 4.723942279815674, 19.1896915435791, 1.7673020362854004, 1.876954197883606, 88200, 0.0001971946838541609]
2023-02-06 11:33:42,344	9nineM	INFO	Train Epoch: 104 [63%]
2023-02-06 11:33:42,345	9nineM	INFO	[2.212533950805664, 2.5205368995666504, 7.182621955871582, 23.782886505126953, 1.7014200687408447, 1.5421793460845947, 88400, 0.0001971946838541609]
2023-02-06 11:34:12,802	9nineM	INFO	Saving model and optimizer state at iteration 104 to ./logs\9nineM\G_88400.pth
2023-02-06 11:34:13,530	9nineM	INFO	Saving model and optimizer state at iteration 104 to ./logs\9nineM\D_88400.pth
2023-02-06 11:36:58,686	9nineM	INFO	Train Epoch: 104 [87%]
2023-02-06 11:36:58,688	9nineM	INFO	[2.6404221057891846, 1.999783992767334, 3.515745162963867, 18.34442138671875, 1.7381060123443604, 1.2916051149368286, 88600, 0.0001971946838541609]
2023-02-06 11:38:30,380	9nineM	INFO	====> Epoch: 104
2023-02-06 11:40:11,306	9nineM	INFO	Train Epoch: 105 [10%]
2023-02-06 11:40:11,307	9nineM	INFO	[2.5333781242370605, 2.0580761432647705, 4.338613510131836, 18.535072326660156, 1.7914912700653076, 1.4338421821594238, 88800, 0.0001971700345186791]
2023-02-06 11:40:42,688	9nineM	INFO	Saving model and optimizer state at iteration 105 to ./logs\9nineM\G_88800.pth
2023-02-06 11:40:43,373	9nineM	INFO	Saving model and optimizer state at iteration 105 to ./logs\9nineM\D_88800.pth
2023-02-06 11:43:28,822	9nineM	INFO	Train Epoch: 105 [34%]
2023-02-06 11:43:28,823	9nineM	INFO	[2.6348657608032227, 2.2804720401763916, 5.731025695800781, 21.585073471069336, 1.744161605834961, 1.906490683555603, 89000, 0.0001971700345186791]
2023-02-06 11:46:13,883	9nineM	INFO	Train Epoch: 105 [57%]
2023-02-06 11:46:13,884	9nineM	INFO	[2.4561171531677246, 2.150024890899658, 6.180589199066162, 22.93134307861328, 2.06330943107605, 1.433523178100586, 89200, 0.0001971700345186791]
2023-02-06 11:46:44,083	9nineM	INFO	Saving model and optimizer state at iteration 105 to ./logs\9nineM\G_89200.pth
2023-02-06 11:46:45,111	9nineM	INFO	Saving model and optimizer state at iteration 105 to ./logs\9nineM\D_89200.pth
2023-02-06 11:49:28,921	9nineM	INFO	Train Epoch: 105 [81%]
2023-02-06 11:49:28,922	9nineM	INFO	[2.183551073074341, 2.5984156131744385, 6.716160774230957, 23.298635482788086, 1.7402210235595703, 1.5968148708343506, 89400, 0.0001971700345186791]
2023-02-06 11:51:44,434	9nineM	INFO	====> Epoch: 105
2023-02-06 11:52:41,462	9nineM	INFO	Train Epoch: 106 [4%]
2023-02-06 11:52:41,463	9nineM	INFO	[2.3252651691436768, 2.640533924102783, 6.423140525817871, 23.449329376220703, 1.690205454826355, 1.4696669578552246, 89600, 0.00019714538826436426]
2023-02-06 11:53:12,433	9nineM	INFO	Saving model and optimizer state at iteration 106 to ./logs\9nineM\G_89600.pth
2023-02-06 11:53:13,138	9nineM	INFO	Saving model and optimizer state at iteration 106 to ./logs\9nineM\D_89600.pth
2023-02-06 11:55:56,804	9nineM	INFO	Train Epoch: 106 [28%]
2023-02-06 11:55:56,804	9nineM	INFO	[2.674956798553467, 2.393597364425659, 4.778692245483398, 18.844938278198242, 1.786001205444336, 1.6210120916366577, 89800, 0.00019714538826436426]
2023-02-06 11:58:42,274	9nineM	INFO	Train Epoch: 106 [51%]
2023-02-06 11:58:42,274	9nineM	INFO	[2.336738109588623, 2.489057779312134, 6.216240882873535, 22.527603149414062, 1.7865468263626099, 1.4562931060791016, 90000, 0.00019714538826436426]
2023-02-06 11:59:13,143	9nineM	INFO	Saving model and optimizer state at iteration 106 to ./logs\9nineM\G_90000.pth
2023-02-06 11:59:14,176	9nineM	INFO	Saving model and optimizer state at iteration 106 to ./logs\9nineM\D_90000.pth
2023-02-06 12:01:58,936	9nineM	INFO	Train Epoch: 106 [74%]
2023-02-06 12:01:58,937	9nineM	INFO	[2.3444700241088867, 2.7502689361572266, 6.141520023345947, 23.710206985473633, 1.6360828876495361, 2.0136559009552, 90200, 0.00019714538826436426]
2023-02-06 12:04:43,804	9nineM	INFO	Train Epoch: 106 [98%]
2023-02-06 12:04:43,804	9nineM	INFO	[2.321829319000244, 2.5711233615875244, 7.130553245544434, 23.442434310913086, 1.7535964250564575, 1.7496147155761719, 90400, 0.00019714538826436426]
2023-02-06 12:05:15,078	9nineM	INFO	Saving model and optimizer state at iteration 106 to ./logs\9nineM\G_90400.pth
2023-02-06 12:05:15,750	9nineM	INFO	Saving model and optimizer state at iteration 106 to ./logs\9nineM\D_90400.pth
2023-02-06 12:05:31,205	9nineM	INFO	====> Epoch: 106
2023-02-06 12:08:29,964	9nineM	INFO	Train Epoch: 107 [21%]
2023-02-06 12:08:29,964	9nineM	INFO	[2.4372658729553223, 2.724229335784912, 7.476496696472168, 24.135536193847656, 1.7371110916137695, 1.520024299621582, 90600, 0.0001971207450908312]
2023-02-06 12:11:14,222	9nineM	INFO	Train Epoch: 107 [45%]
2023-02-06 12:11:14,223	9nineM	INFO	[2.4366061687469482, 2.343618154525757, 6.166101455688477, 22.922292709350586, 1.7660292387008667, 1.7507487535476685, 90800, 0.0001971207450908312]
2023-02-06 12:11:44,831	9nineM	INFO	Saving model and optimizer state at iteration 107 to ./logs\9nineM\G_90800.pth
2023-02-06 12:11:45,517	9nineM	INFO	Saving model and optimizer state at iteration 107 to ./logs\9nineM\D_90800.pth
2023-02-06 12:14:29,985	9nineM	INFO	Train Epoch: 107 [68%]
2023-02-06 12:14:29,986	9nineM	INFO	[2.506448745727539, 2.181760311126709, 5.925235271453857, 22.16648292541504, 1.6654726266860962, 1.3967851400375366, 91000, 0.0001971207450908312]
2023-02-06 12:17:14,777	9nineM	INFO	Train Epoch: 107 [92%]
2023-02-06 12:17:14,778	9nineM	INFO	[2.42924165725708, 2.3328113555908203, 6.019453048706055, 21.61944007873535, 1.754049301147461, 1.4748058319091797, 91200, 0.0001971207450908312]
2023-02-06 12:17:45,318	9nineM	INFO	Saving model and optimizer state at iteration 107 to ./logs\9nineM\G_91200.pth
2023-02-06 12:17:46,004	9nineM	INFO	Saving model and optimizer state at iteration 107 to ./logs\9nineM\D_91200.pth
2023-02-06 12:18:45,653	9nineM	INFO	====> Epoch: 107
2023-02-06 12:21:05,160	9nineM	INFO	Train Epoch: 108 [15%]
2023-02-06 12:21:05,161	9nineM	INFO	[2.4319915771484375, 2.3685550689697266, 4.853661060333252, 20.543039321899414, 1.7073560953140259, 1.7163294553756714, 91400, 0.00019709610499769482]
2023-02-06 12:23:47,605	9nineM	INFO	Train Epoch: 108 [39%]
2023-02-06 12:23:47,605	9nineM	INFO	[2.5256752967834473, 2.322812080383301, 4.907132625579834, 20.325536727905273, 1.7290232181549072, 1.8438165187835693, 91600, 0.00019709610499769482]
2023-02-06 12:24:18,913	9nineM	INFO	Saving model and optimizer state at iteration 108 to ./logs\9nineM\G_91600.pth
2023-02-06 12:24:19,584	9nineM	INFO	Saving model and optimizer state at iteration 108 to ./logs\9nineM\D_91600.pth
2023-02-06 12:27:05,811	9nineM	INFO	Train Epoch: 108 [62%]
2023-02-06 12:27:05,812	9nineM	INFO	[2.1529364585876465, 2.707568645477295, 7.620291233062744, 24.264650344848633, 1.7756242752075195, 1.9135087728500366, 91800, 0.00019709610499769482]
2023-02-06 12:29:50,634	9nineM	INFO	Train Epoch: 108 [85%]
2023-02-06 12:29:50,634	9nineM	INFO	[2.622178077697754, 2.3537964820861816, 5.093014240264893, 20.53378677368164, 1.6982512474060059, 1.4778978824615479, 92000, 0.00019709610499769482]
2023-02-06 12:30:22,090	9nineM	INFO	Saving model and optimizer state at iteration 108 to ./logs\9nineM\G_92000.pth
2023-02-06 12:30:22,786	9nineM	INFO	Saving model and optimizer state at iteration 108 to ./logs\9nineM\D_92000.pth
2023-02-06 12:32:07,275	9nineM	INFO	====> Epoch: 108
2023-02-06 12:33:41,777	9nineM	INFO	Train Epoch: 109 [9%]
2023-02-06 12:33:41,778	9nineM	INFO	[2.635251760482788, 2.060101270675659, 4.255732536315918, 20.782381057739258, 1.6539850234985352, 1.4945626258850098, 92200, 0.0001970714679845701]
2023-02-06 12:36:27,527	9nineM	INFO	Train Epoch: 109 [32%]
2023-02-06 12:36:27,528	9nineM	INFO	[2.5063834190368652, 2.531637191772461, 5.950955867767334, 21.967214584350586, 1.7070696353912354, 1.0353264808654785, 92400, 0.0001970714679845701]
2023-02-06 12:36:59,546	9nineM	INFO	Saving model and optimizer state at iteration 109 to ./logs\9nineM\G_92400.pth
2023-02-06 12:37:00,238	9nineM	INFO	Saving model and optimizer state at iteration 109 to ./logs\9nineM\D_92400.pth
2023-02-06 12:39:46,307	9nineM	INFO	Train Epoch: 109 [56%]
2023-02-06 12:39:46,308	9nineM	INFO	[2.151048183441162, 2.8025808334350586, 6.490227699279785, 20.46746063232422, 1.7056280374526978, 1.7053507566452026, 92600, 0.0001970714679845701]
2023-02-06 12:42:30,182	9nineM	INFO	Train Epoch: 109 [79%]
2023-02-06 12:42:30,183	9nineM	INFO	[2.2614662647247314, 2.6110925674438477, 7.116613388061523, 22.354225158691406, 1.7279560565948486, 1.4162933826446533, 92800, 0.0001970714679845701]
2023-02-06 12:43:03,633	9nineM	INFO	Saving model and optimizer state at iteration 109 to ./logs\9nineM\G_92800.pth
2023-02-06 12:43:04,517	9nineM	INFO	Saving model and optimizer state at iteration 109 to ./logs\9nineM\D_92800.pth
2023-02-06 12:45:34,237	9nineM	INFO	====> Epoch: 109
2023-02-06 12:46:24,617	9nineM	INFO	Train Epoch: 110 [3%]
2023-02-06 12:46:24,617	9nineM	INFO	[2.337944507598877, 2.3767123222351074, 5.4418044090271, 19.818981170654297, 1.6453347206115723, 1.761839747428894, 93000, 0.000197046834051072]
2023-02-06 12:49:11,570	9nineM	INFO	Train Epoch: 110 [26%]
2023-02-06 12:49:11,570	9nineM	INFO	[2.3932392597198486, 2.3815081119537354, 5.581759452819824, 20.538192749023438, 1.703857421875, 1.7869685888290405, 93200, 0.000197046834051072]
2023-02-06 12:49:44,055	9nineM	INFO	Saving model and optimizer state at iteration 110 to ./logs\9nineM\G_93200.pth
2023-02-06 12:49:44,781	9nineM	INFO	Saving model and optimizer state at iteration 110 to ./logs\9nineM\D_93200.pth
2023-02-06 12:52:32,172	9nineM	INFO	Train Epoch: 110 [50%]
2023-02-06 12:52:32,173	9nineM	INFO	[2.3217198848724365, 2.69116473197937, 5.505145072937012, 21.991470336914062, 1.768148422241211, 1.7189995050430298, 93400, 0.000197046834051072]
2023-02-06 12:55:21,886	9nineM	INFO	Train Epoch: 110 [73%]
2023-02-06 12:55:21,887	9nineM	INFO	[2.1904287338256836, 2.523667097091675, 6.984142303466797, 22.651687622070312, 1.6384049654006958, 1.5759012699127197, 93600, 0.000197046834051072]
2023-02-06 12:55:56,524	9nineM	INFO	Saving model and optimizer state at iteration 110 to ./logs\9nineM\G_93600.pth
2023-02-06 12:55:57,264	9nineM	INFO	Saving model and optimizer state at iteration 110 to ./logs\9nineM\D_93600.pth
2023-02-06 12:58:45,262	9nineM	INFO	Train Epoch: 110 [96%]
2023-02-06 12:58:45,262	9nineM	INFO	[2.44917893409729, 2.738584518432617, 5.793365955352783, 22.983779907226562, 1.9288597106933594, 1.8642157316207886, 93800, 0.000197046834051072]
2023-02-06 12:59:10,786	9nineM	INFO	====> Epoch: 110
2023-02-06 13:02:05,416	9nineM	INFO	Train Epoch: 111 [20%]
2023-02-06 13:02:05,417	9nineM	INFO	[2.508176803588867, 2.2645320892333984, 5.212980270385742, 20.7646541595459, 1.8853695392608643, 1.7219749689102173, 94000, 0.00019702220319681561]
2023-02-06 13:02:37,861	9nineM	INFO	Saving model and optimizer state at iteration 111 to ./logs\9nineM\G_94000.pth
2023-02-06 13:02:38,555	9nineM	INFO	Saving model and optimizer state at iteration 111 to ./logs\9nineM\D_94000.pth
2023-02-06 13:05:26,720	9nineM	INFO	Train Epoch: 111 [43%]
2023-02-06 13:05:26,721	9nineM	INFO	[2.611619710922241, 2.063815116882324, 4.077986717224121, 18.16786766052246, 1.6656677722930908, 1.9092652797698975, 94200, 0.00019702220319681561]
2023-02-06 13:08:15,293	9nineM	INFO	Train Epoch: 111 [67%]
2023-02-06 13:08:15,294	9nineM	INFO	[2.3580873012542725, 2.61769700050354, 6.616842269897461, 22.40196990966797, 1.7497141361236572, 1.3369446992874146, 94400, 0.00019702220319681561]
2023-02-06 13:08:49,762	9nineM	INFO	Saving model and optimizer state at iteration 111 to ./logs\9nineM\G_94400.pth
2023-02-06 13:08:50,490	9nineM	INFO	Saving model and optimizer state at iteration 111 to ./logs\9nineM\D_94400.pth
2023-02-06 13:11:38,113	9nineM	INFO	Train Epoch: 111 [90%]
2023-02-06 13:11:38,113	9nineM	INFO	[2.413390636444092, 2.509127616882324, 4.37823486328125, 19.72787857055664, 1.701365351676941, 1.420450210571289, 94600, 0.00019702220319681561]
2023-02-06 13:12:47,771	9nineM	INFO	====> Epoch: 111
2023-02-06 13:14:56,897	9nineM	INFO	Train Epoch: 112 [14%]
2023-02-06 13:14:56,898	9nineM	INFO	[2.484596014022827, 2.232524871826172, 5.295563220977783, 19.982742309570312, 1.745281457901001, 1.5976684093475342, 94800, 0.000196997575421416]
2023-02-06 13:15:29,617	9nineM	INFO	Saving model and optimizer state at iteration 112 to ./logs\9nineM\G_94800.pth
2023-02-06 13:15:30,380	9nineM	INFO	Saving model and optimizer state at iteration 112 to ./logs\9nineM\D_94800.pth
2023-02-06 13:18:18,410	9nineM	INFO	Train Epoch: 112 [37%]
2023-02-06 13:18:18,411	9nineM	INFO	[2.456583023071289, 2.3107943534851074, 6.071109771728516, 22.921361923217773, 1.7969210147857666, 1.6460708379745483, 95000, 0.000196997575421416]
2023-02-06 13:21:05,725	9nineM	INFO	Train Epoch: 112 [61%]
2023-02-06 13:21:05,727	9nineM	INFO	[2.469888210296631, 2.4473538398742676, 5.119750022888184, 21.343137741088867, 1.671108603477478, 1.7484978437423706, 95200, 0.000196997575421416]
2023-02-06 13:21:39,301	9nineM	INFO	Saving model and optimizer state at iteration 112 to ./logs\9nineM\G_95200.pth
2023-02-06 13:21:40,111	9nineM	INFO	Saving model and optimizer state at iteration 112 to ./logs\9nineM\D_95200.pth
2023-02-06 13:24:25,441	9nineM	INFO	Train Epoch: 112 [84%]
2023-02-06 13:24:25,442	9nineM	INFO	[2.55717396736145, 2.1455161571502686, 5.304982662200928, 21.301620483398438, 1.604736089706421, 1.5033036470413208, 95400, 0.000196997575421416]
2023-02-06 13:26:17,275	9nineM	INFO	====> Epoch: 112
2023-02-06 13:27:38,968	9nineM	INFO	Train Epoch: 113 [8%]
2023-02-06 13:27:38,969	9nineM	INFO	[2.587958335876465, 1.9178141355514526, 3.5232930183410645, 16.94198989868164, 1.8393373489379883, 1.5986642837524414, 95600, 0.00019697295072448832]
2023-02-06 13:28:09,748	9nineM	INFO	Saving model and optimizer state at iteration 113 to ./logs\9nineM\G_95600.pth
2023-02-06 13:28:10,541	9nineM	INFO	Saving model and optimizer state at iteration 113 to ./logs\9nineM\D_95600.pth
2023-02-06 13:30:56,682	9nineM	INFO	Train Epoch: 113 [31%]
2023-02-06 13:30:56,682	9nineM	INFO	[2.498879909515381, 2.2045531272888184, 6.230116367340088, 22.36961555480957, 1.9318259954452515, 1.512890338897705, 95800, 0.00019697295072448832]
2023-02-06 13:33:43,018	9nineM	INFO	Train Epoch: 113 [54%]
2023-02-06 13:33:43,018	9nineM	INFO	[2.413757801055908, 2.5063464641571045, 5.826871395111084, 22.346698760986328, 1.5606420040130615, 1.8357735872268677, 96000, 0.00019697295072448832]
2023-02-06 13:34:15,067	9nineM	INFO	Saving model and optimizer state at iteration 113 to ./logs\9nineM\G_96000.pth
2023-02-06 13:34:15,788	9nineM	INFO	Saving model and optimizer state at iteration 113 to ./logs\9nineM\D_96000.pth
2023-02-06 13:36:59,900	9nineM	INFO	Train Epoch: 113 [78%]
2023-02-06 13:36:59,900	9nineM	INFO	[2.3261818885803223, 2.487793207168579, 7.112005710601807, 23.60846519470215, 1.6689367294311523, 1.6204299926757812, 96200, 0.00019697295072448832]
2023-02-06 13:39:35,420	9nineM	INFO	====> Epoch: 113
2023-02-06 13:40:14,850	9nineM	INFO	Train Epoch: 114 [1%]
2023-02-06 13:40:14,851	9nineM	INFO	[2.3594369888305664, 2.57433819770813, 5.664788722991943, 22.25078582763672, 1.9012060165405273, 1.2977750301361084, 96400, 0.00019694832910564775]
2023-02-06 13:40:45,516	9nineM	INFO	Saving model and optimizer state at iteration 114 to ./logs\9nineM\G_96400.pth
2023-02-06 13:40:46,209	9nineM	INFO	Saving model and optimizer state at iteration 114 to ./logs\9nineM\D_96400.pth
2023-02-06 13:43:32,605	9nineM	INFO	Train Epoch: 114 [25%]
2023-02-06 13:43:32,606	9nineM	INFO	[2.386523962020874, 2.780449628829956, 7.271634101867676, 24.21062660217285, 1.8169474601745605, 1.6657459735870361, 96600, 0.00019694832910564775]
2023-02-06 13:46:17,214	9nineM	INFO	Train Epoch: 114 [48%]
2023-02-06 13:46:17,215	9nineM	INFO	[2.5572080612182617, 2.2631192207336426, 5.437740802764893, 22.049312591552734, 1.6838626861572266, 1.687936782836914, 96800, 0.00019694832910564775]
2023-02-06 13:46:49,216	9nineM	INFO	Saving model and optimizer state at iteration 114 to ./logs\9nineM\G_96800.pth
2023-02-06 13:46:49,891	9nineM	INFO	Saving model and optimizer state at iteration 114 to ./logs\9nineM\D_96800.pth
2023-02-06 13:49:34,885	9nineM	INFO	Train Epoch: 114 [72%]
2023-02-06 13:49:34,886	9nineM	INFO	[2.509824752807617, 2.1153953075408936, 4.205113887786865, 18.1639404296875, 1.7349073886871338, 1.8490338325500488, 97000, 0.00019694832910564775]
2023-02-06 13:52:19,032	9nineM	INFO	Train Epoch: 114 [95%]
2023-02-06 13:52:19,032	9nineM	INFO	[2.557098388671875, 2.4876413345336914, 6.374693870544434, 23.068641662597656, 1.7634309530258179, 2.146819829940796, 97200, 0.00019694832910564775]
2023-02-06 13:52:50,423	9nineM	INFO	Saving model and optimizer state at iteration 114 to ./logs\9nineM\G_97200.pth
2023-02-06 13:52:51,119	9nineM	INFO	Saving model and optimizer state at iteration 114 to ./logs\9nineM\D_97200.pth
2023-02-06 13:53:25,705	9nineM	INFO	====> Epoch: 114
2023-02-06 13:56:05,556	9nineM	INFO	Train Epoch: 115 [19%]
2023-02-06 13:56:05,556	9nineM	INFO	[2.4791998863220215, 2.470241069793701, 5.086457252502441, 22.2614803314209, 1.7222354412078857, 1.655585765838623, 97400, 0.00019692371056450955]
2023-02-06 13:58:49,903	9nineM	INFO	Train Epoch: 115 [42%]
2023-02-06 13:58:49,904	9nineM	INFO	[2.315728187561035, 2.4930951595306396, 6.787493705749512, 21.897361755371094, 1.6553869247436523, 1.5442155599594116, 97600, 0.00019692371056450955]
2023-02-06 13:59:21,449	9nineM	INFO	Saving model and optimizer state at iteration 115 to ./logs\9nineM\G_97600.pth
2023-02-06 13:59:22,120	9nineM	INFO	Saving model and optimizer state at iteration 115 to ./logs\9nineM\D_97600.pth
2023-02-06 14:02:07,861	9nineM	INFO	Train Epoch: 115 [65%]
2023-02-06 14:02:07,862	9nineM	INFO	[2.396742582321167, 2.444382667541504, 5.668606281280518, 21.09869384765625, 1.8376652002334595, 2.2215919494628906, 97800, 0.00019692371056450955]
2023-02-06 14:04:53,754	9nineM	INFO	Train Epoch: 115 [89%]
2023-02-06 14:04:53,754	9nineM	INFO	[2.4273695945739746, 2.435178279876709, 5.798398494720459, 22.221467971801758, 1.5377154350280762, 1.521401047706604, 98000, 0.00019692371056450955]
2023-02-06 14:05:25,646	9nineM	INFO	Saving model and optimizer state at iteration 115 to ./logs\9nineM\G_98000.pth
2023-02-06 14:05:26,321	9nineM	INFO	Saving model and optimizer state at iteration 115 to ./logs\9nineM\D_98000.pth
2023-02-06 14:06:44,849	9nineM	INFO	====> Epoch: 115
2023-02-06 14:08:39,868	9nineM	INFO	Train Epoch: 116 [12%]
2023-02-06 14:08:39,869	9nineM	INFO	[2.7019729614257812, 2.1025826930999756, 3.5376508235931396, 18.070817947387695, 1.7493133544921875, 1.4884207248687744, 98200, 0.000196899095100689]
2023-02-06 14:11:25,999	9nineM	INFO	Train Epoch: 116 [36%]
2023-02-06 14:11:26,001	9nineM	INFO	[2.3110673427581787, 2.503537893295288, 6.2430267333984375, 22.04073143005371, 1.6430292129516602, 1.535827875137329, 98400, 0.000196899095100689]
2023-02-06 14:11:57,174	9nineM	INFO	Saving model and optimizer state at iteration 116 to ./logs\9nineM\G_98400.pth
2023-02-06 14:11:57,896	9nineM	INFO	Saving model and optimizer state at iteration 116 to ./logs\9nineM\D_98400.pth
2023-02-06 14:14:42,464	9nineM	INFO	Train Epoch: 116 [59%]
2023-02-06 14:14:42,465	9nineM	INFO	[2.4880621433258057, 2.404099941253662, 5.671602725982666, 21.134979248046875, 1.6529762744903564, 1.822348952293396, 98600, 0.000196899095100689]
2023-02-06 14:17:27,938	9nineM	INFO	Train Epoch: 116 [83%]
2023-02-06 14:17:27,938	9nineM	INFO	[2.503242254257202, 2.505859851837158, 5.302490234375, 20.080013275146484, 1.6597877740859985, 1.8725287914276123, 98800, 0.000196899095100689]
2023-02-06 14:17:59,644	9nineM	INFO	Saving model and optimizer state at iteration 116 to ./logs\9nineM\G_98800.pth
2023-02-06 14:18:00,367	9nineM	INFO	Saving model and optimizer state at iteration 116 to ./logs\9nineM\D_98800.pth
2023-02-06 14:20:02,752	9nineM	INFO	====> Epoch: 116
2023-02-06 14:21:15,069	9nineM	INFO	Train Epoch: 117 [6%]
2023-02-06 14:21:15,069	9nineM	INFO	[2.4922256469726562, 2.3742361068725586, 5.965278625488281, 21.643754959106445, 1.6999168395996094, 1.4700614213943481, 99000, 0.0001968744827138014]
2023-02-06 14:23:59,952	9nineM	INFO	Train Epoch: 117 [30%]
2023-02-06 14:23:59,953	9nineM	INFO	[2.36883544921875, 2.564002513885498, 5.826452732086182, 21.186851501464844, 1.6937975883483887, 1.5655131340026855, 99200, 0.0001968744827138014]
2023-02-06 14:24:31,005	9nineM	INFO	Saving model and optimizer state at iteration 117 to ./logs\9nineM\G_99200.pth
2023-02-06 14:24:31,700	9nineM	INFO	Saving model and optimizer state at iteration 117 to ./logs\9nineM\D_99200.pth
2023-02-06 14:27:16,673	9nineM	INFO	Train Epoch: 117 [53%]
2023-02-06 14:27:16,673	9nineM	INFO	[2.366628408432007, 2.5843231678009033, 5.344743728637695, 20.844276428222656, 1.721157193183899, 1.6528679132461548, 99400, 0.0001968744827138014]
2023-02-06 14:30:02,394	9nineM	INFO	Train Epoch: 117 [76%]
2023-02-06 14:30:02,395	9nineM	INFO	[2.2989799976348877, 2.538928985595703, 6.5035834312438965, 21.046674728393555, 1.7636724710464478, 1.4543215036392212, 99600, 0.0001968744827138014]
2023-02-06 14:30:34,651	9nineM	INFO	Saving model and optimizer state at iteration 117 to ./logs\9nineM\G_99600.pth
2023-02-06 14:30:35,349	9nineM	INFO	Saving model and optimizer state at iteration 117 to ./logs\9nineM\D_99600.pth
2023-02-06 14:33:21,323	9nineM	INFO	Train Epoch: 117 [100%]
2023-02-06 14:33:21,323	9nineM	INFO	[2.1168360710144043, 2.7229878902435303, 6.997582912445068, 23.13353729248047, 1.692934513092041, 1.757822871208191, 99800, 0.0001968744827138014]
2023-02-06 14:33:22,488	9nineM	INFO	====> Epoch: 117
2023-02-06 14:36:37,198	9nineM	INFO	Train Epoch: 118 [23%]
2023-02-06 14:36:37,198	9nineM	INFO	[2.463253974914551, 2.4275407791137695, 6.569629192352295, 22.935827255249023, 1.9200811386108398, 1.3774988651275635, 100000, 0.00019684987340346216]
2023-02-06 14:37:08,509	9nineM	INFO	Saving model and optimizer state at iteration 118 to ./logs\9nineM\G_100000.pth
2023-02-06 14:37:09,182	9nineM	INFO	Saving model and optimizer state at iteration 118 to ./logs\9nineM\D_100000.pth
2023-02-06 14:39:54,174	9nineM	INFO	Train Epoch: 118 [47%]
2023-02-06 14:39:54,175	9nineM	INFO	[2.4459586143493652, 2.2267520427703857, 5.4457106590271, 19.94850730895996, 1.9416693449020386, 1.846510648727417, 100200, 0.00019684987340346216]
2023-02-06 14:42:38,436	9nineM	INFO	Train Epoch: 118 [70%]
2023-02-06 14:42:38,437	9nineM	INFO	[2.0921056270599365, 2.9189417362213135, 7.457575798034668, 22.23969078063965, 1.8530688285827637, 1.4119536876678467, 100400, 0.00019684987340346216]
2023-02-06 14:43:10,184	9nineM	INFO	Saving model and optimizer state at iteration 118 to ./logs\9nineM\G_100400.pth
2023-02-06 14:43:10,874	9nineM	INFO	Saving model and optimizer state at iteration 118 to ./logs\9nineM\D_100400.pth
2023-02-06 14:45:56,413	9nineM	INFO	Train Epoch: 118 [94%]
2023-02-06 14:45:56,414	9nineM	INFO	[2.5850701332092285, 2.1893467903137207, 4.486823081970215, 19.829696655273438, 1.7508349418640137, 1.3020449876785278, 100600, 0.00019684987340346216]
2023-02-06 14:46:41,157	9nineM	INFO	====> Epoch: 118
2023-02-06 14:49:12,134	9nineM	INFO	Train Epoch: 119 [17%]
2023-02-06 14:49:12,134	9nineM	INFO	[2.463219165802002, 2.3701207637786865, 4.950770378112793, 19.350027084350586, 1.7054181098937988, 1.643091082572937, 100800, 0.00019682526716928672]
2023-02-06 14:49:44,155	9nineM	INFO	Saving model and optimizer state at iteration 119 to ./logs\9nineM\G_100800.pth
2023-02-06 14:49:44,866	9nineM	INFO	Saving model and optimizer state at iteration 119 to ./logs\9nineM\D_100800.pth
2023-02-06 14:52:31,408	9nineM	INFO	Train Epoch: 119 [41%]
2023-02-06 14:52:31,409	9nineM	INFO	[2.4125354290008545, 2.588454484939575, 5.436824798583984, 22.007740020751953, 1.7436957359313965, 1.6960844993591309, 101000, 0.00019682526716928672]
2023-02-06 14:55:15,157	9nineM	INFO	Train Epoch: 119 [64%]
2023-02-06 14:55:15,157	9nineM	INFO	[2.3535709381103516, 2.5076091289520264, 5.693776607513428, 19.578813552856445, 1.7230958938598633, 1.789415955543518, 101200, 0.00019682526716928672]
2023-02-06 14:55:46,342	9nineM	INFO	Saving model and optimizer state at iteration 119 to ./logs\9nineM\G_101200.pth
2023-02-06 14:55:47,136	9nineM	INFO	Saving model and optimizer state at iteration 119 to ./logs\9nineM\D_101200.pth
2023-02-06 14:58:31,073	9nineM	INFO	Train Epoch: 119 [87%]
2023-02-06 14:58:31,074	9nineM	INFO	[2.305410385131836, 2.6288323402404785, 6.146034240722656, 23.32713508605957, 1.765282154083252, 1.5977996587753296, 101400, 0.00019682526716928672]
2023-02-06 15:00:00,036	9nineM	INFO	====> Epoch: 119
2023-02-06 15:01:46,563	9nineM	INFO	Train Epoch: 120 [11%]
2023-02-06 15:01:46,564	9nineM	INFO	[2.2018096446990967, 2.7710883617401123, 7.08325719833374, 22.080549240112305, 1.9377415180206299, 1.6101778745651245, 101600, 0.00019680066401089056]
2023-02-06 15:02:18,483	9nineM	INFO	Saving model and optimizer state at iteration 120 to ./logs\9nineM\G_101600.pth
2023-02-06 15:02:19,174	9nineM	INFO	Saving model and optimizer state at iteration 120 to ./logs\9nineM\D_101600.pth
2023-02-06 15:05:03,431	9nineM	INFO	Train Epoch: 120 [34%]
2023-02-06 15:05:03,432	9nineM	INFO	[2.2975335121154785, 2.515549421310425, 6.2778425216674805, 22.98143196105957, 1.5956683158874512, 1.819651484489441, 101800, 0.00019680066401089056]
2023-02-06 15:07:51,652	9nineM	INFO	Train Epoch: 120 [58%]
2023-02-06 15:07:51,652	9nineM	INFO	[2.500098466873169, 2.4463696479797363, 5.057762145996094, 19.23154640197754, 1.7394850254058838, 1.7072340250015259, 102000, 0.00019680066401089056]
2023-02-06 15:08:24,001	9nineM	INFO	Saving model and optimizer state at iteration 120 to ./logs\9nineM\G_102000.pth
2023-02-06 15:08:24,697	9nineM	INFO	Saving model and optimizer state at iteration 120 to ./logs\9nineM\D_102000.pth
2023-02-06 15:11:08,275	9nineM	INFO	Train Epoch: 120 [81%]
2023-02-06 15:11:08,276	9nineM	INFO	[2.571516990661621, 2.3051207065582275, 3.9737179279327393, 19.891653060913086, 1.8753881454467773, 1.9612761735916138, 102200, 0.00019680066401089056]
2023-02-06 15:13:20,459	9nineM	INFO	====> Epoch: 120
2023-02-06 15:14:23,344	9nineM	INFO	Train Epoch: 121 [5%]
2023-02-06 15:14:23,345	9nineM	INFO	[2.510283946990967, 2.2863705158233643, 4.1958327293396, 19.206239700317383, 1.6095335483551025, 1.7505130767822266, 102400, 0.00019677606392788917]
2023-02-06 15:14:54,450	9nineM	INFO	Saving model and optimizer state at iteration 121 to ./logs\9nineM\G_102400.pth
2023-02-06 15:14:55,142	9nineM	INFO	Saving model and optimizer state at iteration 121 to ./logs\9nineM\D_102400.pth
2023-02-06 15:17:39,837	9nineM	INFO	Train Epoch: 121 [28%]
2023-02-06 15:17:39,837	9nineM	INFO	[2.541640043258667, 2.1485772132873535, 4.516676425933838, 20.732175827026367, 1.6872812509536743, 1.5659551620483398, 102600, 0.00019677606392788917]
2023-02-06 15:20:24,949	9nineM	INFO	Train Epoch: 121 [52%]
2023-02-06 15:20:24,949	9nineM	INFO	[2.328838348388672, 2.1609835624694824, 6.217496395111084, 20.118305206298828, 1.651740550994873, 1.891235113143921, 102800, 0.00019677606392788917]
2023-02-06 15:20:57,629	9nineM	INFO	Saving model and optimizer state at iteration 121 to ./logs\9nineM\G_102800.pth
2023-02-06 15:20:58,321	9nineM	INFO	Saving model and optimizer state at iteration 121 to ./logs\9nineM\D_102800.pth
2023-02-06 15:23:43,852	9nineM	INFO	Train Epoch: 121 [75%]
2023-02-06 15:23:43,853	9nineM	INFO	[2.2651047706604004, 2.775912284851074, 5.114157676696777, 20.266437530517578, 1.821028709411621, 1.757179617881775, 103000, 0.00019677606392788917]
2023-02-06 15:26:30,090	9nineM	INFO	Train Epoch: 121 [98%]
2023-02-06 15:26:30,090	9nineM	INFO	[2.5284314155578613, 2.1871793270111084, 5.4745073318481445, 19.901260375976562, 1.8009440898895264, 1.846165418624878, 103200, 0.00019677606392788917]
2023-02-06 15:27:02,475	9nineM	INFO	Saving model and optimizer state at iteration 121 to ./logs\9nineM\G_103200.pth
2023-02-06 15:27:03,194	9nineM	INFO	Saving model and optimizer state at iteration 121 to ./logs\9nineM\D_103200.pth
2023-02-06 15:27:14,424	9nineM	INFO	====> Epoch: 121
2023-02-06 15:30:18,024	9nineM	INFO	Train Epoch: 122 [22%]
2023-02-06 15:30:18,025	9nineM	INFO	[2.3980889320373535, 2.2477893829345703, 5.920403957366943, 21.125410079956055, 1.651360034942627, 1.4833674430847168, 103400, 0.00019675146691989817]
2023-02-06 15:33:03,224	9nineM	INFO	Train Epoch: 122 [45%]
2023-02-06 15:33:03,224	9nineM	INFO	[2.30232572555542, 2.4761180877685547, 6.809429168701172, 24.03131103515625, 1.5712530612945557, 1.9463590383529663, 103600, 0.00019675146691989817]
2023-02-06 15:33:34,309	9nineM	INFO	Saving model and optimizer state at iteration 122 to ./logs\9nineM\G_103600.pth
2023-02-06 15:33:34,996	9nineM	INFO	Saving model and optimizer state at iteration 122 to ./logs\9nineM\D_103600.pth
2023-02-06 15:36:21,012	9nineM	INFO	Train Epoch: 122 [69%]
2023-02-06 15:36:21,013	9nineM	INFO	[2.5232338905334473, 2.344912528991699, 4.960516452789307, 21.083236694335938, 1.7441201210021973, 1.6607543230056763, 103800, 0.00019675146691989817]
2023-02-06 15:39:05,829	9nineM	INFO	Train Epoch: 122 [92%]
2023-02-06 15:39:05,829	9nineM	INFO	[2.47275710105896, 2.1884095668792725, 5.5966010093688965, 21.980180740356445, 1.6928645372390747, 2.009143352508545, 104000, 0.00019675146691989817]
2023-02-06 15:39:37,939	9nineM	INFO	Saving model and optimizer state at iteration 122 to ./logs\9nineM\G_104000.pth
2023-02-06 15:39:38,714	9nineM	INFO	Saving model and optimizer state at iteration 122 to ./logs\9nineM\D_104000.pth
2023-02-06 15:40:33,552	9nineM	INFO	====> Epoch: 122
2023-02-06 15:42:55,043	9nineM	INFO	Train Epoch: 123 [16%]
2023-02-06 15:42:55,044	9nineM	INFO	[2.498145580291748, 2.2360188961029053, 5.111078262329102, 19.09475326538086, 1.7608081102371216, 1.4617615938186646, 104200, 0.00019672687298653317]
2023-02-06 15:45:40,140	9nineM	INFO	Train Epoch: 123 [39%]
2023-02-06 15:45:40,141	9nineM	INFO	[2.4925827980041504, 2.1025991439819336, 4.783213138580322, 19.508392333984375, 1.7997462749481201, 1.593095302581787, 104400, 0.00019672687298653317]
2023-02-06 15:46:11,404	9nineM	INFO	Saving model and optimizer state at iteration 123 to ./logs\9nineM\G_104400.pth
2023-02-06 15:46:12,095	9nineM	INFO	Saving model and optimizer state at iteration 123 to ./logs\9nineM\D_104400.pth
2023-02-06 15:48:57,344	9nineM	INFO	Train Epoch: 123 [63%]
2023-02-06 15:48:57,345	9nineM	INFO	[2.4662418365478516, 2.7075507640838623, 6.420268535614014, 22.104938507080078, 1.8007514476776123, 1.8012120723724365, 104600, 0.00019672687298653317]
2023-02-06 15:51:42,027	9nineM	INFO	Train Epoch: 123 [86%]
2023-02-06 15:51:42,028	9nineM	INFO	[2.616326093673706, 2.269937038421631, 4.204921722412109, 20.067710876464844, 1.6697479486465454, 1.74994957447052, 104800, 0.00019672687298653317]
2023-02-06 15:52:13,001	9nineM	INFO	Saving model and optimizer state at iteration 123 to ./logs\9nineM\G_104800.pth
2023-02-06 15:52:13,679	9nineM	INFO	Saving model and optimizer state at iteration 123 to ./logs\9nineM\D_104800.pth
2023-02-06 15:53:51,452	9nineM	INFO	====> Epoch: 123
2023-02-06 15:55:28,143	9nineM	INFO	Train Epoch: 124 [9%]
2023-02-06 15:55:28,143	9nineM	INFO	[2.438673257827759, 2.386467695236206, 6.2910895347595215, 22.673343658447266, 1.7006206512451172, 1.5440673828125, 105000, 0.00019670228212740986]
2023-02-06 15:58:12,658	9nineM	INFO	Train Epoch: 124 [33%]
2023-02-06 15:58:12,659	9nineM	INFO	[2.281498670578003, 2.406327724456787, 6.589284420013428, 22.119091033935547, 1.9388227462768555, 1.598183274269104, 105200, 0.00019670228212740986]
2023-02-06 15:58:44,440	9nineM	INFO	Saving model and optimizer state at iteration 124 to ./logs\9nineM\G_105200.pth
2023-02-06 15:58:45,132	9nineM	INFO	Saving model and optimizer state at iteration 124 to ./logs\9nineM\D_105200.pth
2023-02-06 16:01:30,510	9nineM	INFO	Train Epoch: 124 [56%]
2023-02-06 16:01:30,511	9nineM	INFO	[2.3354380130767822, 2.402249336242676, 7.290963172912598, 23.93175506591797, 1.6598782539367676, 1.8917102813720703, 105400, 0.00019670228212740986]
2023-02-06 16:04:16,120	9nineM	INFO	Train Epoch: 124 [80%]
2023-02-06 16:04:16,121	9nineM	INFO	[2.357271432876587, 2.5641093254089355, 6.540933132171631, 23.41145133972168, 1.8118276596069336, 1.4825334548950195, 105600, 0.00019670228212740986]
2023-02-06 16:04:47,242	9nineM	INFO	Saving model and optimizer state at iteration 124 to ./logs\9nineM\G_105600.pth
2023-02-06 16:04:47,923	9nineM	INFO	Saving model and optimizer state at iteration 124 to ./logs\9nineM\D_105600.pth
2023-02-06 16:07:10,698	9nineM	INFO	====> Epoch: 124
2023-02-06 16:08:03,503	9nineM	INFO	Train Epoch: 125 [3%]
2023-02-06 16:08:03,503	9nineM	INFO	[2.448438882827759, 2.445228099822998, 5.618696212768555, 20.60164451599121, 1.66410231590271, 1.615474820137024, 105800, 0.00019667769434214392]
2023-02-06 16:10:49,168	9nineM	INFO	Train Epoch: 125 [27%]
2023-02-06 16:10:49,168	9nineM	INFO	[2.325075626373291, 2.5221643447875977, 5.33622932434082, 20.46728515625, 1.6575069427490234, 1.6003532409667969, 106000, 0.00019667769434214392]
2023-02-06 16:11:21,217	9nineM	INFO	Saving model and optimizer state at iteration 125 to ./logs\9nineM\G_106000.pth
2023-02-06 16:11:21,902	9nineM	INFO	Saving model and optimizer state at iteration 125 to ./logs\9nineM\D_106000.pth
2023-02-06 16:14:07,608	9nineM	INFO	Train Epoch: 125 [50%]
2023-02-06 16:14:07,609	9nineM	INFO	[2.4673702716827393, 2.565077066421509, 6.060758590698242, 23.33299446105957, 1.8389701843261719, 1.6925863027572632, 106200, 0.00019667769434214392]
2023-02-06 16:16:53,934	9nineM	INFO	Train Epoch: 125 [74%]
2023-02-06 16:16:53,934	9nineM	INFO	[2.4451231956481934, 2.3460519313812256, 4.507089138031006, 17.921092987060547, 1.7477185726165771, 1.6921159029006958, 106400, 0.00019667769434214392]
2023-02-06 16:17:26,437	9nineM	INFO	Saving model and optimizer state at iteration 125 to ./logs\9nineM\G_106400.pth
2023-02-06 16:17:27,130	9nineM	INFO	Saving model and optimizer state at iteration 125 to ./logs\9nineM\D_106400.pth
2023-02-06 16:20:12,115	9nineM	INFO	Train Epoch: 125 [97%]
2023-02-06 16:20:12,115	9nineM	INFO	[2.3526041507720947, 2.144291639328003, 5.205575466156006, 19.205556869506836, 1.7281032800674438, 1.7087838649749756, 106600, 0.00019667769434214392]
2023-02-06 16:20:33,330	9nineM	INFO	====> Epoch: 125
2023-02-06 16:23:29,219	9nineM	INFO	Train Epoch: 126 [21%]
2023-02-06 16:23:29,219	9nineM	INFO	[2.557781457901001, 2.014836311340332, 4.775179862976074, 17.935400009155273, 1.715360164642334, 1.7885620594024658, 106800, 0.00019665310963035113]
2023-02-06 16:24:00,707	9nineM	INFO	Saving model and optimizer state at iteration 126 to ./logs\9nineM\G_106800.pth
2023-02-06 16:24:01,491	9nineM	INFO	Saving model and optimizer state at iteration 126 to ./logs\9nineM\D_106800.pth
2023-02-06 16:26:46,610	9nineM	INFO	Train Epoch: 126 [44%]
2023-02-06 16:26:46,610	9nineM	INFO	[2.5940823554992676, 2.119807720184326, 5.177199840545654, 22.355192184448242, 1.7283027172088623, 2.107990026473999, 107000, 0.00019665310963035113]
2023-02-06 16:29:31,484	9nineM	INFO	Train Epoch: 126 [67%]
2023-02-06 16:29:31,485	9nineM	INFO	[2.445890426635742, 2.2680559158325195, 5.12460470199585, 19.459461212158203, 1.7874096632003784, 1.5999054908752441, 107200, 0.00019665310963035113]
2023-02-06 16:30:03,402	9nineM	INFO	Saving model and optimizer state at iteration 126 to ./logs\9nineM\G_107200.pth
2023-02-06 16:30:04,094	9nineM	INFO	Saving model and optimizer state at iteration 126 to ./logs\9nineM\D_107200.pth
2023-02-06 16:32:49,551	9nineM	INFO	Train Epoch: 126 [91%]
2023-02-06 16:32:49,552	9nineM	INFO	[2.4641480445861816, 2.220811605453491, 5.251368045806885, 20.558815002441406, 1.601214051246643, 1.5639407634735107, 107400, 0.00019665310963035113]
2023-02-06 16:33:54,242	9nineM	INFO	====> Epoch: 126
2023-02-06 16:36:05,336	9nineM	INFO	Train Epoch: 127 [14%]
2023-02-06 16:36:05,337	9nineM	INFO	[1.9362939596176147, 3.120637893676758, 8.201459884643555, 25.22907066345215, 1.7208821773529053, 1.6794835329055786, 107600, 0.00019662852799164733]
2023-02-06 16:36:37,122	9nineM	INFO	Saving model and optimizer state at iteration 127 to ./logs\9nineM\G_107600.pth
2023-02-06 16:36:37,809	9nineM	INFO	Saving model and optimizer state at iteration 127 to ./logs\9nineM\D_107600.pth
2023-02-06 16:39:23,674	9nineM	INFO	Train Epoch: 127 [38%]
2023-02-06 16:39:23,675	9nineM	INFO	[2.6253600120544434, 2.2207937240600586, 5.682074546813965, 22.05364227294922, 1.7517821788787842, 1.6732871532440186, 107800, 0.00019662852799164733]
2023-02-06 16:42:08,220	9nineM	INFO	Train Epoch: 127 [61%]
2023-02-06 16:42:08,221	9nineM	INFO	[2.2905819416046143, 2.337268114089966, 6.093254089355469, 21.193681716918945, 1.7052127122879028, 1.2583754062652588, 108000, 0.00019662852799164733]
2023-02-06 16:42:39,774	9nineM	INFO	Saving model and optimizer state at iteration 127 to ./logs\9nineM\G_108000.pth
2023-02-06 16:42:40,471	9nineM	INFO	Saving model and optimizer state at iteration 127 to ./logs\9nineM\D_108000.pth
2023-02-06 16:45:26,187	9nineM	INFO	Train Epoch: 127 [85%]
2023-02-06 16:45:26,187	9nineM	INFO	[2.3456192016601562, 2.675173044204712, 7.440110683441162, 22.693382263183594, 1.7892179489135742, 1.4919089078903198, 108200, 0.00019662852799164733]
2023-02-06 16:47:14,916	9nineM	INFO	====> Epoch: 127
2023-02-06 16:48:43,682	9nineM	INFO	Train Epoch: 128 [8%]
2023-02-06 16:48:43,683	9nineM	INFO	[2.614778995513916, 2.1944501399993896, 4.002857208251953, 18.55801010131836, 1.7237768173217773, 1.4934300184249878, 108400, 0.00019660394942564837]
2023-02-06 16:49:15,370	9nineM	INFO	Saving model and optimizer state at iteration 128 to ./logs\9nineM\G_108400.pth
2023-02-06 16:49:16,058	9nineM	INFO	Saving model and optimizer state at iteration 128 to ./logs\9nineM\D_108400.pth
2023-02-06 16:52:01,377	9nineM	INFO	Train Epoch: 128 [32%]
2023-02-06 16:52:01,378	9nineM	INFO	[2.3290157318115234, 2.4676098823547363, 5.933804988861084, 21.577899932861328, 1.8265401124954224, 1.89597487449646, 108600, 0.00019660394942564837]
2023-02-06 16:54:47,001	9nineM	INFO	Train Epoch: 128 [55%]
2023-02-06 16:54:47,002	9nineM	INFO	[2.540832996368408, 2.246537208557129, 4.1585917472839355, 18.283985137939453, 1.700262188911438, 1.7168816328048706, 108800, 0.00019660394942564837]
2023-02-06 16:55:19,135	9nineM	INFO	Saving model and optimizer state at iteration 128 to ./logs\9nineM\G_108800.pth
2023-02-06 16:55:19,944	9nineM	INFO	Saving model and optimizer state at iteration 128 to ./logs\9nineM\D_108800.pth
2023-02-06 16:58:05,218	9nineM	INFO	Train Epoch: 128 [78%]
2023-02-06 16:58:05,218	9nineM	INFO	[2.343088150024414, 2.3620457649230957, 6.226370334625244, 21.107290267944336, 1.7152656316757202, 1.6601958274841309, 109000, 0.00019660394942564837]
2023-02-06 17:00:36,881	9nineM	INFO	====> Epoch: 128
2023-02-06 17:01:20,561	9nineM	INFO	Train Epoch: 129 [2%]
2023-02-06 17:01:20,561	9nineM	INFO	[2.516071319580078, 2.467613935470581, 4.537166118621826, 19.915565490722656, 1.7546274662017822, 1.5628968477249146, 109200, 0.00019657937393197016]
2023-02-06 17:01:52,074	9nineM	INFO	Saving model and optimizer state at iteration 129 to ./logs\9nineM\G_109200.pth
2023-02-06 17:01:52,769	9nineM	INFO	Saving model and optimizer state at iteration 129 to ./logs\9nineM\D_109200.pth
2023-02-06 17:04:38,635	9nineM	INFO	Train Epoch: 129 [25%]
2023-02-06 17:04:38,636	9nineM	INFO	[2.5061702728271484, 2.3820605278015137, 5.687960624694824, 21.9094295501709, 1.6847442388534546, 1.6685965061187744, 109400, 0.00019657937393197016]
2023-02-06 17:07:23,668	9nineM	INFO	Train Epoch: 129 [49%]
2023-02-06 17:07:23,669	9nineM	INFO	[2.2507522106170654, 2.5004069805145264, 7.823785305023193, 22.741954803466797, 1.8799254894256592, 1.5477299690246582, 109600, 0.00019657937393197016]
2023-02-06 17:07:55,442	9nineM	INFO	Saving model and optimizer state at iteration 129 to ./logs\9nineM\G_109600.pth
2023-02-06 17:07:56,139	9nineM	INFO	Saving model and optimizer state at iteration 129 to ./logs\9nineM\D_109600.pth
2023-02-06 17:10:41,579	9nineM	INFO	Train Epoch: 129 [72%]
2023-02-06 17:10:41,580	9nineM	INFO	[2.576294422149658, 2.466991901397705, 5.959920883178711, 19.854829788208008, 1.6014974117279053, 1.8656115531921387, 109800, 0.00019657937393197016]
2023-02-06 17:13:26,784	9nineM	INFO	Train Epoch: 129 [96%]
2023-02-06 17:13:26,784	9nineM	INFO	[2.1566967964172363, 2.796489953994751, 8.104927062988281, 25.290363311767578, 1.677327036857605, 1.7374876737594604, 110000, 0.00019657937393197016]
2023-02-06 17:13:59,809	9nineM	INFO	Saving model and optimizer state at iteration 129 to ./logs\9nineM\G_110000.pth
2023-02-06 17:14:00,551	9nineM	INFO	Saving model and optimizer state at iteration 129 to ./logs\9nineM\D_110000.pth
2023-02-06 17:14:32,121	9nineM	INFO	====> Epoch: 129
2023-02-06 17:17:17,773	9nineM	INFO	Train Epoch: 130 [19%]
2023-02-06 17:17:17,774	9nineM	INFO	[2.3088245391845703, 2.8287353515625, 6.850808143615723, 22.376914978027344, 1.720123529434204, 1.552506923675537, 110200, 0.00019655480151022865]
2023-02-06 17:20:04,569	9nineM	INFO	Train Epoch: 130 [43%]
2023-02-06 17:20:04,570	9nineM	INFO	[2.5641283988952637, 2.157201051712036, 6.115917682647705, 20.03248405456543, 1.7070456743240356, 1.195562720298767, 110400, 0.00019655480151022865]
2023-02-06 17:20:38,558	9nineM	INFO	Saving model and optimizer state at iteration 130 to ./logs\9nineM\G_110400.pth
2023-02-06 17:20:39,287	9nineM	INFO	Saving model and optimizer state at iteration 130 to ./logs\9nineM\D_110400.pth
2023-02-06 17:23:26,196	9nineM	INFO	Train Epoch: 130 [66%]
2023-02-06 17:23:26,196	9nineM	INFO	[2.4797720909118652, 2.3528714179992676, 6.306701183319092, 20.948516845703125, 1.6772387027740479, 1.6101850271224976, 110600, 0.00019655480151022865]
2023-02-06 17:26:11,355	9nineM	INFO	Train Epoch: 130 [89%]
2023-02-06 17:26:11,356	9nineM	INFO	[2.730914831161499, 1.92982816696167, 3.5945303440093994, 16.298423767089844, 1.6480116844177246, 1.6665343046188354, 110800, 0.00019655480151022865]
2023-02-06 17:26:43,293	9nineM	INFO	Saving model and optimizer state at iteration 130 to ./logs\9nineM\G_110800.pth
2023-02-06 17:26:44,109	9nineM	INFO	Saving model and optimizer state at iteration 130 to ./logs\9nineM\D_110800.pth
2023-02-06 17:27:58,664	9nineM	INFO	====> Epoch: 130
2023-02-06 17:30:00,534	9nineM	INFO	Train Epoch: 131 [13%]
2023-02-06 17:30:00,535	9nineM	INFO	[2.685152053833008, 2.0549843311309814, 5.298932075500488, 20.420000076293945, 1.5637484788894653, 1.7170839309692383, 111000, 0.00019653023216003985]
2023-02-06 17:32:47,125	9nineM	INFO	Train Epoch: 131 [36%]
2023-02-06 17:32:47,126	9nineM	INFO	[2.3477985858917236, 2.4249043464660645, 5.269962310791016, 20.208158493041992, 1.755613923072815, 1.6324561834335327, 111200, 0.00019653023216003985]
2023-02-06 17:33:18,966	9nineM	INFO	Saving model and optimizer state at iteration 131 to ./logs\9nineM\G_111200.pth
2023-02-06 17:33:19,669	9nineM	INFO	Saving model and optimizer state at iteration 131 to ./logs\9nineM\D_111200.pth
2023-02-06 17:36:06,284	9nineM	INFO	Train Epoch: 131 [60%]
2023-02-06 17:36:06,285	9nineM	INFO	[2.260867118835449, 2.4859883785247803, 6.8141188621521, 21.756410598754883, 1.6294654607772827, 1.3097648620605469, 111400, 0.00019653023216003985]
2023-02-06 17:38:51,314	9nineM	INFO	Train Epoch: 131 [83%]
2023-02-06 17:38:51,315	9nineM	INFO	[2.321812152862549, 2.5985615253448486, 5.669463157653809, 20.308734893798828, 1.6229777336120605, 1.3409274816513062, 111600, 0.00019653023216003985]
2023-02-06 17:39:23,773	9nineM	INFO	Saving model and optimizer state at iteration 131 to ./logs\9nineM\G_111600.pth
2023-02-06 17:39:24,562	9nineM	INFO	Saving model and optimizer state at iteration 131 to ./logs\9nineM\D_111600.pth
2023-02-06 17:41:23,863	9nineM	INFO	====> Epoch: 131
2023-02-06 17:42:41,670	9nineM	INFO	Train Epoch: 132 [7%]
2023-02-06 17:42:41,671	9nineM	INFO	[2.269984006881714, 2.3962604999542236, 6.287789821624756, 22.223419189453125, 1.7952971458435059, 1.4477769136428833, 111800, 0.00019650566588101984]
2023-02-06 17:45:27,035	9nineM	INFO	Train Epoch: 132 [30%]
2023-02-06 17:45:27,036	9nineM	INFO	[2.577596664428711, 2.2556490898132324, 4.243098735809326, 20.36516761779785, 1.7083340883255005, 1.563464641571045, 112000, 0.00019650566588101984]
2023-02-06 17:46:00,148	9nineM	INFO	Saving model and optimizer state at iteration 132 to ./logs\9nineM\G_112000.pth
2023-02-06 17:46:00,859	9nineM	INFO	Saving model and optimizer state at iteration 132 to ./logs\9nineM\D_112000.pth
2023-02-06 17:48:46,899	9nineM	INFO	Train Epoch: 132 [54%]
2023-02-06 17:48:46,900	9nineM	INFO	[2.3364675045013428, 2.4299540519714355, 5.966333866119385, 21.793182373046875, 1.6928566694259644, 1.7479687929153442, 112200, 0.00019650566588101984]
2023-02-06 17:51:32,487	9nineM	INFO	Train Epoch: 132 [77%]
2023-02-06 17:51:32,488	9nineM	INFO	[2.6574320793151855, 2.086085796356201, 5.10287618637085, 21.37195587158203, 1.6615488529205322, 1.5229588747024536, 112400, 0.00019650566588101984]
2023-02-06 17:52:06,033	9nineM	INFO	Saving model and optimizer state at iteration 132 to ./logs\9nineM\G_112400.pth
2023-02-06 17:52:06,732	9nineM	INFO	Saving model and optimizer state at iteration 132 to ./logs\9nineM\D_112400.pth
2023-02-06 17:54:50,218	9nineM	INFO	====> Epoch: 132
2023-02-06 17:55:25,129	9nineM	INFO	Train Epoch: 133 [0%]
2023-02-06 17:55:25,130	9nineM	INFO	[2.3558051586151123, 2.649467945098877, 6.2440876960754395, 21.53974723815918, 1.7715338468551636, 1.7623863220214844, 112600, 0.0001964811026727847]
2023-02-06 17:58:11,248	9nineM	INFO	Train Epoch: 133 [24%]
2023-02-06 17:58:11,248	9nineM	INFO	[2.2452285289764404, 2.6025023460388184, 5.581013202667236, 19.501935958862305, 1.7821968793869019, 1.6202852725982666, 112800, 0.0001964811026727847]
2023-02-06 17:58:43,256	9nineM	INFO	Saving model and optimizer state at iteration 133 to ./logs\9nineM\G_112800.pth
2023-02-06 17:58:43,945	9nineM	INFO	Saving model and optimizer state at iteration 133 to ./logs\9nineM\D_112800.pth
2023-02-06 18:01:31,218	9nineM	INFO	Train Epoch: 133 [47%]
2023-02-06 18:01:31,219	9nineM	INFO	[2.321185827255249, 2.5362143516540527, 5.924492359161377, 22.061859130859375, 1.688535451889038, 1.394166350364685, 113000, 0.0001964811026727847]
2023-02-06 18:04:17,458	9nineM	INFO	Train Epoch: 133 [71%]
2023-02-06 18:04:17,459	9nineM	INFO	[2.319377899169922, 2.3305535316467285, 6.212714195251465, 21.521169662475586, 1.711829662322998, 1.8327008485794067, 113200, 0.0001964811026727847]
2023-02-06 18:04:49,789	9nineM	INFO	Saving model and optimizer state at iteration 133 to ./logs\9nineM\G_113200.pth
2023-02-06 18:04:50,480	9nineM	INFO	Saving model and optimizer state at iteration 133 to ./logs\9nineM\D_113200.pth
2023-02-06 18:07:35,937	9nineM	INFO	Train Epoch: 133 [94%]
2023-02-06 18:07:35,938	9nineM	INFO	[2.408998727798462, 2.5829079151153564, 7.041913986206055, 23.381765365600586, 1.790878176689148, 1.6280030012130737, 113400, 0.0001964811026727847]
2023-02-06 18:08:16,834	9nineM	INFO	====> Epoch: 133
2023-02-06 18:10:51,925	9nineM	INFO	Train Epoch: 134 [18%]
2023-02-06 18:10:51,925	9nineM	INFO	[2.243528366088867, 2.692565679550171, 7.503571510314941, 22.869403839111328, 1.6828540563583374, 1.642391562461853, 113600, 0.00019645654253495058]
2023-02-06 18:11:24,191	9nineM	INFO	Saving model and optimizer state at iteration 134 to ./logs\9nineM\G_113600.pth
2023-02-06 18:11:24,885	9nineM	INFO	Saving model and optimizer state at iteration 134 to ./logs\9nineM\D_113600.pth
2023-02-06 18:14:12,477	9nineM	INFO	Train Epoch: 134 [41%]
2023-02-06 18:14:12,477	9nineM	INFO	[2.3350560665130615, 2.5503907203674316, 6.156712532043457, 22.925025939941406, 1.7280542850494385, 1.8451484441757202, 113800, 0.00019645654253495058]
2023-02-06 18:16:57,382	9nineM	INFO	Train Epoch: 134 [65%]
2023-02-06 18:16:57,382	9nineM	INFO	[2.29552960395813, 2.376685857772827, 6.592720985412598, 21.430940628051758, 1.8966145515441895, 1.5641173124313354, 114000, 0.00019645654253495058]
2023-02-06 18:17:31,183	9nineM	INFO	Saving model and optimizer state at iteration 134 to ./logs\9nineM\G_114000.pth
2023-02-06 18:17:31,902	9nineM	INFO	Saving model and optimizer state at iteration 134 to ./logs\9nineM\D_114000.pth
2023-02-06 18:20:19,220	9nineM	INFO	Train Epoch: 134 [88%]
2023-02-06 18:20:19,221	9nineM	INFO	[2.537724733352661, 2.1297531127929688, 4.756051063537598, 17.612483978271484, 1.6361194849014282, 1.7162665128707886, 114200, 0.00019645654253495058]
2023-02-06 18:21:44,252	9nineM	INFO	====> Epoch: 134
2023-02-06 18:23:37,755	9nineM	INFO	Train Epoch: 135 [11%]
2023-02-06 18:23:37,755	9nineM	INFO	[2.5274243354797363, 2.2241621017456055, 4.527782917022705, 19.2587890625, 1.734229564666748, 1.5080584287643433, 114400, 0.0001964319854671337]
2023-02-06 18:24:11,163	9nineM	INFO	Saving model and optimizer state at iteration 135 to ./logs\9nineM\G_114400.pth
2023-02-06 18:24:11,953	9nineM	INFO	Saving model and optimizer state at iteration 135 to ./logs\9nineM\D_114400.pth
2023-02-06 18:26:59,118	9nineM	INFO	Train Epoch: 135 [35%]
2023-02-06 18:26:59,118	9nineM	INFO	[2.228125810623169, 2.656797170639038, 7.3901801109313965, 23.070409774780273, 1.762709379196167, 1.3937914371490479, 114600, 0.0001964319854671337]
2023-02-06 18:29:44,905	9nineM	INFO	Train Epoch: 135 [58%]
2023-02-06 18:29:44,905	9nineM	INFO	[2.4320075511932373, 2.4277989864349365, 5.85286283493042, 21.0933780670166, 1.7470276355743408, 1.7924855947494507, 114800, 0.0001964319854671337]
2023-02-06 18:30:17,356	9nineM	INFO	Saving model and optimizer state at iteration 135 to ./logs\9nineM\G_114800.pth
2023-02-06 18:30:18,055	9nineM	INFO	Saving model and optimizer state at iteration 135 to ./logs\9nineM\D_114800.pth
2023-02-06 18:33:03,621	9nineM	INFO	Train Epoch: 135 [82%]
2023-02-06 18:33:03,622	9nineM	INFO	[2.143054962158203, 2.655668258666992, 6.541446208953857, 22.054094314575195, 1.766592264175415, 1.7490730285644531, 115000, 0.0001964319854671337]
2023-02-06 18:35:12,686	9nineM	INFO	====> Epoch: 135
2023-02-06 18:36:20,672	9nineM	INFO	Train Epoch: 136 [5%]
2023-02-06 18:36:20,673	9nineM	INFO	[2.2677929401397705, 2.3687334060668945, 6.2986249923706055, 20.939075469970703, 1.697746992111206, 1.8127354383468628, 115200, 0.0001964074314689503]
2023-02-06 18:36:53,092	9nineM	INFO	Saving model and optimizer state at iteration 136 to ./logs\9nineM\G_115200.pth
2023-02-06 18:36:53,898	9nineM	INFO	Saving model and optimizer state at iteration 136 to ./logs\9nineM\D_115200.pth
2023-02-06 18:39:41,740	9nineM	INFO	Train Epoch: 136 [29%]
2023-02-06 18:39:41,741	9nineM	INFO	[2.3394155502319336, 2.6773366928100586, 6.513527870178223, 22.537111282348633, 1.6556422710418701, 1.5885149240493774, 115400, 0.0001964074314689503]
2023-02-06 18:42:27,365	9nineM	INFO	Train Epoch: 136 [52%]
2023-02-06 18:42:27,365	9nineM	INFO	[2.4375386238098145, 2.6626136302948, 5.572325229644775, 19.88722038269043, 1.7356163263320923, 2.05466365814209, 115600, 0.0001964074314689503]
2023-02-06 18:42:59,269	9nineM	INFO	Saving model and optimizer state at iteration 136 to ./logs\9nineM\G_115600.pth
2023-02-06 18:42:59,970	9nineM	INFO	Saving model and optimizer state at iteration 136 to ./logs\9nineM\D_115600.pth
2023-02-06 18:45:45,968	9nineM	INFO	Train Epoch: 136 [76%]
2023-02-06 18:45:45,969	9nineM	INFO	[2.44460391998291, 2.4632773399353027, 5.772214889526367, 21.629426956176758, 1.7663202285766602, 2.0208678245544434, 115800, 0.0001964074314689503]
2023-02-06 18:48:30,844	9nineM	INFO	Train Epoch: 136 [99%]
2023-02-06 18:48:30,845	9nineM	INFO	[2.4162187576293945, 2.2298314571380615, 5.3683671951293945, 21.47169303894043, 1.6094458103179932, 1.774322748184204, 116000, 0.0001964074314689503]
2023-02-06 18:49:03,370	9nineM	INFO	Saving model and optimizer state at iteration 136 to ./logs\9nineM\G_116000.pth
2023-02-12 04:37:29,614	9nineM	INFO	{'train': {'log_interval': 200, 'eval_interval': 400, 'seed': 1234, 'epochs': 1000, 'learning_rate': 0.0002, 'betas': [0.8, 0.99], 'eps': 1e-09, 'batch_size': 16, 'fp16_run': False, 'lr_decay': 0.999875, 'segment_size': 8192, 'init_lr_ratio': 1, 'warmup_epochs': 0, 'c_mel': 45, 'c_kl': 1.0}, 'data': {'training_files': 'filelists/9nine_multi/filelists/MultiNoHaru_train.txt.cleaned', 'validation_files': 'filelists/9nine_multi/filelists/MultiNoHaru_valid.txt.cleaned', 'text_cleaners': ['japanese_cleaners2'], 'max_wav_value': 32768.0, 'sampling_rate': 22050, 'filter_length': 1024, 'hop_length': 256, 'win_length': 1024, 'n_mel_channels': 80, 'mel_fmin': 0.0, 'mel_fmax': None, 'add_blank': True, 'n_speakers': 5, 'cleaned_text': True}, 'model': {'inter_channels': 192, 'hidden_channels': 192, 'filter_channels': 768, 'n_heads': 2, 'n_layers': 6, 'kernel_size': 3, 'p_dropout': 0.1, 'resblock': '1', 'resblock_kernel_sizes': [3, 7, 11], 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'upsample_rates': [8, 8, 2, 2], 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [16, 16, 4, 4], 'n_layers_q': 3, 'use_spectral_norm': False, 'gin_channels': 256}, 'model_dir': './logs\\9nineM', 'ckptG': None, 'ckptD': None}
2023-02-12 04:38:05,317	9nineM	INFO	Train Epoch: 1 [0%]
2023-02-12 04:38:05,318	9nineM	INFO	[6.0741496086120605, 4.674299240112305, 0.37357205152511597, 100.2466049194336, 1.9271368980407715, 206.81471252441406, 0, 0.0002]
2023-02-12 04:38:26,136	9nineM	INFO	Saving model and optimizer state at iteration 1 to ./logs\9nineM\G_0.pth
2023-02-12 04:38:26,864	9nineM	INFO	Saving model and optimizer state at iteration 1 to ./logs\9nineM\D_0.pth
2023-02-12 04:41:31,297	9nineM	INFO	Train Epoch: 1 [23%]
2023-02-12 04:41:31,298	9nineM	INFO	[1.8814308643341064, 3.0982019901275635, 5.636070251464844, 43.64947509765625, 1.9057422876358032, 1.7150471210479736, 200, 0.0002]
2023-02-12 04:44:25,929	9nineM	INFO	Train Epoch: 1 [47%]
2023-02-12 04:44:25,930	9nineM	INFO	[2.2280142307281494, 2.190523386001587, 3.9681339263916016, 37.336788177490234, 1.9838364124298096, 1.3402962684631348, 400, 0.0002]
2023-02-12 04:44:48,338	9nineM	INFO	Saving model and optimizer state at iteration 1 to ./logs\9nineM\G_400.pth
2023-02-12 04:44:49,018	9nineM	INFO	Saving model and optimizer state at iteration 1 to ./logs\9nineM\D_400.pth
2023-02-12 04:47:41,530	9nineM	INFO	Train Epoch: 1 [70%]
2023-02-12 04:47:41,530	9nineM	INFO	[2.1953139305114746, 2.7316408157348633, 4.507357597351074, 36.56730651855469, 2.1782724857330322, 1.5445265769958496, 600, 0.0002]
2023-02-12 04:50:29,804	9nineM	INFO	Train Epoch: 1 [94%]
2023-02-12 04:50:29,804	9nineM	INFO	[1.9672067165374756, 2.559593677520752, 4.635627746582031, 34.88198471069336, 2.085712432861328, 1.6550763845443726, 800, 0.0002]
2023-02-12 04:50:50,643	9nineM	INFO	Saving model and optimizer state at iteration 1 to ./logs\9nineM\G_800.pth
2023-02-12 04:50:51,384	9nineM	INFO	Saving model and optimizer state at iteration 1 to ./logs\9nineM\D_800.pth
2023-02-12 04:51:35,762	9nineM	INFO	====> Epoch: 1
2023-02-12 04:53:58,110	9nineM	INFO	Train Epoch: 2 [17%]
2023-02-12 04:53:58,110	9nineM	INFO	[2.1823103427886963, 2.9389171600341797, 4.653263568878174, 33.464107513427734, 2.0744001865386963, 1.5382697582244873, 1000, 0.000199975]
2023-02-12 04:56:43,337	9nineM	INFO	Train Epoch: 2 [41%]
2023-02-12 04:56:43,337	9nineM	INFO	[2.1907596588134766, 2.2755777835845947, 4.492942810058594, 33.94969940185547, 2.1231160163879395, 1.3922680616378784, 1200, 0.000199975]
2023-02-12 04:57:03,865	9nineM	INFO	Saving model and optimizer state at iteration 2 to ./logs\9nineM\G_1200.pth
2023-02-12 04:57:04,477	9nineM	INFO	Saving model and optimizer state at iteration 2 to ./logs\9nineM\D_1200.pth
2023-02-12 04:59:49,597	9nineM	INFO	Train Epoch: 2 [64%]
2023-02-12 04:59:49,598	9nineM	INFO	[2.227170467376709, 2.6497111320495605, 4.81112003326416, 32.33095932006836, 1.9701876640319824, 1.3651307821273804, 1400, 0.000199975]
2023-02-12 05:02:37,286	9nineM	INFO	Train Epoch: 2 [88%]
2023-02-12 05:02:37,286	9nineM	INFO	[2.4975926876068115, 2.5202813148498535, 3.5076069831848145, 36.55912399291992, 2.0596163272857666, 1.4623568058013916, 1600, 0.000199975]
2023-02-12 05:02:57,631	9nineM	INFO	Saving model and optimizer state at iteration 2 to ./logs\9nineM\G_1600.pth
2023-02-12 05:02:58,242	9nineM	INFO	Saving model and optimizer state at iteration 2 to ./logs\9nineM\D_1600.pth
2023-02-12 05:04:25,186	9nineM	INFO	====> Epoch: 2
2023-02-12 05:06:03,591	9nineM	INFO	Train Epoch: 3 [11%]
2023-02-12 05:06:03,592	9nineM	INFO	[2.7553861141204834, 2.0805437564849854, 2.5315897464752197, 28.083301544189453, 2.1212515830993652, 1.276499629020691, 1800, 0.000199950003125]
2023-02-12 14:23:49,269	9nineM	INFO	Train Epoch: 3 [34%]
2023-02-12 14:23:49,279	9nineM	INFO	[2.103278160095215, 2.5340070724487305, 4.954019546508789, 36.43415832519531, 2.1033124923706055, 1.9096229076385498, 2000, 0.000199950003125]
2023-02-12 14:24:11,096	9nineM	INFO	Saving model and optimizer state at iteration 3 to ./logs\9nineM\G_2000.pth
2023-02-12 14:24:11,851	9nineM	INFO	Saving model and optimizer state at iteration 3 to ./logs\9nineM\D_2000.pth