Spaces:
Runtime error
Runtime error
File size: 243,033 Bytes
a8f737f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 |
2023-01-25 23:46:00,530 9nineM INFO {'train': {'log_interval': 200, 'eval_interval': 400, 'seed': 1234, 'epochs': 1000, 'learning_rate': 0.0002, 'betas': [0.8, 0.99], 'eps': 1e-09, 'batch_size': 24, 'fp16_run': True, 'lr_decay': 0.999875, 'segment_size': 8192, 'init_lr_ratio': 1, 'warmup_epochs': 0, 'c_mel': 45, 'c_kl': 1.0}, 'data': {'training_files': 'filelists/9nine_multi/filelists/MultiNoHaru_train.txt.cleaned', 'validation_files': 'filelists/9nine_multi/filelists/MultiNoHaru_valid.txt.cleaned', 'text_cleaners': ['japanese_cleaners2'], 'max_wav_value': 32768.0, 'sampling_rate': 22050, 'filter_length': 1024, 'hop_length': 256, 'win_length': 1024, 'n_mel_channels': 80, 'mel_fmin': 0.0, 'mel_fmax': None, 'add_blank': True, 'n_speakers': 5, 'cleaned_text': True}, 'model': {'inter_channels': 192, 'hidden_channels': 192, 'filter_channels': 768, 'n_heads': 2, 'n_layers': 6, 'kernel_size': 3, 'p_dropout': 0.1, 'resblock': '1', 'resblock_kernel_sizes': [3, 7, 11], 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'upsample_rates': [8, 8, 2, 2], 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [16, 16, 4, 4], 'n_layers_q': 3, 'use_spectral_norm': False, 'gin_channels': 256}, 'model_dir': './logs\\9nineM', 'ckptG': None, 'ckptD': None}
2023-01-25 23:46:38,282 9nineM INFO Train Epoch: 1 [0%]
2023-01-25 23:46:38,282 9nineM INFO [6.073990345001221, 6.072503566741943, 0.30118170380592346, 101.45647430419922, 1.7897791862487793, 198.48548889160156, 0, 0.0002]
2023-01-25 23:47:05,692 9nineM INFO Saving model and optimizer state at iteration 1 to ./logs\9nineM\G_0.pth
2023-01-25 23:47:05,958 9nineM INFO Saving model and optimizer state at iteration 1 to ./logs\9nineM\D_0.pth
2023-01-25 23:49:33,816 9nineM INFO {'train': {'log_interval': 200, 'eval_interval': 400, 'seed': 1234, 'epochs': 1000, 'learning_rate': 0.0002, 'betas': [0.8, 0.99], 'eps': 1e-09, 'batch_size': 24, 'fp16_run': False, 'lr_decay': 0.999875, 'segment_size': 8192, 'init_lr_ratio': 1, 'warmup_epochs': 0, 'c_mel': 45, 'c_kl': 1.0}, 'data': {'training_files': 'filelists/9nine_multi/filelists/MultiNoHaru_train.txt.cleaned', 'validation_files': 'filelists/9nine_multi/filelists/MultiNoHaru_valid.txt.cleaned', 'text_cleaners': ['japanese_cleaners2'], 'max_wav_value': 32768.0, 'sampling_rate': 22050, 'filter_length': 1024, 'hop_length': 256, 'win_length': 1024, 'n_mel_channels': 80, 'mel_fmin': 0.0, 'mel_fmax': None, 'add_blank': True, 'n_speakers': 5, 'cleaned_text': True}, 'model': {'inter_channels': 192, 'hidden_channels': 192, 'filter_channels': 768, 'n_heads': 2, 'n_layers': 6, 'kernel_size': 3, 'p_dropout': 0.1, 'resblock': '1', 'resblock_kernel_sizes': [3, 7, 11], 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'upsample_rates': [8, 8, 2, 2], 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [16, 16, 4, 4], 'n_layers_q': 3, 'use_spectral_norm': False, 'gin_channels': 256}, 'model_dir': './logs\\9nineM', 'ckptG': None, 'ckptD': None}
2023-01-25 23:49:37,570 9nineM INFO Loaded checkpoint './logs\9nineM\G_0.pth' (iteration 1)
2023-01-25 23:49:37,678 9nineM INFO Loaded checkpoint './logs\9nineM\D_0.pth' (iteration 1)
2023-01-25 23:50:10,424 9nineM INFO Train Epoch: 1 [0%]
2023-01-25 23:50:10,425 9nineM INFO [6.073970317840576, 4.677792549133301, 0.30806946754455566, 101.44989776611328, 1.7897722721099854, 198.4989013671875, 0, 0.0002]
2023-01-25 23:50:36,468 9nineM INFO Saving model and optimizer state at iteration 1 to ./logs\9nineM\G_0.pth
2023-01-25 23:50:37,251 9nineM INFO Saving model and optimizer state at iteration 1 to ./logs\9nineM\D_0.pth
2023-01-25 23:54:21,335 9nineM INFO Train Epoch: 1 [35%]
2023-01-25 23:54:21,335 9nineM INFO [2.0056729316711426, 2.2880539894104004, 5.171030044555664, 47.03142547607422, 1.995613932609558, 1.627901554107666, 200, 0.0002]
2023-01-25 23:59:20,162 9nineM INFO Train Epoch: 1 [70%]
2023-01-25 23:59:20,163 9nineM INFO [2.313659191131592, 2.3724217414855957, 3.7704148292541504, 40.99565887451172, 2.0197911262512207, 1.2937748432159424, 400, 0.0002]
2023-01-25 23:59:45,658 9nineM INFO Saving model and optimizer state at iteration 1 to ./logs\9nineM\G_400.pth
2023-01-25 23:59:46,341 9nineM INFO Saving model and optimizer state at iteration 1 to ./logs\9nineM\D_400.pth
2023-01-26 00:02:43,047 9nineM INFO ====> Epoch: 1
2023-01-26 00:03:37,133 9nineM INFO Train Epoch: 2 [5%]
2023-01-26 00:03:37,133 9nineM INFO [2.34749436378479, 2.807877779006958, 3.85154390335083, 36.201969146728516, 2.026376724243164, 1.5017982721328735, 600, 0.000199975]
2023-01-26 00:06:59,932 9nineM INFO Train Epoch: 2 [40%]
2023-01-26 00:06:59,933 9nineM INFO [2.2677979469299316, 2.7484307289123535, 3.9582455158233643, 32.791133880615234, 2.033611536026001, 1.4443621635437012, 800, 0.000199975]
2023-01-26 00:07:25,282 9nineM INFO Saving model and optimizer state at iteration 2 to ./logs\9nineM\G_800.pth
2023-01-26 00:07:25,953 9nineM INFO Saving model and optimizer state at iteration 2 to ./logs\9nineM\D_800.pth
2023-01-26 00:10:47,662 9nineM INFO Train Epoch: 2 [75%]
2023-01-26 00:10:47,663 9nineM INFO [2.4101669788360596, 1.9714564085006714, 3.4384775161743164, 30.411867141723633, 2.0720434188842773, 1.4144717454910278, 1000, 0.000199975]
2023-01-26 00:13:13,823 9nineM INFO ====> Epoch: 2
2023-01-26 00:14:38,413 9nineM INFO Train Epoch: 3 [11%]
2023-01-26 00:14:38,413 9nineM INFO [2.357465982437134, 2.5078492164611816, 3.657393455505371, 34.19534683227539, 1.9945192337036133, 1.623528003692627, 1200, 0.000199950003125]
2023-01-26 00:15:03,696 9nineM INFO Saving model and optimizer state at iteration 3 to ./logs\9nineM\G_1200.pth
2023-01-26 00:15:04,370 9nineM INFO Saving model and optimizer state at iteration 3 to ./logs\9nineM\D_1200.pth
2023-01-26 00:18:25,883 9nineM INFO Train Epoch: 3 [46%]
2023-01-26 00:19:21,494 9nineM INFO [2.4258036613464355, 2.256639242172241, 3.5157554149627686, 33.91616439819336, 2.2258315086364746, 1.2393535375595093, 1400, 0.000199950003125]
2023-01-26 00:19:41,710 9nineM INFO {'train': {'log_interval': 200, 'eval_interval': 400, 'seed': 1234, 'epochs': 1000, 'learning_rate': 0.0002, 'betas': [0.8, 0.99], 'eps': 1e-09, 'batch_size': 24, 'fp16_run': False, 'lr_decay': 0.999875, 'segment_size': 8192, 'init_lr_ratio': 1, 'warmup_epochs': 0, 'c_mel': 45, 'c_kl': 1.0}, 'data': {'training_files': 'filelists/9nine_multi/filelists/MultiNoHaru_train.txt.cleaned', 'validation_files': 'filelists/9nine_multi/filelists/MultiNoHaru_valid.txt.cleaned', 'text_cleaners': ['japanese_cleaners2'], 'max_wav_value': 32768.0, 'sampling_rate': 22050, 'filter_length': 1024, 'hop_length': 256, 'win_length': 1024, 'n_mel_channels': 80, 'mel_fmin': 0.0, 'mel_fmax': None, 'add_blank': True, 'n_speakers': 5, 'cleaned_text': True}, 'model': {'inter_channels': 192, 'hidden_channels': 192, 'filter_channels': 768, 'n_heads': 2, 'n_layers': 6, 'kernel_size': 3, 'p_dropout': 0.1, 'resblock': '1', 'resblock_kernel_sizes': [3, 7, 11], 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'upsample_rates': [8, 8, 2, 2], 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [16, 16, 4, 4], 'n_layers_q': 3, 'use_spectral_norm': False, 'gin_channels': 256}, 'model_dir': './logs\\9nineM', 'ckptG': None, 'ckptD': None}
2023-01-26 00:19:45,443 9nineM INFO Loaded checkpoint './logs\9nineM\G_1200.pth' (iteration 3)
2023-01-26 00:19:45,808 9nineM INFO Loaded checkpoint './logs\9nineM\D_1200.pth' (iteration 3)
2023-01-26 00:21:26,746 9nineM INFO Train Epoch: 3 [11%]
2023-01-26 00:21:26,747 9nineM INFO [2.3221030235290527, 2.3704800605773926, 3.8071811199188232, 34.25653076171875, 2.0056378841400146, 1.6272631883621216, 1200, 0.00019992500937460937]
2023-01-26 00:21:52,686 9nineM INFO Saving model and optimizer state at iteration 3 to ./logs\9nineM\G_1200.pth
2023-01-26 00:21:53,394 9nineM INFO Saving model and optimizer state at iteration 3 to ./logs\9nineM\D_1200.pth
2023-01-26 00:25:29,110 9nineM INFO Train Epoch: 3 [46%]
2023-01-26 00:25:29,110 9nineM INFO [2.640127182006836, 2.103668689727783, 2.8140110969543457, 29.13928985595703, 2.2003533840179443, 1.3579349517822266, 1400, 0.00019992500937460937]
2023-01-26 00:28:54,650 9nineM INFO Train Epoch: 3 [81%]
2023-01-26 00:28:54,650 9nineM INFO [2.5244946479797363, 2.0201079845428467, 3.0896544456481934, 29.836584091186523, 1.9984928369522095, 1.1511805057525635, 1600, 0.00019992500937460937]
2023-01-26 00:29:20,048 9nineM INFO Saving model and optimizer state at iteration 3 to ./logs\9nineM\G_1600.pth
2023-01-26 00:29:20,796 9nineM INFO Saving model and optimizer state at iteration 3 to ./logs\9nineM\D_1600.pth
2023-01-26 00:31:15,326 9nineM INFO ====> Epoch: 3
2023-01-26 00:33:09,483 9nineM INFO Train Epoch: 4 [16%]
2023-01-26 00:33:09,484 9nineM INFO [2.3062384128570557, 2.1731457710266113, 3.7697784900665283, 30.14053726196289, 2.0052859783172607, 1.4556211233139038, 1800, 0.00019990001874843754]
2023-01-26 00:36:31,391 9nineM INFO Train Epoch: 4 [51%]
2023-01-26 00:36:31,391 9nineM INFO [2.538445472717285, 2.1030821800231934, 3.1004858016967773, 30.39350700378418, 1.9460492134094238, 1.4961357116699219, 2000, 0.00019990001874843754]
2023-01-26 00:36:57,126 9nineM INFO Saving model and optimizer state at iteration 4 to ./logs\9nineM\G_2000.pth
2023-01-26 00:36:57,789 9nineM INFO Saving model and optimizer state at iteration 4 to ./logs\9nineM\D_2000.pth
2023-01-26 00:40:22,230 9nineM INFO Train Epoch: 4 [86%]
2023-01-26 00:40:22,230 9nineM INFO [2.2768425941467285, 2.3642055988311768, 3.762643814086914, 29.680871963500977, 1.8728859424591064, 1.559889316558838, 2200, 0.00019990001874843754]
2023-01-26 00:41:41,845 9nineM INFO ====> Epoch: 4
2023-01-26 00:44:06,172 9nineM INFO Train Epoch: 5 [21%]
2023-01-26 00:44:06,173 9nineM INFO [2.34861159324646, 2.4874701499938965, 3.741352081298828, 30.817813873291016, 2.043848991394043, 1.1385068893432617, 2400, 0.00019987503124609398]
2023-01-26 00:44:31,651 9nineM INFO Saving model and optimizer state at iteration 5 to ./logs\9nineM\G_2400.pth
2023-01-26 00:44:32,309 9nineM INFO Saving model and optimizer state at iteration 5 to ./logs\9nineM\D_2400.pth
2023-01-26 00:47:52,710 9nineM INFO Train Epoch: 5 [56%]
2023-01-26 00:47:52,710 9nineM INFO [2.7938294410705566, 2.050962209701538, 2.652010679244995, 28.363901138305664, 2.0211844444274902, 1.408889651298523, 2600, 0.00019987503124609398]
2023-01-26 00:51:15,681 9nineM INFO Train Epoch: 5 [91%]
2023-01-26 00:51:15,681 9nineM INFO [2.497097969055176, 2.0679380893707275, 2.9265832901000977, 26.662799835205078, 1.8392996788024902, 1.1821995973587036, 2800, 0.00019987503124609398]
2023-01-26 00:51:41,418 9nineM INFO Saving model and optimizer state at iteration 5 to ./logs\9nineM\G_2800.pth
2023-01-26 00:51:42,076 9nineM INFO Saving model and optimizer state at iteration 5 to ./logs\9nineM\D_2800.pth
2023-01-26 00:52:32,791 9nineM INFO ====> Epoch: 5
2023-01-26 00:55:26,207 9nineM INFO Train Epoch: 6 [26%]
2023-01-26 00:55:26,208 9nineM INFO [2.600545644760132, 1.8324110507965088, 3.007281541824341, 27.99269676208496, 1.8528962135314941, 1.5542216300964355, 3000, 0.0001998500468671882]
2023-01-26 00:58:49,002 9nineM INFO Train Epoch: 6 [61%]
2023-01-26 00:58:49,002 9nineM INFO [2.5305962562561035, 2.0720105171203613, 2.8197600841522217, 26.332839965820312, 1.933664083480835, 1.6304469108581543, 3200, 0.0001998500468671882]
2023-01-26 00:59:14,960 9nineM INFO Saving model and optimizer state at iteration 6 to ./logs\9nineM\G_3200.pth
2023-01-26 00:59:15,627 9nineM INFO Saving model and optimizer state at iteration 6 to ./logs\9nineM\D_3200.pth
2023-01-26 01:02:37,221 9nineM INFO Train Epoch: 6 [96%]
2023-01-26 01:02:37,222 9nineM INFO [2.67600154876709, 2.077462911605835, 3.057732343673706, 27.05984878540039, 1.9372596740722656, 1.4464811086654663, 3400, 0.0001998500468671882]
2023-01-26 01:02:57,537 9nineM INFO ====> Epoch: 6
2023-01-26 01:06:21,797 9nineM INFO Train Epoch: 7 [32%]
2023-01-26 01:06:21,798 9nineM INFO [2.8754048347473145, 1.7571762800216675, 1.9291565418243408, 24.49405288696289, 1.978126049041748, 1.6392502784729004, 3600, 0.00019982506561132978]
2023-01-26 01:06:47,857 9nineM INFO Saving model and optimizer state at iteration 7 to ./logs\9nineM\G_3600.pth
2023-01-26 01:06:48,512 9nineM INFO Saving model and optimizer state at iteration 7 to ./logs\9nineM\D_3600.pth
2023-01-26 01:10:10,491 9nineM INFO Train Epoch: 7 [67%]
2023-01-26 01:10:10,492 9nineM INFO [2.846407413482666, 1.746802568435669, 2.026045560836792, 23.640016555786133, 1.9296040534973145, 1.5151889324188232, 3800, 0.00019982506561132978]
2023-01-26 01:13:20,916 9nineM INFO ====> Epoch: 7
2023-01-26 01:13:55,559 9nineM INFO Train Epoch: 8 [2%]
2023-01-26 01:13:55,560 9nineM INFO [2.677149772644043, 1.9254252910614014, 2.465095281600952, 22.880842208862305, 1.9207991361618042, 1.3455860614776611, 4000, 0.00019980008747812837]
2023-01-26 01:14:21,049 9nineM INFO Saving model and optimizer state at iteration 8 to ./logs\9nineM\G_4000.pth
2023-01-26 01:14:22,079 9nineM INFO Saving model and optimizer state at iteration 8 to ./logs\9nineM\D_4000.pth
2023-01-26 01:17:44,557 9nineM INFO Train Epoch: 8 [37%]
2023-01-26 01:17:44,558 9nineM INFO [2.6028459072113037, 1.8677709102630615, 2.768541097640991, 25.192880630493164, 1.8907232284545898, 1.4924492835998535, 4200, 0.00019980008747812837]
2023-01-26 01:21:04,611 9nineM INFO Train Epoch: 8 [72%]
2023-01-26 01:21:04,611 9nineM INFO [2.736124038696289, 1.8049640655517578, 2.620659112930298, 26.275257110595703, 2.048452138900757, 1.4815564155578613, 4400, 0.00019980008747812837]
2023-01-26 01:21:30,323 9nineM INFO Saving model and optimizer state at iteration 8 to ./logs\9nineM\G_4400.pth
2023-01-26 01:21:30,981 9nineM INFO Saving model and optimizer state at iteration 8 to ./logs\9nineM\D_4400.pth
2023-01-26 01:24:11,402 9nineM INFO ====> Epoch: 8
2023-01-26 01:25:16,374 9nineM INFO Train Epoch: 9 [7%]
2023-01-26 01:25:16,374 9nineM INFO [2.5049564838409424, 2.069748878479004, 3.278918981552124, 24.914398193359375, 1.8940491676330566, 1.5463682413101196, 4600, 0.0001997751124671936]
2023-01-26 01:28:37,874 9nineM INFO Train Epoch: 9 [42%]
2023-01-26 01:28:37,875 9nineM INFO [2.6231088638305664, 1.9032471179962158, 2.948408603668213, 26.60008430480957, 1.9691338539123535, 1.664552092552185, 4800, 0.0001997751124671936]
2023-01-26 01:29:03,509 9nineM INFO Saving model and optimizer state at iteration 9 to ./logs\9nineM\G_4800.pth
2023-01-26 01:29:04,253 9nineM INFO Saving model and optimizer state at iteration 9 to ./logs\9nineM\D_4800.pth
2023-01-26 01:32:24,537 9nineM INFO Train Epoch: 9 [77%]
2023-01-26 01:32:24,538 9nineM INFO [2.762094497680664, 1.8685764074325562, 2.75244140625, 23.52878189086914, 1.8895244598388672, 1.5115458965301514, 5000, 0.0001997751124671936]
2023-01-26 01:34:35,433 9nineM INFO ====> Epoch: 9
2023-01-26 01:36:10,253 9nineM INFO Train Epoch: 10 [12%]
2023-01-26 01:36:10,254 9nineM INFO [2.6434783935546875, 2.1471564769744873, 2.7777180671691895, 22.199459075927734, 1.8439451456069946, 1.3497384786605835, 5200, 0.00019975014057813518]
2023-01-26 01:36:36,113 9nineM INFO Saving model and optimizer state at iteration 10 to ./logs\9nineM\G_5200.pth
2023-01-26 01:36:37,151 9nineM INFO Saving model and optimizer state at iteration 10 to ./logs\9nineM\D_5200.pth
2023-01-26 01:39:58,308 9nineM INFO Train Epoch: 10 [47%]
2023-01-26 01:39:58,308 9nineM INFO [2.6279044151306152, 2.083256721496582, 3.124328851699829, 26.54741096496582, 1.807456374168396, 1.491945743560791, 5400, 0.00019975014057813518]
2023-01-26 01:43:20,472 9nineM INFO Train Epoch: 10 [82%]
2023-01-26 01:43:20,473 9nineM INFO [2.732877016067505, 2.007030725479126, 3.1029460430145264, 23.12151527404785, 1.792919397354126, 1.6385772228240967, 5600, 0.00019975014057813518]
2023-01-26 01:43:46,593 9nineM INFO Saving model and optimizer state at iteration 10 to ./logs\9nineM\G_5600.pth
2023-01-26 01:43:47,258 9nineM INFO Saving model and optimizer state at iteration 10 to ./logs\9nineM\D_5600.pth
2023-01-26 01:45:27,070 9nineM INFO ====> Epoch: 10
2023-01-26 01:47:32,232 9nineM INFO Train Epoch: 11 [18%]
2023-01-26 01:47:32,232 9nineM INFO [2.6612348556518555, 1.988817811012268, 3.1589221954345703, 25.66359519958496, 1.9967055320739746, 1.3854045867919922, 5800, 0.00019972517181056292]
2023-01-26 01:50:52,101 9nineM INFO Train Epoch: 11 [53%]
2023-01-26 01:50:52,101 9nineM INFO [2.4814376831054688, 2.278113842010498, 3.72249436378479, 27.97443389892578, 1.910007357597351, 1.6735199689865112, 6000, 0.00019972517181056292]
2023-01-26 01:51:18,095 9nineM INFO Saving model and optimizer state at iteration 11 to ./logs\9nineM\G_6000.pth
2023-01-26 01:51:18,748 9nineM INFO Saving model and optimizer state at iteration 11 to ./logs\9nineM\D_6000.pth
2023-01-26 01:54:41,547 9nineM INFO Train Epoch: 11 [88%]
2023-01-26 01:54:41,548 9nineM INFO [2.840207099914551, 1.8148894309997559, 2.635929584503174, 21.973249435424805, 1.9021368026733398, 1.4054532051086426, 6200, 0.00019972517181056292]
2023-01-26 01:55:52,153 9nineM INFO ====> Epoch: 11
2023-01-26 01:58:25,991 9nineM INFO Train Epoch: 12 [23%]
2023-01-26 01:58:25,992 9nineM INFO [2.571866035461426, 2.0023553371429443, 3.5940442085266113, 23.71394157409668, 1.854814052581787, 1.5348354578018188, 6400, 0.0001997002061640866]
2023-01-26 01:58:51,408 9nineM INFO Saving model and optimizer state at iteration 12 to ./logs\9nineM\G_6400.pth
2023-01-26 01:58:52,079 9nineM INFO Saving model and optimizer state at iteration 12 to ./logs\9nineM\D_6400.pth
2023-01-26 02:02:13,024 9nineM INFO Train Epoch: 12 [58%]
2023-01-26 02:02:13,024 9nineM INFO [2.714251756668091, 1.8494516611099243, 2.969529628753662, 23.68009376525879, 1.8685411214828491, 1.7101963758468628, 6600, 0.0001997002061640866]
2023-01-26 02:05:34,069 9nineM INFO Train Epoch: 12 [93%]
2023-01-26 02:05:34,069 9nineM INFO [2.633039951324463, 2.013820171356201, 3.084203004837036, 24.739593505859375, 1.8181004524230957, 1.4082469940185547, 6800, 0.0001997002061640866]
2023-01-26 02:05:59,782 9nineM INFO Saving model and optimizer state at iteration 12 to ./logs\9nineM\G_6800.pth
2023-01-26 02:06:00,459 9nineM INFO Saving model and optimizer state at iteration 12 to ./logs\9nineM\D_6800.pth
2023-01-26 02:06:41,305 9nineM INFO ====> Epoch: 12
2023-01-26 02:09:44,501 9nineM INFO Train Epoch: 13 [28%]
2023-01-26 02:09:44,502 9nineM INFO [2.659205436706543, 2.0233755111694336, 3.2026572227478027, 26.249746322631836, 1.8654255867004395, 1.6150071620941162, 7000, 0.00019967524363831608]
2023-01-26 09:02:48,598 9nineM INFO {'train': {'log_interval': 200, 'eval_interval': 400, 'seed': 1234, 'epochs': 1000, 'learning_rate': 0.0002, 'betas': [0.8, 0.99], 'eps': 1e-09, 'batch_size': 16, 'fp16_run': False, 'lr_decay': 0.999875, 'segment_size': 8192, 'init_lr_ratio': 1, 'warmup_epochs': 0, 'c_mel': 45, 'c_kl': 1.0}, 'data': {'training_files': 'filelists/9nine_multi/filelists/MultiNoHaru_train.txt.cleaned', 'validation_files': 'filelists/9nine_multi/filelists/MultiNoHaru_valid.txt.cleaned', 'text_cleaners': ['japanese_cleaners2'], 'max_wav_value': 32768.0, 'sampling_rate': 22050, 'filter_length': 1024, 'hop_length': 256, 'win_length': 1024, 'n_mel_channels': 80, 'mel_fmin': 0.0, 'mel_fmax': None, 'add_blank': True, 'n_speakers': 5, 'cleaned_text': True}, 'model': {'inter_channels': 192, 'hidden_channels': 192, 'filter_channels': 768, 'n_heads': 2, 'n_layers': 6, 'kernel_size': 3, 'p_dropout': 0.1, 'resblock': '1', 'resblock_kernel_sizes': [3, 7, 11], 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'upsample_rates': [8, 8, 2, 2], 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [16, 16, 4, 4], 'n_layers_q': 3, 'use_spectral_norm': False, 'gin_channels': 256}, 'model_dir': './logs\\9nineM', 'ckptG': None, 'ckptD': None}
2023-01-26 09:02:52,820 9nineM INFO Loaded checkpoint './logs\9nineM\G_6800.pth' (iteration 12)
2023-01-26 09:02:53,280 9nineM INFO Loaded checkpoint './logs\9nineM\D_6800.pth' (iteration 12)
2023-01-26 09:03:48,148 9nineM INFO Train Epoch: 12 [2%]
2023-01-26 09:03:48,148 9nineM INFO [2.67508602142334, 2.0451996326446533, 3.7132022380828857, 26.097049713134766, 1.8588463068008423, 1.780286431312561, 9400, 0.00019967524363831608]
2023-01-26 09:07:02,008 9nineM INFO Train Epoch: 12 [25%]
2023-01-26 09:07:02,009 9nineM INFO [2.731718063354492, 2.0827178955078125, 2.848446846008301, 25.81690216064453, 1.7822844982147217, 1.586802363395691, 9600, 0.00019967524363831608]
2023-01-26 09:07:32,154 9nineM INFO Saving model and optimizer state at iteration 12 to ./logs\9nineM\G_9600.pth
2023-01-26 09:07:33,015 9nineM INFO Saving model and optimizer state at iteration 12 to ./logs\9nineM\D_9600.pth
2023-01-26 09:10:21,101 9nineM INFO Train Epoch: 12 [49%]
2023-01-26 09:10:21,101 9nineM INFO [2.7443857192993164, 2.0565314292907715, 2.6688475608825684, 23.358121871948242, 1.7311820983886719, 1.3396525382995605, 9800, 0.00019967524363831608]
2023-01-26 09:13:06,102 9nineM INFO Train Epoch: 12 [72%]
2023-01-26 09:13:06,102 9nineM INFO [2.5754849910736084, 2.032925605773926, 3.5489773750305176, 28.008331298828125, 1.9132494926452637, 1.494615912437439, 10000, 0.00019967524363831608]
2023-01-26 09:13:32,731 9nineM INFO Saving model and optimizer state at iteration 12 to ./logs\9nineM\G_10000.pth
2023-01-26 09:13:33,393 9nineM INFO Saving model and optimizer state at iteration 12 to ./logs\9nineM\D_10000.pth
2023-01-26 09:16:18,444 9nineM INFO Train Epoch: 12 [96%]
2023-01-26 09:16:18,445 9nineM INFO [3.0923495292663574, 2.1421830654144287, 2.986941337585449, 26.63436508178711, 2.0824522972106934, 1.6558291912078857, 10200, 0.00019967524363831608]
2023-01-26 09:16:47,388 9nineM INFO ====> Epoch: 12
2023-01-26 09:19:24,538 9nineM INFO Train Epoch: 13 [19%]
2023-01-26 09:19:24,538 9nineM INFO [2.610954999923706, 1.9253101348876953, 3.20231556892395, 23.34046173095703, 1.7719695568084717, 1.6583393812179565, 10400, 0.0001996502842328613]
2023-01-26 09:19:51,949 9nineM INFO Saving model and optimizer state at iteration 13 to ./logs\9nineM\G_10400.pth
2023-01-26 09:19:52,649 9nineM INFO Saving model and optimizer state at iteration 13 to ./logs\9nineM\D_10400.pth
2023-01-26 09:22:34,160 9nineM INFO Train Epoch: 13 [43%]
2023-01-26 09:22:34,161 9nineM INFO [2.7569684982299805, 1.9873456954956055, 2.755460500717163, 23.19409942626953, 1.8952136039733887, 1.5852245092391968, 10600, 0.0001996502842328613]
2023-01-26 09:25:16,266 9nineM INFO Train Epoch: 13 [66%]
2023-01-26 15:54:46,732 9nineM INFO [2.592890501022339, 1.9014997482299805, 3.476469039916992, 25.275184631347656, 1.8789172172546387, 1.4371107816696167, 10800, 0.0001996502842328613]
2023-01-26 15:55:05,473 9nineM INFO {'train': {'log_interval': 200, 'eval_interval': 400, 'seed': 1234, 'epochs': 1000, 'learning_rate': 0.0002, 'betas': [0.8, 0.99], 'eps': 1e-09, 'batch_size': 16, 'fp16_run': False, 'lr_decay': 0.999875, 'segment_size': 8192, 'init_lr_ratio': 1, 'warmup_epochs': 0, 'c_mel': 45, 'c_kl': 1.0}, 'data': {'training_files': 'filelists/9nine_multi/filelists/MultiNoHaru_train.txt.cleaned', 'validation_files': 'filelists/9nine_multi/filelists/MultiNoHaru_valid.txt.cleaned', 'text_cleaners': ['japanese_cleaners2'], 'max_wav_value': 32768.0, 'sampling_rate': 22050, 'filter_length': 1024, 'hop_length': 256, 'win_length': 1024, 'n_mel_channels': 80, 'mel_fmin': 0.0, 'mel_fmax': None, 'add_blank': True, 'n_speakers': 5, 'cleaned_text': True}, 'model': {'inter_channels': 192, 'hidden_channels': 192, 'filter_channels': 768, 'n_heads': 2, 'n_layers': 6, 'kernel_size': 3, 'p_dropout': 0.1, 'resblock': '1', 'resblock_kernel_sizes': [3, 7, 11], 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'upsample_rates': [8, 8, 2, 2], 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [16, 16, 4, 4], 'n_layers_q': 3, 'use_spectral_norm': False, 'gin_channels': 256}, 'model_dir': './logs\\9nineM', 'ckptG': None, 'ckptD': None}
2023-01-26 15:55:09,358 9nineM INFO Loaded checkpoint './logs\9nineM\G_10400.pth' (iteration 13)
2023-01-26 15:55:09,730 9nineM INFO Loaded checkpoint './logs\9nineM\D_10400.pth' (iteration 13)
2023-01-26 15:58:21,399 9nineM INFO Train Epoch: 13 [19%]
2023-01-26 15:58:21,399 9nineM INFO [2.716689109802246, 1.9423905611038208, 3.1998724937438965, 23.012908935546875, 1.7540184259414673, 1.386572003364563, 10400, 0.00019962532794733217]
2023-01-26 15:58:49,606 9nineM INFO Saving model and optimizer state at iteration 13 to ./logs\9nineM\G_10400.pth
2023-01-26 15:58:50,328 9nineM INFO Saving model and optimizer state at iteration 13 to ./logs\9nineM\D_10400.pth
2023-01-27 00:38:53,535 9nineM INFO {'train': {'log_interval': 200, 'eval_interval': 400, 'seed': 1234, 'epochs': 1000, 'learning_rate': 0.0002, 'betas': [0.8, 0.99], 'eps': 1e-09, 'batch_size': 16, 'fp16_run': False, 'lr_decay': 0.999875, 'segment_size': 8192, 'init_lr_ratio': 1, 'warmup_epochs': 0, 'c_mel': 45, 'c_kl': 1.0}, 'data': {'training_files': 'filelists/9nine_multi/filelists/MultiNoHaru_train.txt.cleaned', 'validation_files': 'filelists/9nine_multi/filelists/MultiNoHaru_valid.txt.cleaned', 'text_cleaners': ['japanese_cleaners2'], 'max_wav_value': 32768.0, 'sampling_rate': 22050, 'filter_length': 1024, 'hop_length': 256, 'win_length': 1024, 'n_mel_channels': 80, 'mel_fmin': 0.0, 'mel_fmax': None, 'add_blank': True, 'n_speakers': 5, 'cleaned_text': True}, 'model': {'inter_channels': 192, 'hidden_channels': 192, 'filter_channels': 768, 'n_heads': 2, 'n_layers': 6, 'kernel_size': 3, 'p_dropout': 0.1, 'resblock': '1', 'resblock_kernel_sizes': [3, 7, 11], 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'upsample_rates': [8, 8, 2, 2], 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [16, 16, 4, 4], 'n_layers_q': 3, 'use_spectral_norm': False, 'gin_channels': 256}, 'model_dir': './logs\\9nineM', 'ckptG': None, 'ckptD': None}
2023-01-27 00:39:02,315 9nineM INFO Loaded checkpoint './logs\9nineM\G_10400.pth' (iteration 13)
2023-01-27 00:39:02,742 9nineM INFO Loaded checkpoint './logs\9nineM\D_10400.pth' (iteration 13)
2023-01-27 00:42:11,285 9nineM INFO Train Epoch: 13 [19%]
2023-01-27 00:42:11,285 9nineM INFO [2.593064308166504, 2.0389575958251953, 3.3138771057128906, 22.423709869384766, 1.7547038793563843, 1.432450771331787, 10400, 0.00019960037478133875]
2023-01-27 00:42:32,259 9nineM INFO Saving model and optimizer state at iteration 13 to ./logs\9nineM\G_10400.pth
2023-01-27 00:42:33,008 9nineM INFO Saving model and optimizer state at iteration 13 to ./logs\9nineM\D_10400.pth
2023-01-27 00:46:13,827 9nineM INFO Train Epoch: 13 [43%]
2023-01-27 00:46:13,827 9nineM INFO [2.556051254272461, 1.9022951126098633, 3.661127805709839, 25.124727249145508, 1.8842947483062744, 1.5525946617126465, 10600, 0.00019960037478133875]
2023-01-27 00:49:07,975 9nineM INFO Train Epoch: 13 [66%]
2023-01-27 00:49:07,975 9nineM INFO [2.8230438232421875, 1.8189220428466797, 3.3968722820281982, 24.511898040771484, 1.8688939809799194, 1.4538723230361938, 10800, 0.00019960037478133875]
2023-01-27 00:49:28,686 9nineM INFO Saving model and optimizer state at iteration 13 to ./logs\9nineM\G_10800.pth
2023-01-27 00:49:29,421 9nineM INFO Saving model and optimizer state at iteration 13 to ./logs\9nineM\D_10800.pth
2023-01-27 00:52:19,115 9nineM INFO Train Epoch: 13 [90%]
2023-01-27 00:52:19,117 9nineM INFO [2.5895962715148926, 2.039095163345337, 3.4108002185821533, 24.823158264160156, 1.814432144165039, 1.4367151260375977, 11000, 0.00019960037478133875]
2023-01-27 00:53:33,975 9nineM INFO ====> Epoch: 13
2023-01-27 00:55:27,532 9nineM INFO Train Epoch: 14 [13%]
2023-01-27 00:55:27,532 9nineM INFO [2.579453945159912, 2.1276276111602783, 3.180767297744751, 23.461275100708008, 1.7200267314910889, 1.4411695003509521, 11200, 0.00019957542473449108]
2023-01-27 00:55:48,182 9nineM INFO Saving model and optimizer state at iteration 14 to ./logs\9nineM\G_11200.pth
2023-01-27 00:55:48,900 9nineM INFO Saving model and optimizer state at iteration 14 to ./logs\9nineM\D_11200.pth
2023-01-27 00:58:39,222 9nineM INFO Train Epoch: 14 [36%]
2023-01-27 00:58:39,223 9nineM INFO [2.481574535369873, 2.234732151031494, 4.649705410003662, 29.452627182006836, 1.8431586027145386, 1.7566641569137573, 11400, 0.00019957542473449108]
2023-01-27 01:01:28,593 9nineM INFO Train Epoch: 14 [60%]
2023-01-27 01:01:28,594 9nineM INFO [2.433722972869873, 1.9445536136627197, 4.080624580383301, 25.17411994934082, 1.9031004905700684, 1.701436161994934, 11600, 0.00019957542473449108]
2023-01-27 01:01:49,821 9nineM INFO Saving model and optimizer state at iteration 14 to ./logs\9nineM\G_11600.pth
2023-01-27 01:01:50,532 9nineM INFO Saving model and optimizer state at iteration 14 to ./logs\9nineM\D_11600.pth
2023-01-27 01:04:40,027 9nineM INFO Train Epoch: 14 [83%]
2023-01-27 01:04:40,027 9nineM INFO [2.8180198669433594, 1.7142263650894165, 2.1654834747314453, 21.86096954345703, 1.836047649383545, 1.513923168182373, 11800, 0.00019957542473449108]
2023-01-27 01:06:39,771 9nineM INFO ====> Epoch: 14
2023-01-27 01:07:50,087 9nineM INFO Train Epoch: 15 [7%]
2023-01-27 01:07:50,088 9nineM INFO [2.7611851692199707, 1.9578686952590942, 3.163517951965332, 23.736661911010742, 1.855008840560913, 1.37441086769104, 12000, 0.00019955047780639926]
2023-01-27 01:08:10,892 9nineM INFO Saving model and optimizer state at iteration 15 to ./logs\9nineM\G_12000.pth
2023-01-27 01:08:11,614 9nineM INFO Saving model and optimizer state at iteration 15 to ./logs\9nineM\D_12000.pth
2023-01-27 01:10:58,238 9nineM INFO Train Epoch: 15 [30%]
2023-01-27 01:10:58,238 9nineM INFO [2.6380977630615234, 2.1591074466705322, 3.333003044128418, 26.53448486328125, 1.8846534490585327, 1.4161484241485596, 12200, 0.00019955047780639926]
2023-01-27 01:13:48,357 9nineM INFO Train Epoch: 15 [54%]
2023-01-27 01:13:48,357 9nineM INFO [2.781557083129883, 1.881882905960083, 2.525613307952881, 23.762874603271484, 1.7821922302246094, 1.4436811208724976, 12400, 0.00019955047780639926]
2023-01-27 01:14:08,613 9nineM INFO Saving model and optimizer state at iteration 15 to ./logs\9nineM\G_12400.pth
2023-01-27 01:14:09,329 9nineM INFO Saving model and optimizer state at iteration 15 to ./logs\9nineM\D_12400.pth
2023-01-27 01:16:59,263 9nineM INFO Train Epoch: 15 [77%]
2023-01-27 01:16:59,264 9nineM INFO [2.6985788345336914, 2.0964505672454834, 3.055563449859619, 25.889053344726562, 1.8032093048095703, 1.5241085290908813, 12600, 0.00019955047780639926]
2023-01-27 01:19:43,427 9nineM INFO ====> Epoch: 15
2023-01-27 01:20:08,148 9nineM INFO Train Epoch: 16 [1%]
2023-01-27 01:20:08,149 9nineM INFO [2.829136610031128, 1.9012501239776611, 2.156665802001953, 18.423717498779297, 1.8231360912322998, 1.171872854232788, 12800, 0.00019952553399667344]
2023-01-27 01:20:28,566 9nineM INFO Saving model and optimizer state at iteration 16 to ./logs\9nineM\G_12800.pth
2023-01-27 01:20:29,380 9nineM INFO Saving model and optimizer state at iteration 16 to ./logs\9nineM\D_12800.pth
2023-01-27 01:23:18,991 9nineM INFO Train Epoch: 16 [24%]
2023-01-27 01:23:18,991 9nineM INFO [2.5594887733459473, 1.8920013904571533, 3.3290469646453857, 23.873504638671875, 1.8619343042373657, 1.33939528465271, 13000, 0.00019952553399667344]
2023-01-27 01:26:07,022 9nineM INFO Train Epoch: 16 [47%]
2023-01-27 01:26:07,022 9nineM INFO [2.687272787094116, 2.1016502380371094, 3.4579007625579834, 24.758956909179688, 2.1824357509613037, 1.4737794399261475, 13200, 0.00019952553399667344]
2023-01-27 01:26:27,949 9nineM INFO Saving model and optimizer state at iteration 16 to ./logs\9nineM\G_13200.pth
2023-01-27 01:26:28,659 9nineM INFO Saving model and optimizer state at iteration 16 to ./logs\9nineM\D_13200.pth
2023-01-27 01:29:17,992 9nineM INFO Train Epoch: 16 [71%]
2023-01-27 01:29:17,993 9nineM INFO [2.369150400161743, 2.2178428173065186, 4.281978130340576, 27.698043823242188, 1.7796082496643066, 1.4050066471099854, 13400, 0.00019952553399667344]
2023-01-27 01:32:06,129 9nineM INFO Train Epoch: 16 [94%]
2023-01-27 01:32:06,130 9nineM INFO [2.589958429336548, 1.8505977392196655, 4.508889675140381, 27.62240219116211, 1.8430498838424683, 1.6121509075164795, 13600, 0.00019952553399667344]
2023-01-27 01:32:27,115 9nineM INFO Saving model and optimizer state at iteration 16 to ./logs\9nineM\G_13600.pth
2023-01-27 01:32:27,776 9nineM INFO Saving model and optimizer state at iteration 16 to ./logs\9nineM\D_13600.pth
2023-01-27 01:33:09,471 9nineM INFO ====> Epoch: 16
2023-01-27 02:17:32,708 9nineM INFO Train Epoch: 17 [18%]
2023-01-27 02:17:32,709 9nineM INFO [2.5355350971221924, 2.052407741546631, 3.6694445610046387, 24.39693260192871, 1.6474822759628296, 1.6971988677978516, 13800, 0.00019950059330492385]
2023-01-27 02:20:34,347 9nineM INFO Train Epoch: 17 [41%]
2023-01-27 02:20:34,347 9nineM INFO [2.6254193782806396, 1.9815117120742798, 3.237941026687622, 25.04691505432129, 1.856569528579712, 1.5068683624267578, 14000, 0.00019950059330492385]
2023-01-27 02:20:57,626 9nineM INFO Saving model and optimizer state at iteration 17 to ./logs\9nineM\G_14000.pth
2023-01-27 02:20:58,314 9nineM INFO Saving model and optimizer state at iteration 17 to ./logs\9nineM\D_14000.pth
2023-01-27 02:23:47,432 9nineM INFO Train Epoch: 17 [65%]
2023-01-27 02:23:47,432 9nineM INFO [2.7365574836730957, 1.892822265625, 4.043918609619141, 28.595083236694336, 1.8436254262924194, 1.4542126655578613, 14200, 0.00019950059330492385]
2023-01-27 02:26:35,935 9nineM INFO Train Epoch: 17 [88%]
2023-01-27 02:26:35,936 9nineM INFO [2.5287258625030518, 2.2656726837158203, 4.5845842361450195, 26.422998428344727, 1.8147163391113281, 2.022395610809326, 14400, 0.00019950059330492385]
2023-01-27 02:26:57,398 9nineM INFO Saving model and optimizer state at iteration 17 to ./logs\9nineM\G_14400.pth
2023-01-27 02:26:58,079 9nineM INFO Saving model and optimizer state at iteration 17 to ./logs\9nineM\D_14400.pth
2023-01-27 02:28:22,913 9nineM INFO ====> Epoch: 17
2023-01-27 02:30:06,542 9nineM INFO Train Epoch: 18 [12%]
2023-01-27 02:30:06,542 9nineM INFO [2.778486967086792, 1.9738329648971558, 2.865037202835083, 21.840980529785156, 1.8540937900543213, 1.3941742181777954, 14600, 0.00019947565573076072]
2023-01-27 02:32:53,975 9nineM INFO Train Epoch: 18 [35%]
2023-01-27 02:32:53,976 9nineM INFO [2.7022876739501953, 2.006470203399658, 3.4777889251708984, 23.463714599609375, 1.8447226285934448, 1.5847468376159668, 14800, 0.00019947565573076072]
2023-01-27 02:33:17,026 9nineM INFO Saving model and optimizer state at iteration 18 to ./logs\9nineM\G_14800.pth
2023-01-27 02:33:17,823 9nineM INFO Saving model and optimizer state at iteration 18 to ./logs\9nineM\D_14800.pth
2023-01-27 02:36:05,752 9nineM INFO Train Epoch: 18 [58%]
2023-01-27 02:36:05,752 9nineM INFO [2.6429147720336914, 1.9132986068725586, 2.695805072784424, 21.64963722229004, 1.835808515548706, 1.7501988410949707, 15000, 0.00019947565573076072]
2023-01-27 02:38:53,179 9nineM INFO Train Epoch: 18 [82%]
2023-01-27 02:38:53,179 9nineM INFO [2.5898306369781494, 2.3537399768829346, 4.625082015991211, 26.387826919555664, 1.6278905868530273, 1.1732033491134644, 15200, 0.00019947565573076072]
2023-01-27 02:39:15,268 9nineM INFO Saving model and optimizer state at iteration 18 to ./logs\9nineM\G_15200.pth
2023-01-27 02:39:15,999 9nineM INFO Saving model and optimizer state at iteration 18 to ./logs\9nineM\D_15200.pth
2023-01-27 02:41:24,911 9nineM INFO ====> Epoch: 18
2023-01-27 02:42:24,025 9nineM INFO Train Epoch: 19 [5%]
2023-01-27 02:42:24,026 9nineM INFO [2.788545608520508, 1.7051345109939575, 2.6826417446136475, 22.653915405273438, 1.8110618591308594, 1.6172281503677368, 15400, 0.00019945072127379438]
2023-01-27 02:45:12,216 9nineM INFO Train Epoch: 19 [29%]
2023-01-27 02:45:12,217 9nineM INFO [2.7693731784820557, 2.0767621994018555, 3.6112165451049805, 25.01015281677246, 1.833752989768982, 1.9589978456497192, 15600, 0.00019945072127379438]
2023-01-27 02:45:34,167 9nineM INFO Saving model and optimizer state at iteration 19 to ./logs\9nineM\G_15600.pth
2023-01-27 02:45:34,961 9nineM INFO Saving model and optimizer state at iteration 19 to ./logs\9nineM\D_15600.pth
2023-01-27 02:48:22,774 9nineM INFO Train Epoch: 19 [52%]
2023-01-27 02:48:22,774 9nineM INFO [2.8319051265716553, 1.6597378253936768, 2.118863105773926, 18.201990127563477, 1.8336409330368042, 1.4559197425842285, 15800, 0.00019945072127379438]
2023-01-27 08:46:44,957 9nineM INFO Train Epoch: 19 [76%]
2023-01-27 08:46:44,958 9nineM INFO [2.675089120864868, 1.9621834754943848, 3.9128692150115967, 27.38287353515625, 1.9015834331512451, 1.762534737586975, 16000, 0.00019945072127379438]
2023-01-27 08:47:07,560 9nineM INFO Saving model and optimizer state at iteration 19 to ./logs\9nineM\G_16000.pth
2023-01-27 08:47:08,457 9nineM INFO Saving model and optimizer state at iteration 19 to ./logs\9nineM\D_16000.pth
2023-01-27 08:49:57,926 9nineM INFO Train Epoch: 19 [99%]
2023-01-27 08:49:57,926 9nineM INFO [2.556715965270996, 2.1266891956329346, 3.8266289234161377, 22.89759635925293, 1.8226630687713623, 1.8882153034210205, 16200, 0.00019945072127379438]
2023-01-27 08:50:04,038 9nineM INFO ====> Epoch: 19
2023-01-27 08:53:13,237 9nineM INFO Train Epoch: 20 [23%]
2023-01-27 08:53:13,238 9nineM INFO [2.628126621246338, 2.0548593997955322, 3.6064229011535645, 23.717012405395508, 1.8935389518737793, 1.7230987548828125, 16400, 0.00019942578993363514]
2023-01-27 08:53:35,923 9nineM INFO Saving model and optimizer state at iteration 20 to ./logs\9nineM\G_16400.pth
2023-01-27 08:53:36,716 9nineM INFO Saving model and optimizer state at iteration 20 to ./logs\9nineM\D_16400.pth
2023-01-27 08:56:28,080 9nineM INFO Train Epoch: 20 [46%]
2023-01-27 08:56:28,081 9nineM INFO [2.8109192848205566, 1.8798633813858032, 2.577960729598999, 22.258501052856445, 1.7860854864120483, 1.5884227752685547, 16600, 0.00019942578993363514]
2023-01-27 08:59:17,974 9nineM INFO Train Epoch: 20 [70%]
2023-01-27 08:59:17,975 9nineM INFO [2.5190656185150146, 2.161292552947998, 4.299125671386719, 24.388322830200195, 1.8102023601531982, 1.8811415433883667, 16800, 0.00019942578993363514]
2023-01-27 08:59:41,933 9nineM INFO Saving model and optimizer state at iteration 20 to ./logs\9nineM\G_16800.pth
2023-01-27 08:59:42,645 9nineM INFO Saving model and optimizer state at iteration 20 to ./logs\9nineM\D_16800.pth
2023-01-27 09:02:31,134 9nineM INFO Train Epoch: 20 [93%]
2023-01-27 09:02:31,134 9nineM INFO [2.8164849281311035, 1.896257996559143, 2.8522329330444336, 21.2325496673584, 1.7639973163604736, 1.490799903869629, 17000, 0.00019942578993363514]
2023-01-27 09:03:22,220 9nineM INFO ====> Epoch: 20
2023-01-27 09:05:39,499 9nineM INFO Train Epoch: 21 [16%]
2023-01-27 09:05:39,499 9nineM INFO [2.772402286529541, 1.900153398513794, 3.176760196685791, 24.0812931060791, 1.7919937372207642, 2.015469789505005, 17200, 0.00019940086170989343]
2023-01-27 09:06:03,219 9nineM INFO Saving model and optimizer state at iteration 21 to ./logs\9nineM\G_17200.pth
2023-01-27 09:06:03,932 9nineM INFO Saving model and optimizer state at iteration 21 to ./logs\9nineM\D_17200.pth
2023-01-27 09:08:54,501 9nineM INFO Train Epoch: 21 [40%]
2023-01-27 09:08:54,501 9nineM INFO [2.5729994773864746, 2.1857287883758545, 4.042057991027832, 25.70033073425293, 1.777273416519165, 1.5419124364852905, 17400, 0.00019940086170989343]
2023-01-27 09:11:42,668 9nineM INFO Train Epoch: 21 [63%]
2023-01-27 09:11:42,669 9nineM INFO [2.6897244453430176, 1.9821608066558838, 3.606863021850586, 24.428430557250977, 1.7553237676620483, 1.764305830001831, 17600, 0.00019940086170989343]
2023-01-27 09:12:05,022 9nineM INFO Saving model and optimizer state at iteration 21 to ./logs\9nineM\G_17600.pth
2023-01-27 09:12:05,752 9nineM INFO Saving model and optimizer state at iteration 21 to ./logs\9nineM\D_17600.pth
2023-01-27 09:14:54,081 9nineM INFO Train Epoch: 21 [87%]
2023-01-27 09:14:54,081 9nineM INFO [2.6521155834198, 2.0298845767974854, 3.739675283432007, 22.376190185546875, 1.7662222385406494, 1.4541441202163696, 17800, 0.00019940086170989343]
2023-01-27 09:16:29,852 9nineM INFO ====> Epoch: 21
2023-01-27 09:18:03,846 9nineM INFO Train Epoch: 22 [10%]
2023-01-27 09:18:03,847 9nineM INFO [2.406970262527466, 2.1758666038513184, 5.130042552947998, 26.4575138092041, 1.676621437072754, 1.8340210914611816, 18000, 0.0001993759366021797]
2023-01-27 09:18:25,337 9nineM INFO Saving model and optimizer state at iteration 22 to ./logs\9nineM\G_18000.pth
2023-01-27 09:18:26,045 9nineM INFO Saving model and optimizer state at iteration 22 to ./logs\9nineM\D_18000.pth
2023-01-27 09:21:17,570 9nineM INFO Train Epoch: 22 [34%]
2023-01-27 09:21:17,571 9nineM INFO [2.5022988319396973, 2.1709604263305664, 3.877980947494507, 22.339065551757812, 1.8137295246124268, 1.437728762626648, 18200, 0.0001993759366021797]
2023-01-27 09:24:04,864 9nineM INFO Train Epoch: 22 [57%]
2023-01-27 09:24:04,865 9nineM INFO [2.3194479942321777, 2.346053123474121, 5.446766376495361, 26.25181007385254, 1.7403613328933716, 1.8677756786346436, 18400, 0.0001993759366021797]
2023-01-27 09:24:26,720 9nineM INFO Saving model and optimizer state at iteration 22 to ./logs\9nineM\G_18400.pth
2023-01-27 09:24:27,402 9nineM INFO Saving model and optimizer state at iteration 22 to ./logs\9nineM\D_18400.pth
2023-01-27 09:27:16,868 9nineM INFO Train Epoch: 22 [81%]
2023-01-27 09:27:16,868 9nineM INFO [2.452756881713867, 2.172793388366699, 4.119320869445801, 23.355058670043945, 1.8487279415130615, 1.761566162109375, 18600, 0.0001993759366021797]
2023-01-27 09:29:35,014 9nineM INFO ====> Epoch: 22
2023-01-27 09:30:23,489 9nineM INFO Train Epoch: 23 [4%]
2023-01-27 09:30:23,489 9nineM INFO [2.792853832244873, 1.8062174320220947, 3.4824717044830322, 23.77733039855957, 1.964911699295044, 1.4758468866348267, 18800, 0.00019935101461010442]
2023-01-27 09:30:44,870 9nineM INFO Saving model and optimizer state at iteration 23 to ./logs\9nineM\G_18800.pth
2023-01-27 09:30:45,742 9nineM INFO Saving model and optimizer state at iteration 23 to ./logs\9nineM\D_18800.pth
2023-01-27 09:33:33,331 9nineM INFO Train Epoch: 23 [27%]
2023-01-27 09:33:33,332 9nineM INFO [2.721318244934082, 1.8487977981567383, 2.9894800186157227, 22.064241409301758, 1.7476164102554321, 1.894697904586792, 19000, 0.00019935101461010442]
2023-01-27 09:36:22,533 9nineM INFO Train Epoch: 23 [51%]
2023-01-27 09:36:22,534 9nineM INFO [2.6044092178344727, 2.000493288040161, 3.9952263832092285, 24.704246520996094, 1.8112146854400635, 1.7995251417160034, 19200, 0.00019935101461010442]
2023-01-27 09:36:43,078 9nineM INFO Saving model and optimizer state at iteration 23 to ./logs\9nineM\G_19200.pth
2023-01-27 09:36:43,770 9nineM INFO Saving model and optimizer state at iteration 23 to ./logs\9nineM\D_19200.pth
2023-01-27 09:39:35,010 9nineM INFO Train Epoch: 23 [74%]
2023-01-27 09:39:35,010 9nineM INFO [2.6385550498962402, 2.076610803604126, 3.4242939949035645, 17.827404022216797, 1.7784342765808105, 1.388757348060608, 19400, 0.00019935101461010442]
2023-01-27 09:42:22,759 9nineM INFO Train Epoch: 23 [98%]
2023-01-27 09:42:22,759 9nineM INFO [2.553217887878418, 2.038116216659546, 4.58839750289917, 25.605993270874023, 1.7224760055541992, 1.8490962982177734, 19600, 0.00019935101461010442]
2023-01-27 09:42:44,576 9nineM INFO Saving model and optimizer state at iteration 23 to ./logs\9nineM\G_19600.pth
2023-01-27 09:42:45,389 9nineM INFO Saving model and optimizer state at iteration 23 to ./logs\9nineM\D_19600.pth
2023-01-27 09:43:01,903 9nineM INFO ====> Epoch: 23
2023-01-27 09:45:49,362 9nineM INFO Train Epoch: 24 [21%]
2023-01-27 09:45:49,362 9nineM INFO [2.6483659744262695, 2.3957860469818115, 4.525054454803467, 27.254854202270508, 1.6894183158874512, 1.9978209733963013, 19800, 0.00019932609573327815]
2023-01-27 09:48:37,543 9nineM INFO Train Epoch: 24 [45%]
2023-01-27 09:48:37,543 9nineM INFO [2.5882065296173096, 1.9280962944030762, 4.218741416931152, 23.399566650390625, 1.7521426677703857, 1.6448408365249634, 20000, 0.00019932609573327815]
2023-01-27 09:48:58,253 9nineM INFO Saving model and optimizer state at iteration 24 to ./logs\9nineM\G_20000.pth
2023-01-27 09:48:58,918 9nineM INFO Saving model and optimizer state at iteration 24 to ./logs\9nineM\D_20000.pth
2023-01-30 13:59:29,423 9nineM INFO {'train': {'log_interval': 200, 'eval_interval': 400, 'seed': 1234, 'epochs': 1000, 'learning_rate': 0.0002, 'betas': [0.8, 0.99], 'eps': 1e-09, 'batch_size': 16, 'fp16_run': False, 'lr_decay': 0.999875, 'segment_size': 8192, 'init_lr_ratio': 1, 'warmup_epochs': 0, 'c_mel': 45, 'c_kl': 1.0}, 'data': {'training_files': 'filelists/9nine_multi/filelists/MultiNoHaru_train.txt.cleaned', 'validation_files': 'filelists/9nine_multi/filelists/MultiNoHaru_valid.txt.cleaned', 'text_cleaners': ['japanese_cleaners2'], 'max_wav_value': 32768.0, 'sampling_rate': 22050, 'filter_length': 1024, 'hop_length': 256, 'win_length': 1024, 'n_mel_channels': 80, 'mel_fmin': 0.0, 'mel_fmax': None, 'add_blank': True, 'n_speakers': 5, 'cleaned_text': True}, 'model': {'inter_channels': 192, 'hidden_channels': 192, 'filter_channels': 768, 'n_heads': 2, 'n_layers': 6, 'kernel_size': 3, 'p_dropout': 0.1, 'resblock': '1', 'resblock_kernel_sizes': [3, 7, 11], 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'upsample_rates': [8, 8, 2, 2], 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [16, 16, 4, 4], 'n_layers_q': 3, 'use_spectral_norm': False, 'gin_channels': 256}, 'model_dir': './logs\\9nineM', 'ckptG': None, 'ckptD': None}
2023-01-30 13:59:38,603 9nineM INFO Loaded checkpoint './logs\9nineM\G_20000.pth' (iteration 24)
2023-01-30 13:59:39,032 9nineM INFO Loaded checkpoint './logs\9nineM\D_20000.pth' (iteration 24)
2023-01-30 14:03:00,845 9nineM INFO Train Epoch: 24 [21%]
2023-01-30 14:03:00,846 9nineM INFO [2.4233226776123047, 2.264484405517578, 5.42818546295166, 26.408262252807617, 1.6991338729858398, 1.9326978921890259, 19800, 0.0001993011799713115]
2023-01-30 14:05:55,926 9nineM INFO Train Epoch: 24 [45%]
2023-01-30 14:05:55,926 9nineM INFO [2.7016305923461914, 2.134594678878784, 3.7914786338806152, 24.01327896118164, 1.7582862377166748, 1.6192069053649902, 20000, 0.0001993011799713115]
2023-01-30 14:06:17,885 9nineM INFO Saving model and optimizer state at iteration 24 to ./logs\9nineM\G_20000.pth
2023-01-30 14:06:18,616 9nineM INFO Saving model and optimizer state at iteration 24 to ./logs\9nineM\D_20000.pth
2023-01-30 14:09:10,456 9nineM INFO Train Epoch: 24 [68%]
2023-01-30 14:09:10,457 9nineM INFO [2.496549606323242, 2.2131459712982178, 4.638711929321289, 24.81015968322754, 1.9151177406311035, 1.8024846315383911, 20200, 0.0001993011799713115]
2023-01-30 14:11:55,194 9nineM INFO Train Epoch: 24 [92%]
2023-01-30 14:11:55,195 9nineM INFO [2.6104557514190674, 2.0642175674438477, 3.8007540702819824, 22.306468963623047, 1.720705270767212, 1.5101583003997803, 20400, 0.0001993011799713115]
2023-01-30 14:12:15,118 9nineM INFO Saving model and optimizer state at iteration 24 to ./logs\9nineM\G_20400.pth
2023-01-30 14:12:15,871 9nineM INFO Saving model and optimizer state at iteration 24 to ./logs\9nineM\D_20400.pth
2023-01-30 14:13:16,359 9nineM INFO ====> Epoch: 24
2023-01-30 14:15:21,547 9nineM INFO Train Epoch: 25 [15%]
2023-01-30 14:15:21,548 9nineM INFO [2.5959115028381348, 2.238276481628418, 5.503964424133301, 27.154827117919922, 2.0218310356140137, 1.794956922531128, 20600, 0.00019927626732381507]
2023-01-30 14:18:07,501 9nineM INFO Train Epoch: 25 [38%]
2023-01-30 14:18:07,502 9nineM INFO [2.6357550621032715, 2.1467175483703613, 3.890899658203125, 20.90275764465332, 1.7875596284866333, 1.3034027814865112, 20800, 0.00019927626732381507]
2023-01-30 14:18:27,806 9nineM INFO Saving model and optimizer state at iteration 25 to ./logs\9nineM\G_20800.pth
2023-01-30 14:18:28,838 9nineM INFO Saving model and optimizer state at iteration 25 to ./logs\9nineM\D_20800.pth
2023-01-30 14:21:14,504 9nineM INFO Train Epoch: 25 [62%]
2023-01-30 14:21:14,504 9nineM INFO [2.5597102642059326, 1.9738388061523438, 4.298656940460205, 26.072538375854492, 1.8264048099517822, 1.645263671875, 21000, 0.00019927626732381507]
2023-01-30 14:23:56,732 9nineM INFO Train Epoch: 25 [85%]
2023-01-30 14:23:56,733 9nineM INFO [2.357044219970703, 2.2680459022521973, 5.406231880187988, 26.98268699645996, 1.8424121141433716, 1.744455337524414, 21200, 0.00019927626732381507]
2023-01-30 14:24:16,887 9nineM INFO Saving model and optimizer state at iteration 25 to ./logs\9nineM\G_21200.pth
2023-01-30 14:24:17,524 9nineM INFO Saving model and optimizer state at iteration 25 to ./logs\9nineM\D_21200.pth
2023-01-30 14:26:00,682 9nineM INFO ====> Epoch: 25
2023-01-30 14:27:20,457 9nineM INFO Train Epoch: 26 [9%]
2023-01-30 14:27:20,457 9nineM INFO [2.513702392578125, 2.582909107208252, 5.313809394836426, 26.997928619384766, 1.891054630279541, 1.5602864027023315, 21400, 0.00019925135779039958]
2023-01-30 18:10:59,516 9nineM INFO Train Epoch: 26 [32%]
2023-01-30 18:10:59,517 9nineM INFO [2.7052407264709473, 1.8598670959472656, 3.4029574394226074, 23.73880958557129, 1.822087287902832, 1.5161125659942627, 21600, 0.00019925135779039958]
2023-01-30 18:11:20,473 9nineM INFO Saving model and optimizer state at iteration 26 to ./logs\9nineM\G_21600.pth
2023-01-30 18:11:21,309 9nineM INFO Saving model and optimizer state at iteration 26 to ./logs\9nineM\D_21600.pth
2023-01-30 18:14:08,306 9nineM INFO Train Epoch: 26 [56%]
2023-01-30 18:14:08,306 9nineM INFO [2.6186649799346924, 2.2027549743652344, 4.938816547393799, 26.00452423095703, 1.8225845098495483, 1.6558605432510376, 21800, 0.00019925135779039958]
2023-01-30 18:16:57,734 9nineM INFO Train Epoch: 26 [79%]
2023-01-30 18:16:57,735 9nineM INFO [2.551978588104248, 2.255690336227417, 4.471135139465332, 23.771936416625977, 1.763396143913269, 2.0592684745788574, 22000, 0.00019925135779039958]
2023-01-30 18:17:20,708 9nineM INFO Saving model and optimizer state at iteration 26 to ./logs\9nineM\G_22000.pth
2023-01-30 18:17:21,406 9nineM INFO Saving model and optimizer state at iteration 26 to ./logs\9nineM\D_22000.pth
2023-01-30 18:19:51,123 9nineM INFO ====> Epoch: 26
2023-01-30 18:20:29,464 9nineM INFO Train Epoch: 27 [3%]
2023-01-30 18:20:29,465 9nineM INFO [2.6391866207122803, 2.0543909072875977, 3.5250117778778076, 20.959144592285156, 1.9019776582717896, 1.7802704572677612, 22200, 0.00019922645137067577]
2023-01-30 18:23:15,861 9nineM INFO Train Epoch: 27 [26%]
2023-01-30 18:23:15,861 9nineM INFO [2.5170674324035645, 2.090766191482544, 4.516193866729736, 24.13702964782715, 1.7424182891845703, 1.6825942993164062, 22400, 0.00019922645137067577]
2023-01-30 18:23:39,074 9nineM INFO Saving model and optimizer state at iteration 27 to ./logs\9nineM\G_22400.pth
2023-01-30 18:23:39,826 9nineM INFO Saving model and optimizer state at iteration 27 to ./logs\9nineM\D_22400.pth
2023-01-30 18:26:23,799 9nineM INFO Train Epoch: 27 [49%]
2023-01-30 18:26:23,800 9nineM INFO [2.547278881072998, 1.9589873552322388, 4.607811450958252, 25.4031982421875, 1.9924721717834473, 1.5493937730789185, 22600, 0.00019922645137067577]
2023-01-30 18:29:08,934 9nineM INFO Train Epoch: 27 [73%]
2023-01-30 18:29:08,935 9nineM INFO [2.5946264266967773, 2.019632339477539, 3.988851547241211, 23.66800308227539, 1.797306776046753, 1.6523672342300415, 22800, 0.00019922645137067577]
2023-01-30 18:29:32,238 9nineM INFO Saving model and optimizer state at iteration 27 to ./logs\9nineM\G_22800.pth
2023-01-30 18:29:32,841 9nineM INFO Saving model and optimizer state at iteration 27 to ./logs\9nineM\D_22800.pth
2023-01-30 18:32:17,705 9nineM INFO Train Epoch: 27 [96%]
2023-01-30 18:32:17,705 9nineM INFO [2.547029733657837, 2.055783987045288, 4.41702127456665, 23.861553192138672, 1.7669410705566406, 1.7388036251068115, 23000, 0.00019922645137067577]
2023-01-30 18:32:43,688 9nineM INFO ====> Epoch: 27
2023-01-30 18:35:21,166 9nineM INFO Train Epoch: 28 [20%]
2023-01-30 18:35:21,167 9nineM INFO [2.7444093227386475, 1.7981352806091309, 3.0811824798583984, 20.980642318725586, 1.913151502609253, 1.5842145681381226, 23200, 0.00019920154806425444]
2023-01-30 18:35:41,774 9nineM INFO Saving model and optimizer state at iteration 28 to ./logs\9nineM\G_23200.pth
2023-01-30 18:35:42,381 9nineM INFO Saving model and optimizer state at iteration 28 to ./logs\9nineM\D_23200.pth
2023-01-30 18:38:26,005 9nineM INFO Train Epoch: 28 [43%]
2023-01-30 18:38:26,006 9nineM INFO [2.6017751693725586, 2.223775625228882, 3.6733932495117188, 22.91482162475586, 1.9081027507781982, 1.4144500494003296, 23400, 0.00019920154806425444]
2023-01-30 18:41:10,378 9nineM INFO Train Epoch: 28 [67%]
2023-01-30 18:41:10,379 9nineM INFO [2.670208692550659, 1.9337886571884155, 4.112267017364502, 26.20232582092285, 1.8177591562271118, 1.6691386699676514, 23600, 0.00019920154806425444]
2023-01-30 18:41:31,000 9nineM INFO Saving model and optimizer state at iteration 28 to ./logs\9nineM\G_23600.pth
2023-01-30 18:41:31,643 9nineM INFO Saving model and optimizer state at iteration 28 to ./logs\9nineM\D_23600.pth
2023-01-30 18:44:14,911 9nineM INFO Train Epoch: 28 [90%]
2023-01-30 18:44:15,550 9nineM INFO [2.633009672164917, 1.9814497232437134, 3.7151012420654297, 22.778528213500977, 1.764923095703125, 1.6637474298477173, 23800, 0.00019920154806425444]
2023-01-30 18:45:25,479 9nineM INFO ====> Epoch: 28
2023-01-30 18:47:21,988 9nineM INFO Train Epoch: 29 [14%]
2023-01-30 18:47:21,988 9nineM INFO [2.649714469909668, 2.1912989616394043, 4.456567764282227, 26.76620101928711, 1.807680606842041, 1.6745903491973877, 24000, 0.0001991766478707464]
2023-01-30 18:47:42,427 9nineM INFO Saving model and optimizer state at iteration 29 to ./logs\9nineM\G_24000.pth
2023-01-30 18:47:43,051 9nineM INFO Saving model and optimizer state at iteration 29 to ./logs\9nineM\D_24000.pth
2023-01-30 18:50:28,999 9nineM INFO Train Epoch: 29 [37%]
2023-01-30 18:50:28,999 9nineM INFO [2.6999549865722656, 1.72980535030365, 3.750908613204956, 21.631378173828125, 1.8146204948425293, 1.8793796300888062, 24200, 0.0001991766478707464]
2023-01-30 18:53:16,206 9nineM INFO Train Epoch: 29 [60%]
2023-01-30 18:53:16,207 9nineM INFO [2.6130964756011963, 2.2319231033325195, 3.7719619274139404, 23.3356990814209, 1.9559910297393799, 1.5747816562652588, 24400, 0.0001991766478707464]
2023-01-30 18:53:37,035 9nineM INFO Saving model and optimizer state at iteration 29 to ./logs\9nineM\G_24400.pth
2023-01-30 18:53:37,742 9nineM INFO Saving model and optimizer state at iteration 29 to ./logs\9nineM\D_24400.pth
2023-01-30 18:56:24,358 9nineM INFO Train Epoch: 29 [84%]
2023-01-30 18:56:24,359 9nineM INFO [2.4868788719177246, 2.1619656085968018, 3.933049440383911, 22.357912063598633, 1.8085817098617554, 1.6935052871704102, 24600, 0.0001991766478707464]
2023-01-30 18:58:19,433 9nineM INFO ====> Epoch: 29
2023-01-30 18:59:31,794 9nineM INFO Train Epoch: 30 [7%]
2023-01-30 18:59:31,795 9nineM INFO [2.499490261077881, 2.3587687015533447, 5.103172779083252, 25.08675193786621, 1.7192392349243164, 1.5048335790634155, 24800, 0.00019915175078976256]
2023-01-30 18:59:52,771 9nineM INFO Saving model and optimizer state at iteration 30 to ./logs\9nineM\G_24800.pth
2023-01-30 18:59:53,387 9nineM INFO Saving model and optimizer state at iteration 30 to ./logs\9nineM\D_24800.pth
2023-01-30 19:02:38,186 9nineM INFO Train Epoch: 30 [31%]
2023-01-30 19:02:38,186 9nineM INFO [2.583420753479004, 2.1125028133392334, 3.964524984359741, 23.267152786254883, 1.8850966691970825, 1.6562895774841309, 25000, 0.00019915175078976256]
2023-01-31 04:49:25,531 9nineM INFO {'train': {'log_interval': 200, 'eval_interval': 400, 'seed': 1234, 'epochs': 1000, 'learning_rate': 0.0002, 'betas': [0.8, 0.99], 'eps': 1e-09, 'batch_size': 16, 'fp16_run': False, 'lr_decay': 0.999875, 'segment_size': 8192, 'init_lr_ratio': 1, 'warmup_epochs': 0, 'c_mel': 45, 'c_kl': 1.0}, 'data': {'training_files': 'filelists/9nine_multi/filelists/MultiNoHaru_train.txt.cleaned', 'validation_files': 'filelists/9nine_multi/filelists/MultiNoHaru_valid.txt.cleaned', 'text_cleaners': ['japanese_cleaners2'], 'max_wav_value': 32768.0, 'sampling_rate': 22050, 'filter_length': 1024, 'hop_length': 256, 'win_length': 1024, 'n_mel_channels': 80, 'mel_fmin': 0.0, 'mel_fmax': None, 'add_blank': True, 'n_speakers': 5, 'cleaned_text': True}, 'model': {'inter_channels': 192, 'hidden_channels': 192, 'filter_channels': 768, 'n_heads': 2, 'n_layers': 6, 'kernel_size': 3, 'p_dropout': 0.1, 'resblock': '1', 'resblock_kernel_sizes': [3, 7, 11], 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'upsample_rates': [8, 8, 2, 2], 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [16, 16, 4, 4], 'n_layers_q': 3, 'use_spectral_norm': False, 'gin_channels': 256}, 'model_dir': './logs\\9nineM', 'ckptG': None, 'ckptD': None}
2023-01-31 04:49:35,110 9nineM INFO Loaded checkpoint './logs\9nineM\G_24800.pth' (iteration 30)
2023-01-31 04:49:35,569 9nineM INFO Loaded checkpoint './logs\9nineM\D_24800.pth' (iteration 30)
2023-01-31 04:51:15,260 9nineM INFO Train Epoch: 30 [7%]
2023-01-31 04:51:15,260 9nineM INFO [2.6226367950439453, 2.27891206741333, 4.0941691398620605, 23.037940979003906, 1.7086595296859741, 1.4919545650482178, 24800, 0.00019912685682091382]
2023-01-31 04:51:36,640 9nineM INFO Saving model and optimizer state at iteration 30 to ./logs\9nineM\G_24800.pth
2023-01-31 04:51:37,318 9nineM INFO Saving model and optimizer state at iteration 30 to ./logs\9nineM\D_24800.pth
2023-01-31 04:54:43,694 9nineM INFO Train Epoch: 30 [31%]
2023-01-31 04:54:43,695 9nineM INFO [2.5988283157348633, 1.9622220993041992, 4.1986165046691895, 24.72119140625, 1.8875558376312256, 1.4754257202148438, 25000, 0.00019912685682091382]
2023-01-31 04:57:37,570 9nineM INFO Train Epoch: 30 [54%]
2023-01-31 04:57:37,570 9nineM INFO [2.561371088027954, 2.0544097423553467, 4.946720600128174, 25.388317108154297, 1.6937508583068848, 1.4395828247070312, 25200, 0.00019912685682091382]
2023-01-31 04:57:57,142 9nineM INFO Saving model and optimizer state at iteration 30 to ./logs\9nineM\G_25200.pth
2023-01-31 04:57:57,831 9nineM INFO Saving model and optimizer state at iteration 30 to ./logs\9nineM\D_25200.pth
2023-01-31 05:00:46,785 9nineM INFO Train Epoch: 30 [78%]
2023-01-31 05:00:46,786 9nineM INFO [2.680049180984497, 1.9173710346221924, 3.4602537155151367, 21.217208862304688, 1.7393698692321777, 1.491133213043213, 25400, 0.00019912685682091382]
2023-01-31 05:03:25,215 9nineM INFO ====> Epoch: 30
2023-01-31 05:03:54,977 9nineM INFO Train Epoch: 31 [1%]
2023-01-31 05:03:54,978 9nineM INFO [2.5413079261779785, 2.105044364929199, 5.600437164306641, 25.1304874420166, 1.7264471054077148, 1.8673486709594727, 25600, 0.0001991019659638112]
2023-01-31 05:04:16,603 9nineM INFO Saving model and optimizer state at iteration 31 to ./logs\9nineM\G_25600.pth
2023-01-31 05:04:17,299 9nineM INFO Saving model and optimizer state at iteration 31 to ./logs\9nineM\D_25600.pth
2023-01-31 05:07:05,801 9nineM INFO Train Epoch: 31 [25%]
2023-01-31 05:07:05,802 9nineM INFO [2.3959808349609375, 2.241203784942627, 5.791626453399658, 25.418806076049805, 1.9717110395431519, 1.7215012311935425, 25800, 0.0001991019659638112]
2023-01-31 05:09:51,162 9nineM INFO Train Epoch: 31 [48%]
2023-01-31 05:09:51,162 9nineM INFO [2.6000561714172363, 2.079279661178589, 4.181294918060303, 22.890228271484375, 1.8438432216644287, 1.5096122026443481, 26000, 0.0001991019659638112]
2023-01-31 05:10:11,010 9nineM INFO Saving model and optimizer state at iteration 31 to ./logs\9nineM\G_26000.pth
2023-01-31 05:10:11,637 9nineM INFO Saving model and optimizer state at iteration 31 to ./logs\9nineM\D_26000.pth
2023-01-31 05:12:59,049 9nineM INFO Train Epoch: 31 [72%]
2023-01-31 05:12:59,049 9nineM INFO [2.6699235439300537, 2.1806726455688477, 5.055631160736084, 24.23531723022461, 1.797062635421753, 1.7649749517440796, 26200, 0.0001991019659638112]
2023-01-31 05:15:46,363 9nineM INFO Train Epoch: 31 [95%]
2023-01-31 05:15:46,363 9nineM INFO [2.6502323150634766, 2.0901808738708496, 3.862999200820923, 22.471010208129883, 1.7703263759613037, 1.6136788129806519, 26400, 0.0001991019659638112]
2023-01-31 05:16:06,340 9nineM INFO Saving model and optimizer state at iteration 31 to ./logs\9nineM\G_26400.pth
2023-01-31 05:16:06,965 9nineM INFO Saving model and optimizer state at iteration 31 to ./logs\9nineM\D_26400.pth
2023-01-31 05:16:42,029 9nineM INFO ====> Epoch: 31
2023-01-31 05:19:12,147 9nineM INFO Train Epoch: 32 [18%]
2023-01-31 05:19:12,147 9nineM INFO [2.6070947647094727, 2.0558505058288574, 4.700134754180908, 25.00912094116211, 1.792651653289795, 1.6968674659729004, 26600, 0.0001990770782180657]
2023-01-31 05:21:57,844 9nineM INFO Train Epoch: 32 [42%]
2023-01-31 05:21:57,845 9nineM INFO [2.65460467338562, 2.012608051300049, 3.73614501953125, 22.191423416137695, 1.8420199155807495, 1.6775685548782349, 26800, 0.0001990770782180657]
2023-01-31 05:22:17,933 9nineM INFO Saving model and optimizer state at iteration 32 to ./logs\9nineM\G_26800.pth
2023-01-31 05:22:18,570 9nineM INFO Saving model and optimizer state at iteration 32 to ./logs\9nineM\D_26800.pth
2023-01-31 05:25:05,714 9nineM INFO Train Epoch: 32 [65%]
2023-01-31 05:25:05,715 9nineM INFO [2.508659839630127, 1.9928182363510132, 4.465345859527588, 23.401477813720703, 1.8576054573059082, 1.9069682359695435, 27000, 0.0001990770782180657]
2023-01-31 05:27:48,723 9nineM INFO Train Epoch: 32 [89%]
2023-01-31 05:27:48,724 9nineM INFO [2.682878255844116, 2.067652940750122, 5.124716758728027, 24.11802101135254, 1.7524895668029785, 1.6737695932388306, 27200, 0.0001990770782180657]
2023-01-31 05:28:09,228 9nineM INFO Saving model and optimizer state at iteration 32 to ./logs\9nineM\G_27200.pth
2023-01-31 05:28:09,926 9nineM INFO Saving model and optimizer state at iteration 32 to ./logs\9nineM\D_27200.pth
2023-01-31 05:29:29,049 9nineM INFO ====> Epoch: 32
2023-01-31 14:47:22,857 9nineM INFO Train Epoch: 33 [12%]
2023-01-31 14:47:22,857 9nineM INFO [2.700671911239624, 2.1198341846466064, 3.753757953643799, 20.68313980102539, 1.7996970415115356, 1.574100136756897, 27400, 0.00019905219358328844]
2023-02-01 04:21:25,016 9nineM INFO {'train': {'log_interval': 200, 'eval_interval': 400, 'seed': 1234, 'epochs': 1000, 'learning_rate': 0.0002, 'betas': [0.8, 0.99], 'eps': 1e-09, 'batch_size': 16, 'fp16_run': False, 'lr_decay': 0.999875, 'segment_size': 8192, 'init_lr_ratio': 1, 'warmup_epochs': 0, 'c_mel': 45, 'c_kl': 1.0}, 'data': {'training_files': 'filelists/9nine_multi/filelists/MultiNoHaru_train.txt.cleaned', 'validation_files': 'filelists/9nine_multi/filelists/MultiNoHaru_valid.txt.cleaned', 'text_cleaners': ['japanese_cleaners2'], 'max_wav_value': 32768.0, 'sampling_rate': 22050, 'filter_length': 1024, 'hop_length': 256, 'win_length': 1024, 'n_mel_channels': 80, 'mel_fmin': 0.0, 'mel_fmax': None, 'add_blank': True, 'n_speakers': 5, 'cleaned_text': True}, 'model': {'inter_channels': 192, 'hidden_channels': 192, 'filter_channels': 768, 'n_heads': 2, 'n_layers': 6, 'kernel_size': 3, 'p_dropout': 0.1, 'resblock': '1', 'resblock_kernel_sizes': [3, 7, 11], 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'upsample_rates': [8, 8, 2, 2], 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [16, 16, 4, 4], 'n_layers_q': 3, 'use_spectral_norm': False, 'gin_channels': 256}, 'model_dir': './logs\\9nineM', 'ckptG': None, 'ckptD': None}
2023-02-01 04:21:33,771 9nineM INFO Loaded checkpoint './logs\9nineM\G_27200.pth' (iteration 32)
2023-02-01 04:21:34,210 9nineM INFO Loaded checkpoint './logs\9nineM\D_27200.pth' (iteration 32)
2023-02-01 04:24:26,163 9nineM INFO Train Epoch: 32 [18%]
2023-02-01 04:24:26,163 9nineM INFO [2.48793363571167, 2.2525389194488525, 4.615845680236816, 23.471406936645508, 1.8075923919677734, 1.2398854494094849, 26600, 0.00019905219358328844]
2023-02-01 04:27:17,258 9nineM INFO Train Epoch: 32 [42%]
2023-02-01 04:27:17,258 9nineM INFO [2.8085086345672607, 1.9309682846069336, 3.242536783218384, 19.992431640625, 1.8259313106536865, 1.75313138961792, 26800, 0.00019905219358328844]
2023-02-01 04:27:36,984 9nineM INFO Saving model and optimizer state at iteration 32 to ./logs\9nineM\G_26800.pth
2023-02-01 04:27:37,607 9nineM INFO Saving model and optimizer state at iteration 32 to ./logs\9nineM\D_26800.pth
2023-02-01 04:30:27,759 9nineM INFO Train Epoch: 32 [65%]
2023-02-01 04:30:27,760 9nineM INFO [2.512181520462036, 2.1234545707702637, 4.441719055175781, 23.193981170654297, 1.8304362297058105, 1.2039990425109863, 27000, 0.00019905219358328844]
2023-02-01 04:33:11,405 9nineM INFO Train Epoch: 32 [89%]
2023-02-01 04:33:11,406 9nineM INFO [2.4839420318603516, 2.347658395767212, 5.918729782104492, 24.70970916748047, 1.751023530960083, 1.626118540763855, 27200, 0.00019905219358328844]
2023-02-01 04:33:31,473 9nineM INFO Saving model and optimizer state at iteration 32 to ./logs\9nineM\G_27200.pth
2023-02-01 04:33:32,109 9nineM INFO Saving model and optimizer state at iteration 32 to ./logs\9nineM\D_27200.pth
2023-02-01 04:34:50,506 9nineM INFO ====> Epoch: 32
2023-02-01 04:36:34,629 9nineM INFO Train Epoch: 33 [12%]
2023-02-01 04:36:34,629 9nineM INFO [2.789337396621704, 1.9480953216552734, 3.569427013397217, 19.851818084716797, 1.7902283668518066, 1.5726020336151123, 27400, 0.0001990273120590905]
2023-02-01 04:39:19,633 9nineM INFO Train Epoch: 33 [36%]
2023-02-01 04:39:19,633 9nineM INFO [2.5463850498199463, 2.106318473815918, 4.98954439163208, 23.31874656677246, 1.740237832069397, 1.4912023544311523, 27600, 0.0001990273120590905]
2023-02-01 04:39:39,767 9nineM INFO Saving model and optimizer state at iteration 33 to ./logs\9nineM\G_27600.pth
2023-02-01 04:39:40,460 9nineM INFO Saving model and optimizer state at iteration 33 to ./logs\9nineM\D_27600.pth
2023-02-01 04:42:24,582 9nineM INFO Train Epoch: 33 [59%]
2023-02-01 04:42:24,583 9nineM INFO [2.5366666316986084, 2.304074764251709, 5.535372734069824, 25.677494049072266, 1.8105485439300537, 1.6906741857528687, 27800, 0.0001990273120590905]
2023-02-01 04:45:10,402 9nineM INFO Train Epoch: 33 [83%]
2023-02-01 04:45:10,402 9nineM INFO [2.5908730030059814, 2.0369601249694824, 3.4531235694885254, 21.35690689086914, 1.712050437927246, 1.7326159477233887, 28000, 0.0001990273120590905]
2023-02-01 04:45:30,840 9nineM INFO Saving model and optimizer state at iteration 33 to ./logs\9nineM\G_28000.pth
2023-02-01 04:45:31,536 9nineM INFO Saving model and optimizer state at iteration 33 to ./logs\9nineM\D_28000.pth
2023-02-01 04:47:34,384 9nineM INFO ====> Epoch: 33
2023-02-01 04:48:34,814 9nineM INFO Train Epoch: 34 [6%]
2023-02-01 04:48:34,814 9nineM INFO [2.682081937789917, 2.1056137084960938, 3.03806209564209, 20.2428035736084, 1.8532049655914307, 1.7690595388412476, 28200, 0.00019900243364508313]
2023-02-01 04:51:19,132 9nineM INFO Train Epoch: 34 [29%]
2023-02-01 04:51:19,133 9nineM INFO [2.638190507888794, 1.9988296031951904, 3.910902738571167, 21.806364059448242, 1.6923742294311523, 1.890233039855957, 28400, 0.00019900243364508313]
2023-02-01 04:51:39,019 9nineM INFO Saving model and optimizer state at iteration 34 to ./logs\9nineM\G_28400.pth
2023-02-01 04:51:39,655 9nineM INFO Saving model and optimizer state at iteration 34 to ./logs\9nineM\D_28400.pth
2023-02-01 04:54:26,885 9nineM INFO Train Epoch: 34 [53%]
2023-02-01 04:54:26,885 9nineM INFO [2.4265389442443848, 2.2317376136779785, 5.2667341232299805, 23.620227813720703, 1.7587745189666748, 1.4747239351272583, 28600, 0.00019900243364508313]
2023-02-01 04:57:10,543 9nineM INFO Train Epoch: 34 [76%]
2023-02-01 04:57:10,544 9nineM INFO [2.699652910232544, 2.020946502685547, 3.3295412063598633, 21.935319900512695, 2.068636178970337, 1.361405611038208, 28800, 0.00019900243364508313]
2023-02-01 04:57:30,489 9nineM INFO Saving model and optimizer state at iteration 34 to ./logs\9nineM\G_28800.pth
2023-02-01 04:57:31,198 9nineM INFO Saving model and optimizer state at iteration 34 to ./logs\9nineM\D_28800.pth
2023-02-01 05:00:15,492 9nineM INFO Train Epoch: 34 [100%]
2023-02-01 05:00:15,494 9nineM INFO [2.6213345527648926, 2.156693935394287, 4.387364864349365, 21.24164390563965, 1.7850232124328613, 1.6613390445709229, 29000, 0.00019900243364508313]
2023-02-01 05:00:17,261 9nineM INFO ====> Epoch: 34
2023-02-01 05:03:20,006 9nineM INFO Train Epoch: 35 [23%]
2023-02-01 05:03:20,007 9nineM INFO [2.516507625579834, 2.2165496349334717, 5.759872913360596, 24.848791122436523, 1.8999265432357788, 1.5627009868621826, 29200, 0.0001989775583408775]
2023-02-01 05:03:39,809 9nineM INFO Saving model and optimizer state at iteration 35 to ./logs\9nineM\G_29200.pth
2023-02-01 05:03:40,426 9nineM INFO Saving model and optimizer state at iteration 35 to ./logs\9nineM\D_29200.pth
2023-02-01 12:33:05,510 9nineM INFO Train Epoch: 35 [47%]
2023-02-01 12:33:05,510 9nineM INFO [2.5423824787139893, 2.025073528289795, 3.994418144226074, 22.05137825012207, 1.7776260375976562, 1.5611302852630615, 29400, 0.0001989775583408775]
2023-02-01 12:35:52,822 9nineM INFO Train Epoch: 35 [70%]
2023-02-01 12:35:52,823 9nineM INFO [2.6309142112731934, 1.976047396659851, 5.686556816101074, 24.51500129699707, 1.7515478134155273, 1.64219069480896, 29600, 0.0001989775583408775]
2023-02-01 12:36:20,975 9nineM INFO Saving model and optimizer state at iteration 35 to ./logs\9nineM\G_29600.pth
2023-02-01 12:36:21,668 9nineM INFO Saving model and optimizer state at iteration 35 to ./logs\9nineM\D_29600.pth
2023-02-01 12:39:09,483 9nineM INFO Train Epoch: 35 [94%]
2023-02-01 12:39:09,483 9nineM INFO [2.6399784088134766, 2.0212554931640625, 4.624053955078125, 24.235794067382812, 1.6122325658798218, 1.8134409189224243, 29800, 0.0001989775583408775]
2023-02-01 12:39:55,536 9nineM INFO ====> Epoch: 35
2023-02-01 12:42:17,621 9nineM INFO Train Epoch: 36 [17%]
2023-02-01 12:42:17,622 9nineM INFO [2.7085700035095215, 1.9565938711166382, 3.421661376953125, 20.876976013183594, 1.7802507877349854, 1.489966630935669, 30000, 0.00019895268614608487]
2023-02-01 12:42:41,751 9nineM INFO Saving model and optimizer state at iteration 36 to ./logs\9nineM\G_30000.pth
2023-02-01 12:42:42,555 9nineM INFO Saving model and optimizer state at iteration 36 to ./logs\9nineM\D_30000.pth
2023-02-01 12:45:30,464 9nineM INFO Train Epoch: 36 [40%]
2023-02-01 12:45:30,464 9nineM INFO [2.437509536743164, 2.3491921424865723, 5.127066135406494, 25.726490020751953, 1.7633036375045776, 1.4489428997039795, 30200, 0.00019895268614608487]
2023-02-01 12:48:16,161 9nineM INFO Train Epoch: 36 [64%]
2023-02-01 12:48:16,162 9nineM INFO [2.3928329944610596, 2.101041555404663, 5.352329254150391, 27.370100021362305, 1.8160617351531982, 1.6697053909301758, 30400, 0.00019895268614608487]
2023-02-01 12:48:39,509 9nineM INFO Saving model and optimizer state at iteration 36 to ./logs\9nineM\G_30400.pth
2023-02-01 12:48:40,196 9nineM INFO Saving model and optimizer state at iteration 36 to ./logs\9nineM\D_30400.pth
2023-02-01 12:51:27,729 9nineM INFO Train Epoch: 36 [87%]
2023-02-01 12:51:27,729 9nineM INFO [2.61594557762146, 2.1400556564331055, 5.137139797210693, 23.10220718383789, 1.6802095174789429, 1.7627167701721191, 30600, 0.00019895268614608487]
2023-02-01 12:52:59,177 9nineM INFO ====> Epoch: 36
2023-02-01 12:54:35,488 9nineM INFO Train Epoch: 37 [11%]
2023-02-01 12:54:35,488 9nineM INFO [2.5741822719573975, 2.1620121002197266, 4.317616939544678, 22.92330551147461, 1.829906940460205, 1.4284659624099731, 30800, 0.0001989278170603166]
2023-02-01 12:54:57,689 9nineM INFO Saving model and optimizer state at iteration 37 to ./logs\9nineM\G_30800.pth
2023-02-01 12:54:58,437 9nineM INFO Saving model and optimizer state at iteration 37 to ./logs\9nineM\D_30800.pth
2023-02-01 12:57:45,024 9nineM INFO Train Epoch: 37 [34%]
2023-02-01 12:57:45,025 9nineM INFO [2.6818103790283203, 1.954439640045166, 3.375948905944824, 20.640331268310547, 1.8592307567596436, 1.7136640548706055, 31000, 0.0001989278170603166]
2023-02-01 13:00:32,094 9nineM INFO Train Epoch: 37 [58%]
2023-02-01 13:00:32,095 9nineM INFO [2.459219455718994, 2.320885181427002, 5.924901008605957, 26.83432960510254, 1.7563282251358032, 1.726936936378479, 31200, 0.0001989278170603166]
2023-02-01 17:01:39,949 9nineM INFO Saving model and optimizer state at iteration 37 to ./logs\9nineM\G_31200.pth
2023-02-01 17:01:40,916 9nineM INFO Saving model and optimizer state at iteration 37 to ./logs\9nineM\D_31200.pth
2023-02-01 17:04:25,245 9nineM INFO Train Epoch: 37 [81%]
2023-02-01 17:04:25,246 9nineM INFO [2.669224977493286, 1.9848904609680176, 4.381429672241211, 21.905603408813477, 1.6953556537628174, 1.6629891395568848, 31400, 0.0001989278170603166]
2023-02-01 17:06:48,635 9nineM INFO ====> Epoch: 37
2023-02-01 17:07:50,247 9nineM INFO Train Epoch: 38 [5%]
2023-02-01 17:07:50,248 9nineM INFO [2.744645118713379, 1.8825947046279907, 3.460026264190674, 19.298295974731445, 1.788069248199463, 1.6396377086639404, 31600, 0.00019890295108318404]
2023-02-01 17:08:15,740 9nineM INFO Saving model and optimizer state at iteration 38 to ./logs\9nineM\G_31600.pth
2023-02-01 17:08:16,556 9nineM INFO Saving model and optimizer state at iteration 38 to ./logs\9nineM\D_31600.pth
2023-02-01 17:11:31,453 9nineM INFO Train Epoch: 38 [28%]
2023-02-01 17:11:31,453 9nineM INFO [2.6138646602630615, 2.050747871398926, 4.864589691162109, 22.69951820373535, 1.6681349277496338, 1.475082516670227, 31800, 0.00019890295108318404]
2023-02-01 17:14:45,203 9nineM INFO Train Epoch: 38 [51%]
2023-02-01 17:14:45,204 9nineM INFO [2.683239698410034, 1.9788589477539062, 4.138528347015381, 21.01311492919922, 1.7413430213928223, 1.6159683465957642, 32000, 0.00019890295108318404]
2023-02-01 17:15:09,399 9nineM INFO Saving model and optimizer state at iteration 38 to ./logs\9nineM\G_32000.pth
2023-02-01 17:15:10,172 9nineM INFO Saving model and optimizer state at iteration 38 to ./logs\9nineM\D_32000.pth
2023-02-01 17:18:25,226 9nineM INFO Train Epoch: 38 [75%]
2023-02-01 17:18:25,227 9nineM INFO [2.2311863899230957, 2.3713438510894775, 7.4914231300354, 26.72603416442871, 1.717178463935852, 1.9362727403640747, 32200, 0.00019890295108318404]
2023-02-01 17:21:38,370 9nineM INFO Train Epoch: 38 [98%]
2023-02-01 17:21:38,370 9nineM INFO [2.2777528762817383, 2.499821901321411, 5.831307411193848, 25.2869873046875, 1.7486741542816162, 1.70828378200531, 32400, 0.00019890295108318404]
2023-02-01 17:22:02,852 9nineM INFO Saving model and optimizer state at iteration 38 to ./logs\9nineM\G_32400.pth
2023-02-01 17:22:03,619 9nineM INFO Saving model and optimizer state at iteration 38 to ./logs\9nineM\D_32400.pth
2023-02-01 17:22:18,040 9nineM INFO ====> Epoch: 38
2023-02-01 17:25:41,201 9nineM INFO Train Epoch: 39 [22%]
2023-02-01 17:25:41,201 9nineM INFO [2.454498529434204, 2.2587172985076904, 4.199381351470947, 20.6919002532959, 1.872959852218628, 1.6013412475585938, 32600, 0.00019887808821429862]
2023-02-01 17:28:52,987 9nineM INFO Train Epoch: 39 [45%]
2023-02-01 17:28:52,988 9nineM INFO [2.5843074321746826, 2.146446943283081, 4.491590976715088, 22.461898803710938, 1.7938328981399536, 1.3982316255569458, 32800, 0.00019887808821429862]
2023-02-01 17:29:17,756 9nineM INFO Saving model and optimizer state at iteration 39 to ./logs\9nineM\G_32800.pth
2023-02-01 17:29:18,657 9nineM INFO Saving model and optimizer state at iteration 39 to ./logs\9nineM\D_32800.pth
2023-02-01 17:32:34,733 9nineM INFO Train Epoch: 39 [69%]
2023-02-01 17:32:34,734 9nineM INFO [2.636389970779419, 1.8629508018493652, 3.6903533935546875, 20.31201171875, 1.9865062236785889, 1.7532310485839844, 33000, 0.00019887808821429862]
2023-02-01 17:35:51,704 9nineM INFO Train Epoch: 39 [92%]
2023-02-01 17:35:51,704 9nineM INFO [2.5792219638824463, 2.140162467956543, 4.547505855560303, 22.884021759033203, 1.7655047178268433, 1.5471705198287964, 33200, 0.00019887808821429862]
2023-02-01 17:36:16,461 9nineM INFO Saving model and optimizer state at iteration 39 to ./logs\9nineM\G_33200.pth
2023-02-01 17:36:17,207 9nineM INFO Saving model and optimizer state at iteration 39 to ./logs\9nineM\D_33200.pth
2023-02-01 17:37:24,421 9nineM INFO ====> Epoch: 39
2023-02-01 17:39:57,213 9nineM INFO Train Epoch: 40 [16%]
2023-02-01 17:39:57,213 9nineM INFO [2.6288318634033203, 2.0972135066986084, 4.934540748596191, 21.877552032470703, 1.8201842308044434, 1.7888994216918945, 33400, 0.00019885322845327182]
2023-02-01 17:43:11,434 9nineM INFO Train Epoch: 40 [39%]
2023-02-01 17:43:11,434 9nineM INFO [2.658141613006592, 2.331437587738037, 4.835916519165039, 24.727418899536133, 1.7370905876159668, 1.5689709186553955, 33600, 0.00019885322845327182]
2023-02-01 17:43:35,679 9nineM INFO Saving model and optimizer state at iteration 40 to ./logs\9nineM\G_33600.pth
2023-02-01 17:43:36,435 9nineM INFO Saving model and optimizer state at iteration 40 to ./logs\9nineM\D_33600.pth
2023-02-01 17:46:51,670 9nineM INFO Train Epoch: 40 [62%]
2023-02-01 17:46:51,670 9nineM INFO [2.719942569732666, 1.9539000988006592, 4.045953750610352, 21.547697067260742, 1.72672700881958, 1.4675304889678955, 33800, 0.00019885322845327182]
2023-02-01 17:50:06,556 9nineM INFO Train Epoch: 40 [86%]
2023-02-01 17:50:06,557 9nineM INFO [2.674190044403076, 1.8533728122711182, 4.508209228515625, 24.51169776916504, 1.9194777011871338, 1.4392437934875488, 34000, 0.00019885322845327182]
2023-02-01 17:50:30,976 9nineM INFO Saving model and optimizer state at iteration 40 to ./logs\9nineM\G_34000.pth
2023-02-01 17:50:31,753 9nineM INFO Saving model and optimizer state at iteration 40 to ./logs\9nineM\D_34000.pth
2023-02-01 17:52:28,580 9nineM INFO ====> Epoch: 40
2023-02-01 17:54:10,333 9nineM INFO Train Epoch: 41 [9%]
2023-02-01 17:54:10,334 9nineM INFO [2.4937329292297363, 2.29134464263916, 5.422130584716797, 26.12571144104004, 1.6666078567504883, 1.6672056913375854, 34200, 0.00019882837179971516]
2023-02-01 17:57:26,955 9nineM INFO Train Epoch: 41 [33%]
2023-02-01 17:57:26,955 9nineM INFO [2.5611343383789062, 2.043212652206421, 4.211092472076416, 21.851240158081055, 1.88693106174469, 1.5488057136535645, 34400, 0.00019882837179971516]
2023-02-01 17:57:51,881 9nineM INFO Saving model and optimizer state at iteration 41 to ./logs\9nineM\G_34400.pth
2023-02-01 17:57:52,685 9nineM INFO Saving model and optimizer state at iteration 41 to ./logs\9nineM\D_34400.pth
2023-02-01 18:01:07,449 9nineM INFO Train Epoch: 41 [56%]
2023-02-01 18:01:07,450 9nineM INFO [2.7365357875823975, 2.3190486431121826, 5.0319600105285645, 24.26772689819336, 1.9242149591445923, 1.8268693685531616, 34600, 0.00019882837179971516]
2023-02-01 18:04:22,110 9nineM INFO Train Epoch: 41 [80%]
2023-02-01 18:04:22,110 9nineM INFO [2.6296262741088867, 2.133437156677246, 3.676952600479126, 22.365764617919922, 1.8542792797088623, 1.6401487588882446, 34800, 0.00019882837179971516]
2023-02-01 18:04:46,390 9nineM INFO Saving model and optimizer state at iteration 41 to ./logs\9nineM\G_34800.pth
2023-02-01 18:04:47,172 9nineM INFO Saving model and optimizer state at iteration 41 to ./logs\9nineM\D_34800.pth
2023-02-01 18:07:36,276 9nineM INFO ====> Epoch: 41
2023-02-01 18:08:26,099 9nineM INFO Train Epoch: 42 [3%]
2023-02-01 18:08:26,099 9nineM INFO [2.49212384223938, 2.24872088432312, 5.995089530944824, 25.848262786865234, 1.8010799884796143, 1.7120336294174194, 35000, 0.00019880351825324018]
2023-02-01 18:11:40,918 9nineM INFO Train Epoch: 42 [27%]
2023-02-01 18:11:40,919 9nineM INFO [2.537590503692627, 2.167124032974243, 5.7935333251953125, 25.775712966918945, 1.7429431676864624, 1.6175198554992676, 35200, 0.00019880351825324018]
2023-02-01 18:12:05,791 9nineM INFO Saving model and optimizer state at iteration 42 to ./logs\9nineM\G_35200.pth
2023-02-01 18:12:06,605 9nineM INFO Saving model and optimizer state at iteration 42 to ./logs\9nineM\D_35200.pth
2023-02-01 18:15:22,961 9nineM INFO Train Epoch: 42 [50%]
2023-02-01 18:15:22,962 9nineM INFO [2.3782966136932373, 2.4973931312561035, 4.8738603591918945, 22.93027687072754, 1.7586393356323242, 2.159142255783081, 35400, 0.00019880351825324018]
2023-02-01 18:18:23,070 9nineM INFO Train Epoch: 42 [74%]
2023-02-01 18:18:23,070 9nineM INFO [2.4745311737060547, 2.271057605743408, 5.654489040374756, 24.812362670898438, 1.8334579467773438, 1.743791937828064, 35600, 0.00019880351825324018]
2023-02-01 18:18:45,126 9nineM INFO Saving model and optimizer state at iteration 42 to ./logs\9nineM\G_35600.pth
2023-02-01 18:18:45,801 9nineM INFO Saving model and optimizer state at iteration 42 to ./logs\9nineM\D_35600.pth
2023-02-01 18:21:42,106 9nineM INFO Train Epoch: 42 [97%]
2023-02-01 18:21:42,106 9nineM INFO [2.4542994499206543, 2.2062954902648926, 4.680228233337402, 24.260759353637695, 1.9141931533813477, 1.696622610092163, 35800, 0.00019880351825324018]
2023-02-01 18:22:04,385 9nineM INFO ====> Epoch: 42
2023-02-01 18:24:54,179 9nineM INFO Train Epoch: 43 [20%]
2023-02-01 18:24:54,179 9nineM INFO [2.4901843070983887, 2.1824638843536377, 4.524713039398193, 23.826526641845703, 1.8937201499938965, 1.5252604484558105, 36000, 0.00019877866781345852]
2023-02-01 18:25:15,459 9nineM INFO Saving model and optimizer state at iteration 43 to ./logs\9nineM\G_36000.pth
2023-02-01 18:25:16,122 9nineM INFO Saving model and optimizer state at iteration 43 to ./logs\9nineM\D_36000.pth
2023-02-01 18:28:11,499 9nineM INFO Train Epoch: 43 [44%]
2023-02-01 18:28:11,500 9nineM INFO [2.5362308025360107, 2.1723272800445557, 4.864365100860596, 25.04405403137207, 1.7278116941452026, 1.450219750404358, 36200, 0.00019877866781345852]
2023-02-01 18:31:04,060 9nineM INFO Train Epoch: 43 [67%]
2023-02-01 18:31:04,061 9nineM INFO [2.588315486907959, 2.1376588344573975, 4.551021575927734, 23.533817291259766, 1.7103817462921143, 1.5531283617019653, 36400, 0.00019877866781345852]
2023-02-01 18:31:25,618 9nineM INFO Saving model and optimizer state at iteration 43 to ./logs\9nineM\G_36400.pth
2023-02-01 18:31:26,369 9nineM INFO Saving model and optimizer state at iteration 43 to ./logs\9nineM\D_36400.pth
2023-02-01 18:34:22,241 9nineM INFO Train Epoch: 43 [91%]
2023-02-01 18:34:22,241 9nineM INFO [2.6047894954681396, 2.174082040786743, 4.949742317199707, 22.14706039428711, 1.8383907079696655, 1.641648530960083, 36600, 0.00019877866781345852]
2023-02-01 18:35:30,868 9nineM INFO ====> Epoch: 43
2023-02-01 18:37:37,461 9nineM INFO Train Epoch: 44 [14%]
2023-02-01 18:37:37,462 9nineM INFO [2.572986125946045, 2.136593818664551, 4.04355525970459, 21.91054916381836, 1.7879250049591064, 1.7294100522994995, 36800, 0.00019875382047998183]
2023-02-01 18:37:58,884 9nineM INFO Saving model and optimizer state at iteration 44 to ./logs\9nineM\G_36800.pth
2023-02-01 18:37:59,543 9nineM INFO Saving model and optimizer state at iteration 44 to ./logs\9nineM\D_36800.pth
2023-02-01 18:40:53,316 9nineM INFO Train Epoch: 44 [38%]
2023-02-01 18:40:53,317 9nineM INFO [2.443532705307007, 2.1952812671661377, 4.759227275848389, 23.227327346801758, 1.9656598567962646, 1.3196086883544922, 37000, 0.00019875382047998183]
2023-02-01 18:43:46,101 9nineM INFO Train Epoch: 44 [61%]
2023-02-01 18:43:46,101 9nineM INFO [2.671976327896118, 2.075054407119751, 3.9347307682037354, 20.804964065551758, 1.7300915718078613, 1.7508121728897095, 37200, 0.00019875382047998183]
2023-02-01 18:44:07,502 9nineM INFO Saving model and optimizer state at iteration 44 to ./logs\9nineM\G_37200.pth
2023-02-01 18:44:08,267 9nineM INFO Saving model and optimizer state at iteration 44 to ./logs\9nineM\D_37200.pth
2023-02-01 18:47:02,250 9nineM INFO Train Epoch: 44 [85%]
2023-02-01 18:47:02,250 9nineM INFO [2.498908519744873, 2.361504554748535, 4.3354291915893555, 23.576732635498047, 1.9297654628753662, 1.4986674785614014, 37400, 0.00019875382047998183]
2023-02-01 18:48:56,808 9nineM INFO ====> Epoch: 44
2023-02-01 18:50:15,677 9nineM INFO Train Epoch: 45 [8%]
2023-02-01 18:50:15,678 9nineM INFO [2.5694923400878906, 2.2049150466918945, 5.820436954498291, 25.611148834228516, 1.7650712728500366, 1.8910866975784302, 37600, 0.00019872897625242182]
2023-02-01 18:50:36,934 9nineM INFO Saving model and optimizer state at iteration 45 to ./logs\9nineM\G_37600.pth
2023-02-01 18:50:37,594 9nineM INFO Saving model and optimizer state at iteration 45 to ./logs\9nineM\D_37600.pth
2023-02-01 18:53:30,854 9nineM INFO Train Epoch: 45 [31%]
2023-02-01 18:53:30,855 9nineM INFO [2.5845606327056885, 2.144784450531006, 4.971654415130615, 23.590980529785156, 1.735672116279602, 1.156941294670105, 37800, 0.00019872897625242182]
2023-02-01 18:56:23,275 9nineM INFO Train Epoch: 45 [55%]
2023-02-01 18:56:23,276 9nineM INFO [2.5556178092956543, 2.0318026542663574, 4.260959148406982, 22.016450881958008, 1.7320380210876465, 1.5642647743225098, 38000, 0.00019872897625242182]
2023-02-01 18:56:44,886 9nineM INFO Saving model and optimizer state at iteration 45 to ./logs\9nineM\G_38000.pth
2023-02-01 18:56:45,540 9nineM INFO Saving model and optimizer state at iteration 45 to ./logs\9nineM\D_38000.pth
2023-02-01 18:59:42,477 9nineM INFO Train Epoch: 45 [78%]
2023-02-01 18:59:42,478 9nineM INFO [2.6331942081451416, 1.9731080532073975, 4.094152450561523, 20.55365562438965, 1.7299214601516724, 1.466010332107544, 38200, 0.00019872897625242182]
2023-02-01 19:02:22,842 9nineM INFO ====> Epoch: 45
2023-02-01 19:02:56,955 9nineM INFO Train Epoch: 46 [2%]
2023-02-01 19:02:56,956 9nineM INFO [2.580018997192383, 1.909645438194275, 4.006155014038086, 20.815174102783203, 1.6976667642593384, 1.8680051565170288, 38400, 0.00019870413513039026]
2023-02-01 19:03:18,363 9nineM INFO Saving model and optimizer state at iteration 46 to ./logs\9nineM\G_38400.pth
2023-02-01 19:03:19,018 9nineM INFO Saving model and optimizer state at iteration 46 to ./logs\9nineM\D_38400.pth
2023-02-01 19:06:14,736 9nineM INFO Train Epoch: 46 [25%]
2023-02-01 19:06:14,737 9nineM INFO [2.4910054206848145, 2.1749205589294434, 5.119393348693848, 24.179704666137695, 1.8285729885101318, 1.8427361249923706, 38600, 0.00019870413513039026]
2023-02-02 14:19:19,757 9nineM INFO {'train': {'log_interval': 200, 'eval_interval': 400, 'seed': 1234, 'epochs': 1000, 'learning_rate': 0.0002, 'betas': [0.8, 0.99], 'eps': 1e-09, 'batch_size': 16, 'fp16_run': False, 'lr_decay': 0.999875, 'segment_size': 8192, 'init_lr_ratio': 1, 'warmup_epochs': 0, 'c_mel': 45, 'c_kl': 1.0}, 'data': {'training_files': 'filelists/9nine_multi/filelists/MultiNoHaru_train.txt.cleaned', 'validation_files': 'filelists/9nine_multi/filelists/MultiNoHaru_valid.txt.cleaned', 'text_cleaners': ['japanese_cleaners2'], 'max_wav_value': 32768.0, 'sampling_rate': 22050, 'filter_length': 1024, 'hop_length': 256, 'win_length': 1024, 'n_mel_channels': 80, 'mel_fmin': 0.0, 'mel_fmax': None, 'add_blank': True, 'n_speakers': 5, 'cleaned_text': True}, 'model': {'inter_channels': 192, 'hidden_channels': 192, 'filter_channels': 768, 'n_heads': 2, 'n_layers': 6, 'kernel_size': 3, 'p_dropout': 0.1, 'resblock': '1', 'resblock_kernel_sizes': [3, 7, 11], 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'upsample_rates': [8, 8, 2, 2], 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [16, 16, 4, 4], 'n_layers_q': 3, 'use_spectral_norm': False, 'gin_channels': 256}, 'model_dir': './logs\\9nineM', 'ckptG': None, 'ckptD': None}
2023-02-02 14:19:27,564 9nineM INFO Loaded checkpoint './logs\9nineM\G_38400.pth' (iteration 46)
2023-02-02 14:19:28,037 9nineM INFO Loaded checkpoint './logs\9nineM\D_38400.pth' (iteration 46)
2023-02-02 14:20:19,238 9nineM INFO Train Epoch: 46 [2%]
2023-02-02 14:20:19,238 9nineM INFO [2.5456185340881348, 1.9604990482330322, 4.332867622375488, 21.53057289123535, 1.6935052871704102, 1.8282264471054077, 38400, 0.00019867929711349895]
2023-02-02 14:20:48,380 9nineM INFO Saving model and optimizer state at iteration 46 to ./logs\9nineM\G_38400.pth
2023-02-02 14:20:49,168 9nineM INFO Saving model and optimizer state at iteration 46 to ./logs\9nineM\D_38400.pth
2023-02-02 14:24:21,456 9nineM INFO Train Epoch: 46 [25%]
2023-02-02 14:24:21,457 9nineM INFO [2.6468706130981445, 2.0880415439605713, 4.406847953796387, 23.967500686645508, 1.8634170293807983, 1.6117606163024902, 38600, 0.00019867929711349895]
2023-02-02 14:27:22,687 9nineM INFO Train Epoch: 46 [49%]
2023-02-02 14:27:22,688 9nineM INFO [2.638824939727783, 2.0292012691497803, 3.1536033153533936, 19.555471420288086, 1.7480350732803345, 1.6857563257217407, 38800, 0.00019867929711349895]
2023-02-02 14:27:47,089 9nineM INFO Saving model and optimizer state at iteration 46 to ./logs\9nineM\G_38800.pth
2023-02-02 14:27:47,835 9nineM INFO Saving model and optimizer state at iteration 46 to ./logs\9nineM\D_38800.pth
2023-02-02 14:30:40,719 9nineM INFO Train Epoch: 46 [72%]
2023-02-02 14:30:40,719 9nineM INFO [2.6516051292419434, 2.1540942192077637, 3.694066047668457, 22.016237258911133, 1.843416690826416, 1.5230393409729004, 39000, 0.00019867929711349895]
2023-02-02 14:33:35,763 9nineM INFO Train Epoch: 46 [96%]
2023-02-02 14:33:35,764 9nineM INFO [2.5915274620056152, 2.1095948219299316, 4.336780071258545, 22.916271209716797, 1.8784198760986328, 1.7309505939483643, 39200, 0.00019867929711349895]
2023-02-02 14:34:00,397 9nineM INFO Saving model and optimizer state at iteration 46 to ./logs\9nineM\G_39200.pth
2023-02-02 14:34:01,110 9nineM INFO Saving model and optimizer state at iteration 46 to ./logs\9nineM\D_39200.pth
2023-02-02 14:34:34,594 9nineM INFO ====> Epoch: 46
2023-02-02 14:37:22,242 9nineM INFO Train Epoch: 47 [19%]
2023-02-02 14:37:22,242 9nineM INFO [2.527169704437256, 2.1185073852539062, 4.635430812835693, 22.395965576171875, 1.7306945323944092, 1.831665277481079, 39400, 0.00019865446220135974]
2023-02-02 14:40:43,044 9nineM INFO Train Epoch: 47 [42%]
2023-02-02 14:40:43,044 9nineM INFO [2.4761626720428467, 2.311478614807129, 4.725570201873779, 22.31679916381836, 1.7371221780776978, 1.631006121635437, 39600, 0.00019865446220135974]
2023-02-02 14:41:13,167 9nineM INFO Saving model and optimizer state at iteration 47 to ./logs\9nineM\G_39600.pth
2023-02-02 14:41:14,127 9nineM INFO Saving model and optimizer state at iteration 47 to ./logs\9nineM\D_39600.pth
2023-02-02 14:44:29,374 9nineM INFO Train Epoch: 47 [66%]
2023-02-02 14:44:29,375 9nineM INFO [2.6012582778930664, 2.1873228549957275, 4.013382434844971, 21.424766540527344, 1.859406590461731, 1.5569621324539185, 39800, 0.00019865446220135974]
2023-02-02 14:47:40,416 9nineM INFO Train Epoch: 47 [89%]
2023-02-02 14:47:40,416 9nineM INFO [2.537325143814087, 2.2917749881744385, 4.962913513183594, 22.40337562561035, 1.802056908607483, 1.8988395929336548, 40000, 0.00019865446220135974]
2023-02-02 14:48:10,030 9nineM INFO Saving model and optimizer state at iteration 47 to ./logs\9nineM\G_40000.pth
2023-02-02 14:48:10,831 9nineM INFO Saving model and optimizer state at iteration 47 to ./logs\9nineM\D_40000.pth
2023-02-02 14:49:39,030 9nineM INFO ====> Epoch: 47
2023-02-02 14:51:56,765 9nineM INFO Train Epoch: 48 [13%]
2023-02-02 14:51:56,775 9nineM INFO [2.460188150405884, 2.198483943939209, 5.61447811126709, 24.503917694091797, 1.6865628957748413, 1.7873073816299438, 40200, 0.00019862963039358455]
2023-02-02 14:55:12,982 9nineM INFO Train Epoch: 48 [36%]
2023-02-02 14:55:12,983 9nineM INFO [2.6686158180236816, 2.1743640899658203, 3.8630940914154053, 21.379125595092773, 1.75010085105896, 1.4420665502548218, 40400, 0.00019862963039358455]
2023-02-02 14:55:42,607 9nineM INFO Saving model and optimizer state at iteration 48 to ./logs\9nineM\G_40400.pth
2023-02-02 14:55:43,445 9nineM INFO Saving model and optimizer state at iteration 48 to ./logs\9nineM\D_40400.pth
2023-02-02 14:58:58,566 9nineM INFO Train Epoch: 48 [60%]
2023-02-02 14:58:58,567 9nineM INFO [2.4863743782043457, 2.1956119537353516, 4.977295398712158, 24.05885124206543, 1.7768304347991943, 1.7557754516601562, 40600, 0.00019862963039358455]
2023-02-02 15:02:19,720 9nineM INFO Train Epoch: 48 [83%]
2023-02-02 15:02:19,720 9nineM INFO [2.5187461376190186, 2.2432589530944824, 5.117112636566162, 24.116090774536133, 1.727491021156311, 1.378271460533142, 40800, 0.00019862963039358455]
2023-02-02 15:02:49,673 9nineM INFO Saving model and optimizer state at iteration 48 to ./logs\9nineM\G_40800.pth
2023-02-02 15:02:50,489 9nineM INFO Saving model and optimizer state at iteration 48 to ./logs\9nineM\D_40800.pth
2023-02-02 15:05:16,480 9nineM INFO ====> Epoch: 48
2023-02-02 15:06:41,482 9nineM INFO Train Epoch: 49 [7%]
2023-02-02 15:06:41,483 9nineM INFO [2.1785848140716553, 2.7064008712768555, 8.207569122314453, 29.388254165649414, 1.765810489654541, 1.8694885969161987, 41000, 0.00019860480168978534]
2023-02-02 15:10:02,709 9nineM INFO Train Epoch: 49 [30%]
2023-02-02 15:10:02,710 9nineM INFO [2.3721823692321777, 2.299171209335327, 5.626714706420898, 26.651338577270508, 1.777482271194458, 1.8020421266555786, 41200, 0.00019860480168978534]
2023-02-02 15:10:32,740 9nineM INFO Saving model and optimizer state at iteration 49 to ./logs\9nineM\G_41200.pth
2023-02-02 15:10:33,604 9nineM INFO Saving model and optimizer state at iteration 49 to ./logs\9nineM\D_41200.pth
2023-02-02 15:13:33,381 9nineM INFO Train Epoch: 49 [53%]
2023-02-02 15:13:33,381 9nineM INFO [2.486915349960327, 2.3128888607025146, 4.383050441741943, 20.96324920654297, 1.733113408088684, 1.8083713054656982, 41400, 0.00019860480168978534]
2023-02-02 15:16:16,956 9nineM INFO Train Epoch: 49 [77%]
2023-02-02 15:16:16,957 9nineM INFO [2.6879286766052246, 2.271017074584961, 4.922100067138672, 24.012542724609375, 1.7113662958145142, 1.7479090690612793, 41600, 0.00019860480168978534]
2023-02-02 15:16:42,055 9nineM INFO Saving model and optimizer state at iteration 49 to ./logs\9nineM\G_41600.pth
2023-02-02 15:16:42,691 9nineM INFO Saving model and optimizer state at iteration 49 to ./logs\9nineM\D_41600.pth
2023-02-02 15:19:24,612 9nineM INFO ====> Epoch: 49
2023-02-02 15:19:51,775 9nineM INFO Train Epoch: 50 [0%]
2023-02-02 15:19:51,777 9nineM INFO [2.463775157928467, 2.184429407119751, 4.749098300933838, 24.9190673828125, 1.793853521347046, 1.369109869003296, 41800, 0.0001985799760895741]
2023-02-02 15:22:35,769 9nineM INFO Train Epoch: 50 [24%]
2023-02-02 15:22:35,770 9nineM INFO [2.6144039630889893, 2.0969908237457275, 4.495172023773193, 22.01717758178711, 1.685788631439209, 1.6401894092559814, 42000, 0.0001985799760895741]
2023-02-02 15:23:00,837 9nineM INFO Saving model and optimizer state at iteration 50 to ./logs\9nineM\G_42000.pth
2023-02-02 15:23:01,489 9nineM INFO Saving model and optimizer state at iteration 50 to ./logs\9nineM\D_42000.pth
2023-02-02 15:25:43,864 9nineM INFO Train Epoch: 50 [47%]
2023-02-02 15:25:43,865 9nineM INFO [2.700957775115967, 2.116952657699585, 4.502313613891602, 23.029130935668945, 1.7644517421722412, 1.8445117473602295, 42200, 0.0001985799760895741]
2023-02-02 15:28:29,857 9nineM INFO Train Epoch: 50 [71%]
2023-02-02 15:28:29,858 9nineM INFO [2.456376552581787, 2.299602746963501, 6.077450275421143, 25.025371551513672, 1.7823113203048706, 1.8349579572677612, 42400, 0.0001985799760895741]
2023-02-02 15:28:57,158 9nineM INFO Saving model and optimizer state at iteration 50 to ./logs\9nineM\G_42400.pth
2023-02-02 15:28:57,897 9nineM INFO Saving model and optimizer state at iteration 50 to ./logs\9nineM\D_42400.pth
2023-02-02 15:31:44,944 9nineM INFO Train Epoch: 50 [94%]
2023-02-02 15:31:44,945 9nineM INFO [2.4654319286346436, 2.4112114906311035, 6.451958656311035, 26.50853729248047, 1.706529140472412, 1.7248282432556152, 42600, 0.0001985799760895741]
2023-02-02 15:32:27,113 9nineM INFO ====> Epoch: 50
2023-02-02 15:34:55,644 9nineM INFO Train Epoch: 51 [18%]
2023-02-02 15:34:55,645 9nineM INFO [2.805753231048584, 2.028660297393799, 3.341474771499634, 20.90137481689453, 1.753252625465393, 1.6976696252822876, 42800, 0.0001985551535925629]
2023-02-02 15:35:22,106 9nineM INFO Saving model and optimizer state at iteration 51 to ./logs\9nineM\G_42800.pth
2023-02-02 15:35:22,773 9nineM INFO Saving model and optimizer state at iteration 51 to ./logs\9nineM\D_42800.pth
2023-02-02 15:38:08,535 9nineM INFO Train Epoch: 51 [41%]
2023-02-02 15:38:08,536 9nineM INFO [2.664698839187622, 1.9130167961120605, 4.023746967315674, 20.181114196777344, 1.710791826248169, 1.5688831806182861, 43000, 0.0001985551535925629]
2023-02-02 15:40:55,351 9nineM INFO Train Epoch: 51 [64%]
2023-02-02 15:40:55,353 9nineM INFO [2.577136754989624, 2.080090284347534, 4.574312210083008, 24.65957260131836, 1.8054012060165405, 1.6363075971603394, 43200, 0.0001985551535925629]
2023-02-02 15:41:22,338 9nineM INFO Saving model and optimizer state at iteration 51 to ./logs\9nineM\G_43200.pth
2023-02-02 15:41:23,084 9nineM INFO Saving model and optimizer state at iteration 51 to ./logs\9nineM\D_43200.pth
2023-02-02 15:44:10,433 9nineM INFO Train Epoch: 51 [88%]
2023-02-02 15:44:10,433 9nineM INFO [2.5996923446655273, 2.2468984127044678, 4.06203031539917, 20.609617233276367, 1.8627171516418457, 1.5727742910385132, 43400, 0.0001985551535925629]
2023-02-02 15:45:35,675 9nineM INFO ====> Epoch: 51
2023-02-02 15:47:21,283 9nineM INFO Train Epoch: 52 [11%]
2023-02-02 15:47:21,293 9nineM INFO [2.6132054328918457, 2.051703929901123, 4.673154830932617, 24.30799674987793, 1.7467679977416992, 1.7793018817901611, 43600, 0.00019853033419836382]
2023-02-02 15:47:48,595 9nineM INFO Saving model and optimizer state at iteration 52 to ./logs\9nineM\G_43600.pth
2023-02-02 15:47:49,360 9nineM INFO Saving model and optimizer state at iteration 52 to ./logs\9nineM\D_43600.pth
2023-02-02 15:50:36,771 9nineM INFO Train Epoch: 52 [35%]
2023-02-02 15:50:36,771 9nineM INFO [2.6676881313323975, 1.9795176982879639, 3.616584062576294, 19.46588706970215, 1.839368224143982, 1.296882152557373, 43800, 0.00019853033419836382]
2023-02-02 15:53:20,658 9nineM INFO Train Epoch: 52 [58%]
2023-02-02 15:53:20,659 9nineM INFO [2.509068250656128, 2.095923900604248, 5.1803879737854, 22.69829750061035, 1.7495630979537964, 1.5732603073120117, 44000, 0.00019853033419836382]
2023-02-02 15:53:47,135 9nineM INFO Saving model and optimizer state at iteration 52 to ./logs\9nineM\G_44000.pth
2023-02-02 15:53:47,808 9nineM INFO Saving model and optimizer state at iteration 52 to ./logs\9nineM\D_44000.pth
2023-02-02 15:56:33,551 9nineM INFO Train Epoch: 52 [82%]
2023-02-02 15:56:33,551 9nineM INFO [2.5284931659698486, 2.1809816360473633, 4.142852783203125, 20.85040855407715, 1.8455588817596436, 1.4270213842391968, 44200, 0.00019853033419836382]
2023-02-02 15:58:42,860 9nineM INFO ====> Epoch: 52
2023-02-02 15:59:44,790 9nineM INFO Train Epoch: 53 [5%]
2023-02-02 15:59:44,791 9nineM INFO [2.564565896987915, 2.054443597793579, 4.55912971496582, 23.13440704345703, 1.6704975366592407, 1.541869044303894, 44400, 0.000198505517906589]
2023-02-02 16:00:11,151 9nineM INFO Saving model and optimizer state at iteration 53 to ./logs\9nineM\G_44400.pth
2023-02-02 16:00:11,901 9nineM INFO Saving model and optimizer state at iteration 53 to ./logs\9nineM\D_44400.pth
2023-02-02 16:02:57,194 9nineM INFO Train Epoch: 53 [29%]
2023-02-02 16:02:57,204 9nineM INFO [2.3977904319763184, 2.3497087955474854, 6.685423851013184, 27.520832061767578, 1.7616844177246094, 1.935625433921814, 44600, 0.000198505517906589]
2023-02-02 16:05:41,516 9nineM INFO Train Epoch: 53 [52%]
2023-02-02 16:05:41,516 9nineM INFO [2.6922078132629395, 2.2271242141723633, 4.273469924926758, 20.765108108520508, 1.725816249847412, 1.4365458488464355, 44800, 0.000198505517906589]
2023-02-02 16:06:07,955 9nineM INFO Saving model and optimizer state at iteration 53 to ./logs\9nineM\G_44800.pth
2023-02-02 16:06:08,650 9nineM INFO Saving model and optimizer state at iteration 53 to ./logs\9nineM\D_44800.pth
2023-02-02 16:08:54,321 9nineM INFO Train Epoch: 53 [75%]
2023-02-02 16:08:54,321 9nineM INFO [2.4816393852233887, 2.250178098678589, 4.750300407409668, 23.00159454345703, 1.9175653457641602, 1.7297017574310303, 45000, 0.000198505517906589]
2023-02-02 16:11:41,810 9nineM INFO Train Epoch: 53 [99%]
2023-02-02 16:11:41,810 9nineM INFO [2.644486665725708, 2.002166986465454, 3.7238545417785645, 20.601802825927734, 1.9655804634094238, 1.1942297220230103, 45200, 0.000198505517906589]
2023-02-02 16:12:10,558 9nineM INFO Saving model and optimizer state at iteration 53 to ./logs\9nineM\G_45200.pth
2023-02-02 16:12:11,255 9nineM INFO Saving model and optimizer state at iteration 53 to ./logs\9nineM\D_45200.pth
2023-02-02 16:12:19,688 9nineM INFO ====> Epoch: 53
2023-02-02 16:15:24,771 9nineM INFO Train Epoch: 54 [22%]
2023-02-02 16:15:24,782 9nineM INFO [1.9965319633483887, 2.8392884731292725, 8.502004623413086, 29.19854164123535, 2.0257582664489746, 2.058742046356201, 45400, 0.00019848070471685067]
2023-02-02 16:18:13,134 9nineM INFO Train Epoch: 54 [46%]
2023-02-02 16:18:13,135 9nineM INFO [2.5347115993499756, 2.2828731536865234, 4.994711399078369, 22.087730407714844, 1.8718558549880981, 1.5664105415344238, 45600, 0.00019848070471685067]
2023-02-02 16:18:40,828 9nineM INFO Saving model and optimizer state at iteration 54 to ./logs\9nineM\G_45600.pth
2023-02-02 16:18:41,505 9nineM INFO Saving model and optimizer state at iteration 54 to ./logs\9nineM\D_45600.pth
2023-02-02 16:21:28,503 9nineM INFO Train Epoch: 54 [69%]
2023-02-02 16:21:28,503 9nineM INFO [2.6793789863586426, 2.0097861289978027, 3.7003061771392822, 18.602724075317383, 1.7506279945373535, 1.499576449394226, 45800, 0.00019848070471685067]
2023-02-02 16:24:16,524 9nineM INFO Train Epoch: 54 [93%]
2023-02-02 16:24:16,526 9nineM INFO [2.4813101291656494, 2.2298691272735596, 4.734545707702637, 22.057920455932617, 1.744640827178955, 1.5977402925491333, 46000, 0.00019848070471685067]
2023-02-02 16:24:44,547 9nineM INFO Saving model and optimizer state at iteration 54 to ./logs\9nineM\G_46000.pth
2023-02-02 16:24:45,243 9nineM INFO Saving model and optimizer state at iteration 54 to ./logs\9nineM\D_46000.pth
2023-02-02 16:25:36,975 9nineM INFO ====> Epoch: 54
2023-02-02 16:27:57,670 9nineM INFO Train Epoch: 55 [16%]
2023-02-02 16:27:57,670 9nineM INFO [2.5409350395202637, 2.2759337425231934, 5.337271213531494, 23.66328239440918, 1.7852931022644043, 1.6941461563110352, 46200, 0.00019845589462876104]
2023-02-02 16:30:45,982 9nineM INFO Train Epoch: 55 [40%]
2023-02-02 16:30:45,982 9nineM INFO [2.5152130126953125, 2.3854804039001465, 4.660080909729004, 22.114763259887695, 1.690419316291809, 1.7361944913864136, 46400, 0.00019845589462876104]
2023-02-02 16:31:13,172 9nineM INFO Saving model and optimizer state at iteration 55 to ./logs\9nineM\G_46400.pth
2023-02-02 16:31:14,013 9nineM INFO Saving model and optimizer state at iteration 55 to ./logs\9nineM\D_46400.pth
2023-02-02 16:34:01,754 9nineM INFO Train Epoch: 55 [63%]
2023-02-02 16:34:01,755 9nineM INFO [2.653305768966675, 2.309873104095459, 3.7192981243133545, 17.845861434936523, 1.8192013502120972, 1.4677693843841553, 46600, 0.00019845589462876104]
2023-02-02 16:36:46,198 9nineM INFO Train Epoch: 55 [87%]
2023-02-02 16:36:46,198 9nineM INFO [2.3867712020874023, 2.7563436031341553, 5.9804511070251465, 20.136432647705078, 1.6614503860473633, 1.5255028009414673, 46800, 0.00019845589462876104]
2023-02-02 16:37:12,981 9nineM INFO Saving model and optimizer state at iteration 55 to ./logs\9nineM\G_46800.pth
2023-02-02 16:37:13,670 9nineM INFO Saving model and optimizer state at iteration 55 to ./logs\9nineM\D_46800.pth
2023-02-02 16:38:48,470 9nineM INFO ====> Epoch: 55
2023-02-02 16:40:25,286 9nineM INFO Train Epoch: 56 [10%]
2023-02-02 16:40:25,287 9nineM INFO [2.5249319076538086, 2.1532249450683594, 3.879249095916748, 21.559656143188477, 1.8102107048034668, 1.5574270486831665, 47000, 0.00019843108764193245]
2023-02-02 16:43:10,479 9nineM INFO Train Epoch: 56 [33%]
2023-02-02 16:43:10,479 9nineM INFO [2.5880095958709717, 1.922254204750061, 4.0028252601623535, 20.93564796447754, 1.9858158826828003, 1.760013222694397, 47200, 0.00019843108764193245]
2023-02-02 16:43:37,053 9nineM INFO Saving model and optimizer state at iteration 56 to ./logs\9nineM\G_47200.pth
2023-02-02 16:43:37,741 9nineM INFO Saving model and optimizer state at iteration 56 to ./logs\9nineM\D_47200.pth
2023-02-02 16:46:22,741 9nineM INFO Train Epoch: 56 [57%]
2023-02-02 16:46:22,741 9nineM INFO [2.9637508392333984, 2.096416711807251, 4.352644920349121, 20.849790573120117, 1.6902706623077393, 1.75706946849823, 47400, 0.00019843108764193245]
2023-02-02 16:49:07,118 9nineM INFO Train Epoch: 56 [80%]
2023-02-02 16:49:07,118 9nineM INFO [2.1476147174835205, 2.6701338291168213, 6.902968406677246, 24.535120010375977, 1.9021955728530884, 1.9492253065109253, 47600, 0.00019843108764193245]
2023-02-02 16:49:33,816 9nineM INFO Saving model and optimizer state at iteration 56 to ./logs\9nineM\G_47600.pth
2023-02-02 16:49:34,491 9nineM INFO Saving model and optimizer state at iteration 56 to ./logs\9nineM\D_47600.pth
2023-02-02 16:51:55,017 9nineM INFO ====> Epoch: 56
2023-02-02 16:52:46,283 9nineM INFO Train Epoch: 57 [4%]
2023-02-02 16:52:46,284 9nineM INFO [2.5692505836486816, 1.8915231227874756, 3.525790214538574, 16.598825454711914, 1.866289496421814, 1.5789271593093872, 47800, 0.0001984062837559772]
2023-02-03 00:59:09,197 9nineM INFO {'train': {'log_interval': 200, 'eval_interval': 400, 'seed': 1234, 'epochs': 1000, 'learning_rate': 0.0002, 'betas': [0.8, 0.99], 'eps': 1e-09, 'batch_size': 16, 'fp16_run': False, 'lr_decay': 0.999875, 'segment_size': 8192, 'init_lr_ratio': 1, 'warmup_epochs': 0, 'c_mel': 45, 'c_kl': 1.0}, 'data': {'training_files': 'filelists/9nine_multi/filelists/MultiNoHaru_train.txt.cleaned', 'validation_files': 'filelists/9nine_multi/filelists/MultiNoHaru_valid.txt.cleaned', 'text_cleaners': ['japanese_cleaners2'], 'max_wav_value': 32768.0, 'sampling_rate': 22050, 'filter_length': 1024, 'hop_length': 256, 'win_length': 1024, 'n_mel_channels': 80, 'mel_fmin': 0.0, 'mel_fmax': None, 'add_blank': True, 'n_speakers': 5, 'cleaned_text': True}, 'model': {'inter_channels': 192, 'hidden_channels': 192, 'filter_channels': 768, 'n_heads': 2, 'n_layers': 6, 'kernel_size': 3, 'p_dropout': 0.1, 'resblock': '1', 'resblock_kernel_sizes': [3, 7, 11], 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'upsample_rates': [8, 8, 2, 2], 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [16, 16, 4, 4], 'n_layers_q': 3, 'use_spectral_norm': False, 'gin_channels': 256}, 'model_dir': './logs\\9nineM', 'ckptG': None, 'ckptD': None}
2023-02-03 00:59:19,434 9nineM INFO Loaded checkpoint './logs\9nineM\G_47600.pth' (iteration 56)
2023-02-03 00:59:20,042 9nineM INFO Loaded checkpoint './logs\9nineM\D_47600.pth' (iteration 56)
2023-02-03 01:01:32,258 9nineM INFO Train Epoch: 56 [10%]
2023-02-03 01:01:32,259 9nineM INFO [2.672912120819092, 2.103388547897339, 3.3316500186920166, 18.46944236755371, 1.8204302787780762, 1.5436434745788574, 47000, 0.0001984062837559772]
2023-02-03 01:04:51,809 9nineM INFO Train Epoch: 56 [33%]
2023-02-03 01:04:51,810 9nineM INFO [2.5974044799804688, 2.219480514526367, 4.528825759887695, 22.80307388305664, 1.9853324890136719, 1.827863335609436, 47200, 0.0001984062837559772]
2023-02-03 01:05:26,880 9nineM INFO Saving model and optimizer state at iteration 56 to ./logs\9nineM\G_47200.pth
2023-02-03 01:05:27,870 9nineM INFO Saving model and optimizer state at iteration 56 to ./logs\9nineM\D_47200.pth
2023-02-03 01:08:37,022 9nineM INFO Train Epoch: 56 [57%]
2023-02-03 01:08:37,022 9nineM INFO [2.5025136470794678, 2.3158249855041504, 5.260532855987549, 23.464736938476562, 1.7083802223205566, 1.42533540725708, 47400, 0.0001984062837559772]
2023-02-03 01:11:50,836 9nineM INFO Train Epoch: 56 [80%]
2023-02-03 01:11:50,837 9nineM INFO [2.3016281127929688, 2.4068126678466797, 6.510300636291504, 24.71748924255371, 1.8946081399917603, 1.96099853515625, 47600, 0.0001984062837559772]
2023-02-03 01:12:27,402 9nineM INFO Saving model and optimizer state at iteration 56 to ./logs\9nineM\G_47600.pth
2023-02-03 01:12:28,293 9nineM INFO Saving model and optimizer state at iteration 56 to ./logs\9nineM\D_47600.pth
2023-02-03 01:15:08,052 9nineM INFO ====> Epoch: 56
2023-02-03 01:16:11,617 9nineM INFO Train Epoch: 57 [4%]
2023-02-03 01:16:11,618 9nineM INFO [2.4532408714294434, 2.4832754135131836, 4.645760536193848, 20.386123657226562, 1.8714056015014648, 1.524889588356018, 47800, 0.00019838148297050769]
2023-02-03 01:19:25,368 9nineM INFO Train Epoch: 57 [27%]
2023-02-03 01:19:25,369 9nineM INFO [2.6601028442382812, 2.1023452281951904, 2.7675955295562744, 17.59121322631836, 1.9114729166030884, 1.8272740840911865, 48000, 0.00019838148297050769]
2023-02-03 01:20:02,274 9nineM INFO Saving model and optimizer state at iteration 57 to ./logs\9nineM\G_48000.pth
2023-02-03 01:20:03,225 9nineM INFO Saving model and optimizer state at iteration 57 to ./logs\9nineM\D_48000.pth
2023-02-03 01:23:17,264 9nineM INFO Train Epoch: 57 [51%]
2023-02-03 01:23:17,265 9nineM INFO [2.4948978424072266, 2.387098789215088, 4.183628082275391, 21.69224739074707, 2.01405668258667, 1.340806484222412, 48200, 0.00019838148297050769]
2023-02-03 01:26:39,774 9nineM INFO Train Epoch: 57 [74%]
2023-02-03 01:26:39,775 9nineM INFO [2.624905824661255, 1.9847757816314697, 4.182816982269287, 19.71246910095215, 1.7404658794403076, 1.610998272895813, 48400, 0.00019838148297050769]
2023-02-03 01:27:16,349 9nineM INFO Saving model and optimizer state at iteration 57 to ./logs\9nineM\G_48400.pth
2023-02-03 01:27:17,311 9nineM INFO Saving model and optimizer state at iteration 57 to ./logs\9nineM\D_48400.pth
2023-02-03 01:30:29,876 9nineM INFO Train Epoch: 57 [98%]
2023-02-03 01:30:29,876 9nineM INFO [2.5206167697906494, 2.4818015098571777, 5.280219554901123, 23.578548431396484, 1.8270213603973389, 1.692426323890686, 48600, 0.00019838148297050769]
2023-02-03 01:30:51,035 9nineM INFO ====> Epoch: 57
2023-02-03 01:34:17,897 9nineM INFO Train Epoch: 58 [21%]
2023-02-03 01:34:17,898 9nineM INFO [2.44883394241333, 2.3168745040893555, 5.455172061920166, 23.473800659179688, 1.6408716440200806, 1.8296802043914795, 48800, 0.00019835668528513637]
2023-02-03 01:34:53,578 9nineM INFO Saving model and optimizer state at iteration 58 to ./logs\9nineM\G_48800.pth
2023-02-03 01:34:54,574 9nineM INFO Saving model and optimizer state at iteration 58 to ./logs\9nineM\D_48800.pth
2023-02-03 01:38:07,164 9nineM INFO Train Epoch: 58 [44%]
2023-02-03 01:38:07,164 9nineM INFO [2.432213544845581, 2.2860658168792725, 4.691568374633789, 20.705219268798828, 1.737753987312317, 1.2836068868637085, 49000, 0.00019835668528513637]
2023-02-03 01:41:24,273 9nineM INFO Train Epoch: 58 [68%]
2023-02-03 01:41:24,275 9nineM INFO [2.493086814880371, 2.4042367935180664, 5.666842460632324, 23.14779281616211, 1.7413671016693115, 1.5422581434249878, 49200, 0.00019835668528513637]
2023-02-03 01:42:00,153 9nineM INFO Saving model and optimizer state at iteration 58 to ./logs\9nineM\G_49200.pth
2023-02-03 01:42:01,223 9nineM INFO Saving model and optimizer state at iteration 58 to ./logs\9nineM\D_49200.pth
2023-02-03 01:45:15,474 9nineM INFO Train Epoch: 58 [91%]
2023-02-03 01:45:15,475 9nineM INFO [2.4014031887054443, 2.3078725337982178, 5.170658111572266, 22.265106201171875, 1.8241097927093506, 1.5589284896850586, 49400, 0.00019835668528513637]
2023-02-03 01:46:30,030 9nineM INFO ====> Epoch: 58
2023-02-03 01:49:06,827 9nineM INFO Train Epoch: 59 [15%]
2023-02-03 01:49:06,828 9nineM INFO [2.2942590713500977, 2.28958797454834, 6.129242420196533, 24.966899871826172, 1.9432786703109741, 1.4881407022476196, 49600, 0.00019833189069947573]
2023-02-03 01:49:42,533 9nineM INFO Saving model and optimizer state at iteration 59 to ./logs\9nineM\G_49600.pth
2023-02-03 01:49:43,509 9nineM INFO Saving model and optimizer state at iteration 59 to ./logs\9nineM\D_49600.pth
2023-02-03 01:52:55,392 9nineM INFO Train Epoch: 59 [38%]
2023-02-03 01:52:55,393 9nineM INFO [2.5896387100219727, 2.2113804817199707, 4.515007495880127, 21.540569305419922, 1.9031330347061157, 1.8028725385665894, 49800, 0.00019833189069947573]
2023-02-03 01:56:10,170 9nineM INFO Train Epoch: 59 [62%]
2023-02-03 01:56:10,171 9nineM INFO [2.4506797790527344, 2.2908849716186523, 5.1710357666015625, 23.37103843688965, 1.758582353591919, 1.8202123641967773, 50000, 0.00019833189069947573]
2023-02-03 01:56:46,124 9nineM INFO Saving model and optimizer state at iteration 59 to ./logs\9nineM\G_50000.pth
2023-02-03 01:56:47,149 9nineM INFO Saving model and optimizer state at iteration 59 to ./logs\9nineM\D_50000.pth
2023-02-03 01:59:59,819 9nineM INFO Train Epoch: 59 [85%]
2023-02-03 01:59:59,820 9nineM INFO [2.5517823696136475, 2.0422005653381348, 4.879603385925293, 22.73113441467285, 1.7835543155670166, 1.543338656425476, 50200, 0.00019833189069947573]
2023-02-03 02:02:04,251 9nineM INFO ====> Epoch: 59
2023-02-03 02:03:50,099 9nineM INFO Train Epoch: 60 [9%]
2023-02-03 02:03:50,100 9nineM INFO [2.3278772830963135, 2.625412940979004, 5.421267032623291, 24.34024429321289, 1.9122364521026611, 1.6058098077774048, 50400, 0.0001983070992131383]
2023-02-03 02:04:27,039 9nineM INFO Saving model and optimizer state at iteration 60 to ./logs\9nineM\G_50400.pth
2023-02-03 02:04:28,004 9nineM INFO Saving model and optimizer state at iteration 60 to ./logs\9nineM\D_50400.pth
2023-02-03 02:07:39,388 9nineM INFO Train Epoch: 60 [32%]
2023-02-03 02:07:39,388 9nineM INFO [2.5196664333343506, 2.361819267272949, 4.481662750244141, 19.837209701538086, 1.731720209121704, 1.2567310333251953, 50600, 0.0001983070992131383]
2023-02-03 02:10:55,322 9nineM INFO Train Epoch: 60 [55%]
2023-02-03 02:10:55,322 9nineM INFO [2.6364035606384277, 2.042539119720459, 4.1252899169921875, 19.209779739379883, 1.7461036443710327, 1.5589686632156372, 50800, 0.0001983070992131383]
2023-02-03 02:11:31,920 9nineM INFO Saving model and optimizer state at iteration 60 to ./logs\9nineM\G_50800.pth
2023-02-03 02:11:32,960 9nineM INFO Saving model and optimizer state at iteration 60 to ./logs\9nineM\D_50800.pth
2023-02-03 02:14:46,326 9nineM INFO Train Epoch: 60 [79%]
2023-02-03 02:14:46,336 9nineM INFO [2.5692458152770996, 2.1167807579040527, 4.07194709777832, 21.36824607849121, 1.70513916015625, 1.6159950494766235, 51000, 0.0001983070992131383]
2023-02-03 02:17:44,816 9nineM INFO ====> Epoch: 60
2023-02-03 02:18:39,025 9nineM INFO Train Epoch: 61 [2%]
2023-02-03 02:18:39,026 9nineM INFO [2.3709635734558105, 2.7240004539489746, 5.342936992645264, 23.202199935913086, 1.8721204996109009, 1.9001024961471558, 51200, 0.00019828231082573666]
2023-02-03 02:19:16,138 9nineM INFO Saving model and optimizer state at iteration 61 to ./logs\9nineM\G_51200.pth
2023-02-03 02:19:17,256 9nineM INFO Saving model and optimizer state at iteration 61 to ./logs\9nineM\D_51200.pth
2023-02-03 02:22:28,102 9nineM INFO Train Epoch: 61 [26%]
2023-02-03 02:22:28,103 9nineM INFO [2.1359126567840576, 2.51208758354187, 6.858147621154785, 24.276992797851562, 1.6832128763198853, 1.4411396980285645, 51400, 0.00019828231082573666]
2023-02-03 02:25:43,105 9nineM INFO Train Epoch: 61 [49%]
2023-02-03 02:25:43,106 9nineM INFO [2.5365309715270996, 1.978432536125183, 4.31061315536499, 19.38656997680664, 1.7489607334136963, 1.7873587608337402, 51600, 0.00019828231082573666]
2023-02-03 02:26:18,993 9nineM INFO Saving model and optimizer state at iteration 61 to ./logs\9nineM\G_51600.pth
2023-02-03 02:26:19,943 9nineM INFO Saving model and optimizer state at iteration 61 to ./logs\9nineM\D_51600.pth
2023-02-03 02:29:31,466 9nineM INFO Train Epoch: 61 [73%]
2023-02-03 02:29:31,467 9nineM INFO [2.633056163787842, 2.2176268100738525, 4.984248638153076, 22.168758392333984, 1.791223168373108, 1.8201674222946167, 51800, 0.00019828231082573666]
2023-02-03 02:32:45,473 9nineM INFO Train Epoch: 61 [96%]
2023-02-03 02:32:45,474 9nineM INFO [2.523571491241455, 2.285471200942993, 4.605067729949951, 22.316648483276367, 1.8400073051452637, 1.5887786149978638, 52000, 0.00019828231082573666]
2023-02-03 02:33:22,300 9nineM INFO Saving model and optimizer state at iteration 61 to ./logs\9nineM\G_52000.pth
2023-02-03 02:33:23,304 9nineM INFO Saving model and optimizer state at iteration 61 to ./logs\9nineM\D_52000.pth
2023-02-03 02:33:55,802 9nineM INFO ====> Epoch: 61
2023-02-03 02:37:06,959 9nineM INFO Train Epoch: 62 [20%]
2023-02-03 02:37:06,959 9nineM INFO [2.5635805130004883, 2.379089593887329, 6.037509918212891, 22.901443481445312, 1.7330048084259033, 1.8591387271881104, 52200, 0.00019825752553688343]
2023-02-03 02:40:20,118 9nineM INFO Train Epoch: 62 [43%]
2023-02-03 02:40:20,118 9nineM INFO [2.1720409393310547, 2.5727460384368896, 5.852151870727539, 22.293659210205078, 1.8660407066345215, 1.5443339347839355, 52400, 0.00019825752553688343]
2023-02-03 02:40:55,967 9nineM INFO Saving model and optimizer state at iteration 62 to ./logs\9nineM\G_52400.pth
2023-02-03 02:40:56,945 9nineM INFO Saving model and optimizer state at iteration 62 to ./logs\9nineM\D_52400.pth
2023-02-03 02:44:09,537 9nineM INFO Train Epoch: 62 [66%]
2023-02-03 02:44:09,539 9nineM INFO [2.4269766807556152, 2.2607569694519043, 5.32930326461792, 22.98223114013672, 1.7921234369277954, 1.46768057346344, 52600, 0.00019825752553688343]
2023-02-03 02:47:25,697 9nineM INFO Train Epoch: 62 [90%]
2023-02-03 02:47:25,698 9nineM INFO [2.4384925365448, 2.3430049419403076, 4.934988498687744, 22.603134155273438, 1.7610344886779785, 1.4807937145233154, 52800, 0.00019825752553688343]
2023-02-03 02:48:02,559 9nineM INFO Saving model and optimizer state at iteration 62 to ./logs\9nineM\G_52800.pth
2023-02-03 02:48:03,513 9nineM INFO Saving model and optimizer state at iteration 62 to ./logs\9nineM\D_52800.pth
2023-02-03 02:49:26,324 9nineM INFO ====> Epoch: 62
2023-02-03 02:51:48,737 9nineM INFO Train Epoch: 63 [13%]
2023-02-03 02:51:48,738 9nineM INFO [2.3474180698394775, 2.426311731338501, 5.142326831817627, 23.166309356689453, 1.6758217811584473, 1.5445367097854614, 53000, 0.0001982327433461913]
2023-02-03 02:55:02,542 9nineM INFO Train Epoch: 63 [37%]
2023-02-03 02:55:02,543 9nineM INFO [2.5135583877563477, 2.421907424926758, 4.6314616203308105, 20.88935089111328, 1.7283380031585693, 1.6252825260162354, 53200, 0.0001982327433461913]
2023-02-03 02:55:39,117 9nineM INFO Saving model and optimizer state at iteration 63 to ./logs\9nineM\G_53200.pth
2023-02-03 02:55:40,072 9nineM INFO Saving model and optimizer state at iteration 63 to ./logs\9nineM\D_53200.pth
2023-02-03 02:58:51,720 9nineM INFO Train Epoch: 63 [60%]
2023-02-03 02:58:51,722 9nineM INFO [2.370335102081299, 2.406524658203125, 5.648592948913574, 22.969852447509766, 1.8121955394744873, 1.631996989250183, 53400, 0.0001982327433461913]
2023-02-03 03:02:08,206 9nineM INFO Train Epoch: 63 [84%]
2023-02-03 03:02:08,206 9nineM INFO [2.431915521621704, 2.2778375148773193, 5.556666851043701, 24.222270965576172, 1.6881029605865479, 1.5792791843414307, 53600, 0.0001982327433461913]
2023-02-03 03:02:45,504 9nineM INFO Saving model and optimizer state at iteration 63 to ./logs\9nineM\G_53600.pth
2023-02-03 03:02:46,490 9nineM INFO Saving model and optimizer state at iteration 63 to ./logs\9nineM\D_53600.pth
2023-02-03 03:05:00,571 9nineM INFO ====> Epoch: 63
2023-02-03 03:06:33,216 9nineM INFO Train Epoch: 64 [7%]
2023-02-03 03:06:33,217 9nineM INFO [2.5584421157836914, 2.261146068572998, 5.403614044189453, 21.70271110534668, 3.9270589351654053, 1.7977157831192017, 53800, 0.00019820796425327303]
2023-02-03 03:09:45,697 9nineM INFO Train Epoch: 64 [31%]
2023-02-03 03:09:45,697 9nineM INFO [2.506709575653076, 2.453068733215332, 6.043850421905518, 24.06352996826172, 1.7487577199935913, 1.6727933883666992, 54000, 0.00019820796425327303]
2023-02-03 03:10:22,174 9nineM INFO Saving model and optimizer state at iteration 64 to ./logs\9nineM\G_54000.pth
2023-02-03 03:10:23,220 9nineM INFO Saving model and optimizer state at iteration 64 to ./logs\9nineM\D_54000.pth
2023-02-03 03:13:34,178 9nineM INFO Train Epoch: 64 [54%]
2023-02-03 03:13:34,178 9nineM INFO [2.5988712310791016, 2.013223171234131, 3.8378477096557617, 19.70365333557129, 1.9744824171066284, 1.527276873588562, 54200, 0.00019820796425327303]
2023-02-03 03:16:50,298 9nineM INFO Train Epoch: 64 [77%]
2023-02-03 03:16:50,298 9nineM INFO [2.5508663654327393, 2.197441816329956, 5.278398513793945, 21.889907836914062, 1.6981452703475952, 1.7705457210540771, 54400, 0.00019820796425327303]
2023-02-03 03:17:30,770 9nineM INFO Saving model and optimizer state at iteration 64 to ./logs\9nineM\G_54400.pth
2023-02-03 03:17:31,579 9nineM INFO Saving model and optimizer state at iteration 64 to ./logs\9nineM\D_54400.pth
2023-02-03 03:21:41,911 9nineM INFO ====> Epoch: 64
2023-02-03 03:22:22,015 9nineM INFO Train Epoch: 65 [1%]
2023-02-03 03:22:22,016 9nineM INFO [2.11804461479187, 2.680095911026001, 5.810821056365967, 20.727031707763672, 1.8702524900436401, 1.68907630443573, 54600, 0.00019818318825774137]
2023-02-03 03:27:20,692 9nineM INFO Train Epoch: 65 [24%]
2023-02-03 03:27:20,693 9nineM INFO [2.377493143081665, 2.5573155879974365, 5.29105806350708, 23.006086349487305, 3.8652234077453613, 1.7418180704116821, 54800, 0.00019818318825774137]
2023-02-03 03:27:56,525 9nineM INFO Saving model and optimizer state at iteration 65 to ./logs\9nineM\G_54800.pth
2023-02-03 03:27:57,351 9nineM INFO Saving model and optimizer state at iteration 65 to ./logs\9nineM\D_54800.pth
2023-02-03 03:32:47,303 9nineM INFO Train Epoch: 65 [48%]
2023-02-03 03:32:47,304 9nineM INFO [2.51495623588562, 2.165210247039795, 4.879878044128418, 22.3475399017334, 1.8575648069381714, 2.0317447185516357, 55000, 0.00019818318825774137]
2023-02-03 03:36:22,977 9nineM INFO Train Epoch: 65 [71%]
2023-02-03 03:36:22,978 9nineM INFO [2.4218292236328125, 2.371192693710327, 5.4800286293029785, 21.835460662841797, 1.8553683757781982, 1.3339478969573975, 55200, 0.00019818318825774137]
2023-02-03 03:36:57,075 9nineM INFO Saving model and optimizer state at iteration 65 to ./logs\9nineM\G_55200.pth
2023-02-03 03:36:58,130 9nineM INFO Saving model and optimizer state at iteration 65 to ./logs\9nineM\D_55200.pth
2023-02-03 03:41:02,853 9nineM INFO Train Epoch: 65 [95%]
2023-02-03 03:41:02,854 9nineM INFO [2.4818830490112305, 2.2685413360595703, 5.177450180053711, 21.700761795043945, 1.832390308380127, 1.9992364645004272, 55400, 0.00019818318825774137]
2023-02-03 03:41:47,561 9nineM INFO ====> Epoch: 65
2023-02-03 03:44:49,439 9nineM INFO Train Epoch: 66 [18%]
2023-02-03 03:44:49,439 9nineM INFO [2.459707260131836, 2.284942150115967, 4.610323905944824, 20.99444007873535, 1.7494850158691406, 1.8644267320632935, 55600, 0.00019815841535920914]
2023-02-03 03:45:24,611 9nineM INFO Saving model and optimizer state at iteration 66 to ./logs\9nineM\G_55600.pth
2023-02-03 03:45:25,573 9nineM INFO Saving model and optimizer state at iteration 66 to ./logs\9nineM\D_55600.pth
2023-02-03 03:48:38,191 9nineM INFO Train Epoch: 66 [42%]
2023-02-03 03:48:38,192 9nineM INFO [2.7035176753997803, 2.3940021991729736, 4.859534740447998, 21.582319259643555, 1.8283841609954834, 1.7707816362380981, 55800, 0.00019815841535920914]
2023-02-03 03:51:49,359 9nineM INFO Train Epoch: 66 [65%]
2023-02-03 03:51:49,359 9nineM INFO [2.607867479324341, 2.1679699420928955, 4.986110210418701, 22.950368881225586, 1.8008973598480225, 1.8243170976638794, 56000, 0.00019815841535920914]
2023-02-03 03:52:25,199 9nineM INFO Saving model and optimizer state at iteration 66 to ./logs\9nineM\G_56000.pth
2023-02-03 03:52:26,192 9nineM INFO Saving model and optimizer state at iteration 66 to ./logs\9nineM\D_56000.pth
2023-02-03 03:55:37,026 9nineM INFO Train Epoch: 66 [89%]
2023-02-03 03:55:37,036 9nineM INFO [2.4055895805358887, 2.4035286903381348, 5.224339962005615, 23.526596069335938, 1.7499163150787354, 1.6318963766098022, 56200, 0.00019815841535920914]
2023-02-03 03:57:10,552 9nineM INFO ====> Epoch: 66
2023-02-03 03:59:20,747 9nineM INFO Train Epoch: 67 [12%]
2023-02-03 03:59:20,748 9nineM INFO [2.2657783031463623, 2.4371931552886963, 7.117774486541748, 25.306419372558594, 1.7295277118682861, 1.7502403259277344, 56400, 0.00019813364555728923]
2023-02-03 03:59:56,552 9nineM INFO Saving model and optimizer state at iteration 67 to ./logs\9nineM\G_56400.pth
2023-02-03 03:59:57,508 9nineM INFO Saving model and optimizer state at iteration 67 to ./logs\9nineM\D_56400.pth
2023-02-03 04:03:09,072 9nineM INFO Train Epoch: 67 [35%]
2023-02-03 04:03:09,073 9nineM INFO [2.767900228500366, 2.1692662239074707, 4.149256229400635, 21.174406051635742, 1.8470003604888916, 1.7838845252990723, 56600, 0.00019813364555728923]
2023-02-03 04:06:18,640 9nineM INFO Train Epoch: 67 [59%]
2023-02-03 04:06:18,641 9nineM INFO [2.5033888816833496, 2.0516786575317383, 4.635260105133057, 20.66300392150879, 1.9004969596862793, 1.2426483631134033, 56800, 0.00019813364555728923]
2023-02-03 04:06:54,574 9nineM INFO Saving model and optimizer state at iteration 67 to ./logs\9nineM\G_56800.pth
2023-02-03 04:06:55,602 9nineM INFO Saving model and optimizer state at iteration 67 to ./logs\9nineM\D_56800.pth
2023-02-03 04:10:05,886 9nineM INFO Train Epoch: 67 [82%]
2023-02-03 04:10:05,886 9nineM INFO [2.275343894958496, 2.5893187522888184, 6.625726699829102, 25.04363250732422, 1.7368674278259277, 1.6008716821670532, 57000, 0.00019813364555728923]
2023-02-03 04:12:30,861 9nineM INFO ====> Epoch: 67
2023-02-03 04:13:50,275 9nineM INFO Train Epoch: 68 [6%]
2023-02-03 04:13:50,276 9nineM INFO [2.5386765003204346, 2.440680980682373, 5.077262878417969, 22.269128799438477, 1.749283790588379, 1.5236108303070068, 57200, 0.00019810887885159456]
2023-02-03 04:14:25,787 9nineM INFO Saving model and optimizer state at iteration 68 to ./logs\9nineM\G_57200.pth
2023-02-03 04:14:26,752 9nineM INFO Saving model and optimizer state at iteration 68 to ./logs\9nineM\D_57200.pth
2023-02-03 04:17:38,378 9nineM INFO Train Epoch: 68 [29%]
2023-02-03 04:17:38,379 9nineM INFO [2.5833661556243896, 2.1460273265838623, 5.135639190673828, 23.69635581970215, 1.7779978513717651, 1.9164893627166748, 57400, 0.00019810887885159456]
2023-02-03 04:20:50,177 9nineM INFO Train Epoch: 68 [53%]
2023-02-03 04:20:50,177 9nineM INFO [2.4862895011901855, 2.279574394226074, 5.097471237182617, 21.17926788330078, 1.7066378593444824, 1.8012689352035522, 57600, 0.00019810887885159456]
2023-02-03 04:21:26,004 9nineM INFO Saving model and optimizer state at iteration 68 to ./logs\9nineM\G_57600.pth
2023-02-03 04:21:26,997 9nineM INFO Saving model and optimizer state at iteration 68 to ./logs\9nineM\D_57600.pth
2023-02-03 04:24:39,212 9nineM INFO Train Epoch: 68 [76%]
2023-02-03 04:24:39,213 9nineM INFO [2.193986415863037, 2.6489603519439697, 6.275017261505127, 23.127561569213867, 1.6875288486480713, 1.6145249605178833, 57800, 0.00019810887885159456]
2023-02-03 04:27:49,754 9nineM INFO Train Epoch: 68 [100%]
2023-02-03 04:27:49,756 9nineM INFO [2.584716796875, 2.1586058139801025, 3.7279787063598633, 19.764524459838867, 1.6812318563461304, 1.5582759380340576, 58000, 0.00019810887885159456]
2023-02-03 04:28:25,577 9nineM INFO Saving model and optimizer state at iteration 68 to ./logs\9nineM\G_58000.pth
2023-02-03 04:28:26,556 9nineM INFO Saving model and optimizer state at iteration 68 to ./logs\9nineM\D_58000.pth
2023-02-03 04:28:31,711 9nineM INFO ====> Epoch: 68
2023-02-03 04:32:12,824 9nineM INFO Train Epoch: 69 [23%]
2023-02-03 04:32:12,825 9nineM INFO [2.393617868423462, 2.3776895999908447, 5.664454936981201, 23.724445343017578, 1.8494908809661865, 1.3909265995025635, 58200, 0.0001980841152417381]
2023-02-03 04:35:23,554 9nineM INFO Train Epoch: 69 [46%]
2023-02-03 04:35:23,554 9nineM INFO [2.5609912872314453, 2.114701509475708, 4.657586097717285, 21.051551818847656, 1.6989542245864868, 1.7439806461334229, 58400, 0.0001980841152417381]
2023-02-03 04:35:59,512 9nineM INFO Saving model and optimizer state at iteration 69 to ./logs\9nineM\G_58400.pth
2023-02-03 04:36:00,491 9nineM INFO Saving model and optimizer state at iteration 69 to ./logs\9nineM\D_58400.pth
2023-02-03 04:39:10,453 9nineM INFO Train Epoch: 69 [70%]
2023-02-03 04:39:10,453 9nineM INFO [2.5410313606262207, 2.229185104370117, 5.6162109375, 21.478355407714844, 1.8260700702667236, 1.6734628677368164, 58600, 0.0001980841152417381]
2023-02-03 04:42:20,309 9nineM INFO Train Epoch: 69 [93%]
2023-02-03 04:42:20,310 9nineM INFO [2.5465710163116455, 2.2258176803588867, 4.023758411407471, 19.937156677246094, 1.7602260112762451, 1.5172138214111328, 58800, 0.0001980841152417381]
2023-02-03 04:42:56,481 9nineM INFO Saving model and optimizer state at iteration 69 to ./logs\9nineM\G_58800.pth
2023-02-03 04:42:57,493 9nineM INFO Saving model and optimizer state at iteration 69 to ./logs\9nineM\D_58800.pth
2023-02-03 04:43:52,221 9nineM INFO ====> Epoch: 69
2023-02-03 04:46:41,280 9nineM INFO Train Epoch: 70 [17%]
2023-02-03 04:46:41,281 9nineM INFO [2.4627819061279297, 2.3296258449554443, 5.925930023193359, 24.470354080200195, 1.8671823740005493, 1.89864182472229, 59000, 0.00019805935472733287]
2023-02-03 04:49:51,875 9nineM INFO Train Epoch: 70 [40%]
2023-02-03 04:49:51,876 9nineM INFO [2.6727185249328613, 2.013561964035034, 3.91961669921875, 19.693506240844727, 1.796967625617981, 1.5389909744262695, 59200, 0.00019805935472733287]
2023-02-03 04:50:27,592 9nineM INFO Saving model and optimizer state at iteration 70 to ./logs\9nineM\G_59200.pth
2023-02-03 04:50:28,535 9nineM INFO Saving model and optimizer state at iteration 70 to ./logs\9nineM\D_59200.pth
2023-02-03 04:53:32,963 9nineM INFO Train Epoch: 70 [64%]
2023-02-03 04:53:32,964 9nineM INFO [2.6429226398468018, 2.2939488887786865, 5.161586284637451, 22.10187530517578, 1.583906650543213, 1.728223204612732, 59400, 0.00019805935472733287]
2023-02-03 04:56:17,586 9nineM INFO Train Epoch: 70 [87%]
2023-02-03 04:56:17,586 9nineM INFO [2.4202473163604736, 2.5460360050201416, 5.590799808502197, 22.982948303222656, 1.7700634002685547, 1.489729642868042, 59600, 0.00019805935472733287]
2023-02-03 04:56:44,645 9nineM INFO Saving model and optimizer state at iteration 70 to ./logs\9nineM\G_59600.pth
2023-02-03 04:56:45,298 9nineM INFO Saving model and optimizer state at iteration 70 to ./logs\9nineM\D_59600.pth
2023-02-03 04:58:17,075 9nineM INFO ====> Epoch: 70
2023-02-03 04:59:58,463 9nineM INFO Train Epoch: 71 [11%]
2023-02-03 04:59:58,463 9nineM INFO [2.582427740097046, 2.1536905765533447, 4.7381911277771, 20.809873580932617, 1.6572215557098389, 1.4732290506362915, 59800, 0.00019803459730799195]
2023-02-03 05:02:45,830 9nineM INFO Train Epoch: 71 [34%]
2023-02-03 05:02:45,831 9nineM INFO [2.4081552028656006, 2.325221538543701, 5.1794538497924805, 22.750572204589844, 1.6821101903915405, 1.5753097534179688, 60000, 0.00019803459730799195]
2023-02-03 05:03:13,356 9nineM INFO Saving model and optimizer state at iteration 71 to ./logs\9nineM\G_60000.pth
2023-02-03 05:03:14,019 9nineM INFO Saving model and optimizer state at iteration 71 to ./logs\9nineM\D_60000.pth
2023-02-03 05:06:00,180 9nineM INFO Train Epoch: 71 [57%]
2023-02-03 05:06:00,180 9nineM INFO [2.515235185623169, 2.389220952987671, 4.70564079284668, 21.365650177001953, 1.8769023418426514, 1.3444002866744995, 60200, 0.00019803459730799195]
2023-02-03 05:08:45,422 9nineM INFO Train Epoch: 71 [81%]
2023-02-03 05:08:45,432 9nineM INFO [2.3964056968688965, 2.4605460166931152, 5.22156286239624, 22.29313087463379, 1.717556118965149, 1.6100229024887085, 60400, 0.00019803459730799195]
2023-02-03 05:09:12,854 9nineM INFO Saving model and optimizer state at iteration 71 to ./logs\9nineM\G_60400.pth
2023-02-03 05:09:13,518 9nineM INFO Saving model and optimizer state at iteration 71 to ./logs\9nineM\D_60400.pth
2023-02-03 05:11:30,482 9nineM INFO ====> Epoch: 71
2023-02-03 05:12:27,666 9nineM INFO Train Epoch: 72 [4%]
2023-02-03 05:12:27,667 9nineM INFO [2.5781455039978027, 2.2156596183776855, 4.438287258148193, 21.295211791992188, 1.7262805700302124, 1.6773481369018555, 60600, 0.00019800984298332845]
2023-02-03 05:15:14,714 9nineM INFO Train Epoch: 72 [28%]
2023-02-03 05:15:14,714 9nineM INFO [2.0034523010253906, 2.7177186012268066, 8.564760208129883, 24.744157791137695, 1.79685378074646, 2.0481743812561035, 60800, 0.00019800984298332845]
2023-02-03 05:15:42,508 9nineM INFO Saving model and optimizer state at iteration 72 to ./logs\9nineM\G_60800.pth
2023-02-03 05:15:43,369 9nineM INFO Saving model and optimizer state at iteration 72 to ./logs\9nineM\D_60800.pth
2023-02-03 05:18:28,279 9nineM INFO Train Epoch: 72 [51%]
2023-02-03 05:18:28,280 9nineM INFO [2.4995293617248535, 2.5850839614868164, 5.889671325683594, 23.41088104248047, 1.725574254989624, 1.8313080072402954, 61000, 0.00019800984298332845]
2023-02-03 05:21:15,809 9nineM INFO Train Epoch: 72 [75%]
2023-02-03 05:21:15,810 9nineM INFO [2.5919060707092285, 2.217766046524048, 4.825982093811035, 21.60723114013672, 1.6928209066390991, 1.6144503355026245, 61200, 0.00019800984298332845]
2023-02-03 05:21:43,645 9nineM INFO Saving model and optimizer state at iteration 72 to ./logs\9nineM\G_61200.pth
2023-02-03 05:21:44,298 9nineM INFO Saving model and optimizer state at iteration 72 to ./logs\9nineM\D_61200.pth
2023-02-03 19:58:13,560 9nineM INFO Train Epoch: 72 [98%]
2023-02-03 19:58:13,561 9nineM INFO [2.799675703048706, 1.876345157623291, 2.7222440242767334, 17.285810470581055, 1.807011604309082, 1.583828091621399, 61400, 0.00019800984298332845]
2023-02-03 19:58:29,596 9nineM INFO ====> Epoch: 72
2023-02-06 04:19:23,087 9nineM INFO {'train': {'log_interval': 200, 'eval_interval': 400, 'seed': 1234, 'epochs': 1000, 'learning_rate': 0.0002, 'betas': [0.8, 0.99], 'eps': 1e-09, 'batch_size': 16, 'fp16_run': False, 'lr_decay': 0.999875, 'segment_size': 8192, 'init_lr_ratio': 1, 'warmup_epochs': 0, 'c_mel': 45, 'c_kl': 1.0}, 'data': {'training_files': 'filelists/9nine_multi/filelists/MultiNoHaru_train.txt.cleaned', 'validation_files': 'filelists/9nine_multi/filelists/MultiNoHaru_valid.txt.cleaned', 'text_cleaners': ['japanese_cleaners2'], 'max_wav_value': 32768.0, 'sampling_rate': 22050, 'filter_length': 1024, 'hop_length': 256, 'win_length': 1024, 'n_mel_channels': 80, 'mel_fmin': 0.0, 'mel_fmax': None, 'add_blank': True, 'n_speakers': 5, 'cleaned_text': True}, 'model': {'inter_channels': 192, 'hidden_channels': 192, 'filter_channels': 768, 'n_heads': 2, 'n_layers': 6, 'kernel_size': 3, 'p_dropout': 0.1, 'resblock': '1', 'resblock_kernel_sizes': [3, 7, 11], 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'upsample_rates': [8, 8, 2, 2], 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [16, 16, 4, 4], 'n_layers_q': 3, 'use_spectral_norm': False, 'gin_channels': 256}, 'model_dir': './logs\\9nineM', 'ckptG': None, 'ckptD': None}
2023-02-06 04:19:33,701 9nineM INFO Loaded checkpoint './logs\9nineM\G_61200.pth' (iteration 72)
2023-02-06 04:19:34,481 9nineM INFO Loaded checkpoint './logs\9nineM\D_61200.pth' (iteration 72)
2023-02-06 04:20:52,238 9nineM INFO Train Epoch: 72 [4%]
2023-02-06 04:20:52,240 9nineM INFO [2.4905245304107666, 2.4353814125061035, 4.857059478759766, 21.026994705200195, 1.728440523147583, 1.6196600198745728, 60600, 0.00019798509175295552]
2023-02-06 04:23:55,642 9nineM INFO Train Epoch: 72 [28%]
2023-02-06 04:23:55,643 9nineM INFO [2.456995725631714, 2.3115909099578857, 6.684133529663086, 24.83147621154785, 1.795435905456543, 1.773382544517517, 60800, 0.00019798509175295552]
2023-02-06 04:24:29,246 9nineM INFO Saving model and optimizer state at iteration 72 to ./logs\9nineM\G_60800.pth
2023-02-06 04:24:30,145 9nineM INFO Saving model and optimizer state at iteration 72 to ./logs\9nineM\D_60800.pth
2023-02-06 04:27:24,219 9nineM INFO Train Epoch: 72 [51%]
2023-02-06 04:27:24,220 9nineM INFO [2.3354060649871826, 2.769453287124634, 5.869713306427002, 22.62506103515625, 1.706385850906372, 1.8073004484176636, 61000, 0.00019798509175295552]
2023-02-06 04:30:18,799 9nineM INFO Train Epoch: 72 [75%]
2023-02-06 04:30:18,799 9nineM INFO [2.2391738891601562, 2.6108973026275635, 5.128167629241943, 21.239099502563477, 1.7100787162780762, 1.8996784687042236, 61200, 0.00019798509175295552]
2023-02-06 04:30:51,424 9nineM INFO Saving model and optimizer state at iteration 72 to ./logs\9nineM\G_61200.pth
2023-02-06 04:30:52,136 9nineM INFO Saving model and optimizer state at iteration 72 to ./logs\9nineM\D_61200.pth
2023-02-06 04:33:40,605 9nineM INFO Train Epoch: 72 [98%]
2023-02-06 04:33:40,606 9nineM INFO [2.6712112426757812, 2.091658353805542, 2.7821426391601562, 17.237686157226562, 1.82709801197052, 1.3094412088394165, 61400, 0.00019798509175295552]
2023-02-06 04:33:54,254 9nineM INFO ====> Epoch: 72
2023-02-06 04:36:58,123 9nineM INFO Train Epoch: 73 [22%]
2023-02-06 04:36:58,124 9nineM INFO [2.4204890727996826, 2.2256619930267334, 5.238700866699219, 21.909423828125, 1.688030481338501, 1.5041248798370361, 61600, 0.0001979603436164864]
2023-02-06 04:37:31,074 9nineM INFO Saving model and optimizer state at iteration 73 to ./logs\9nineM\G_61600.pth
2023-02-06 04:37:31,913 9nineM INFO Saving model and optimizer state at iteration 73 to ./logs\9nineM\D_61600.pth
2023-02-06 04:40:20,691 9nineM INFO Train Epoch: 73 [45%]
2023-02-06 04:40:20,692 9nineM INFO [2.297163724899292, 2.347593069076538, 5.843701362609863, 21.70340919494629, 1.6715729236602783, 1.7778856754302979, 61800, 0.0001979603436164864]
2023-02-06 04:43:07,830 9nineM INFO Train Epoch: 73 [68%]
2023-02-06 04:43:07,830 9nineM INFO [2.466874122619629, 2.3205671310424805, 5.398853302001953, 22.586332321166992, 1.7785080671310425, 1.6443525552749634, 62000, 0.0001979603436164864]
2023-02-06 04:43:39,933 9nineM INFO Saving model and optimizer state at iteration 73 to ./logs\9nineM\G_62000.pth
2023-02-06 04:43:40,965 9nineM INFO Saving model and optimizer state at iteration 73 to ./logs\9nineM\D_62000.pth
2023-02-06 04:46:26,421 9nineM INFO Train Epoch: 73 [92%]
2023-02-06 04:46:26,422 9nineM INFO [2.499178886413574, 2.3824784755706787, 4.614241123199463, 20.497652053833008, 1.9082872867584229, 1.589255452156067, 62200, 0.0001979603436164864]
2023-02-06 04:47:24,497 9nineM INFO ====> Epoch: 73
2023-02-06 04:49:43,316 9nineM INFO Train Epoch: 74 [15%]
2023-02-06 04:49:43,316 9nineM INFO [2.432863473892212, 2.816837787628174, 5.711406230926514, 22.893400192260742, 1.7619438171386719, 1.6729869842529297, 62400, 0.00019793559857353432]
2023-02-06 04:50:14,830 9nineM INFO Saving model and optimizer state at iteration 74 to ./logs\9nineM\G_62400.pth
2023-02-06 04:50:15,554 9nineM INFO Saving model and optimizer state at iteration 74 to ./logs\9nineM\D_62400.pth
2023-02-06 04:53:00,016 9nineM INFO Train Epoch: 74 [39%]
2023-02-06 04:53:00,016 9nineM INFO [2.2945990562438965, 2.665768623352051, 6.332032203674316, 23.053686141967773, 1.8312345743179321, 1.5201756954193115, 62600, 0.00019793559857353432]
2023-02-06 04:55:44,533 9nineM INFO Train Epoch: 74 [62%]
2023-02-06 04:55:44,533 9nineM INFO [2.482102155685425, 2.410092830657959, 5.942013263702393, 22.24520492553711, 1.692725419998169, 1.5181009769439697, 62800, 0.00019793559857353432]
2023-02-06 04:56:14,794 9nineM INFO Saving model and optimizer state at iteration 74 to ./logs\9nineM\G_62800.pth
2023-02-06 04:56:15,479 9nineM INFO Saving model and optimizer state at iteration 74 to ./logs\9nineM\D_62800.pth
2023-02-06 04:59:02,260 9nineM INFO Train Epoch: 74 [86%]
2023-02-06 04:59:02,260 9nineM INFO [2.519771099090576, 2.0773379802703857, 4.821554660797119, 21.217731475830078, 1.8580095767974854, 1.7496412992477417, 63000, 0.00019793559857353432]
2023-02-06 05:00:43,224 9nineM INFO ====> Epoch: 74
2023-02-06 05:02:16,834 9nineM INFO Train Epoch: 75 [9%]
2023-02-06 05:02:16,835 9nineM INFO [2.4103803634643555, 2.195044755935669, 4.877587795257568, 21.299474716186523, 1.725413203239441, 1.654306411743164, 63200, 0.00019791085662371262]
2023-02-06 05:02:48,357 9nineM INFO Saving model and optimizer state at iteration 75 to ./logs\9nineM\G_63200.pth
2023-02-06 05:02:49,051 9nineM INFO Saving model and optimizer state at iteration 75 to ./logs\9nineM\D_63200.pth
2023-02-06 05:05:34,596 9nineM INFO Train Epoch: 75 [33%]
2023-02-06 05:05:34,597 9nineM INFO [2.401853084564209, 2.258467674255371, 5.803826808929443, 21.338125228881836, 1.8000590801239014, 1.4500749111175537, 63400, 0.00019791085662371262]
2023-02-06 05:08:19,457 9nineM INFO Train Epoch: 75 [56%]
2023-02-06 05:08:19,457 9nineM INFO [2.5368406772613525, 2.3413407802581787, 6.009054183959961, 23.420373916625977, 1.695863962173462, 1.942280650138855, 63600, 0.00019791085662371262]
2023-02-06 05:08:50,372 9nineM INFO Saving model and optimizer state at iteration 75 to ./logs\9nineM\G_63600.pth
2023-02-06 05:08:51,405 9nineM INFO Saving model and optimizer state at iteration 75 to ./logs\9nineM\D_63600.pth
2023-02-06 05:11:38,046 9nineM INFO Train Epoch: 75 [79%]
2023-02-06 05:11:38,047 9nineM INFO [2.731710433959961, 2.398693561553955, 4.9033613204956055, 20.635700225830078, 1.6762090921401978, 1.7057929039001465, 63800, 0.00019791085662371262]
2023-02-06 05:14:04,588 9nineM INFO ====> Epoch: 75
2023-02-06 05:14:56,290 9nineM INFO Train Epoch: 76 [3%]
2023-02-06 05:14:56,291 9nineM INFO [2.266551971435547, 2.4041476249694824, 6.241879940032959, 20.23375701904297, 1.739053726196289, 1.4617226123809814, 64000, 0.00019788611776663464]
2023-02-06 05:15:28,171 9nineM INFO Saving model and optimizer state at iteration 76 to ./logs\9nineM\G_64000.pth
2023-02-06 05:15:28,900 9nineM INFO Saving model and optimizer state at iteration 76 to ./logs\9nineM\D_64000.pth
2023-02-06 05:18:13,967 9nineM INFO Train Epoch: 76 [26%]
2023-02-06 05:18:13,967 9nineM INFO [2.608781099319458, 2.4489901065826416, 4.1126251220703125, 19.619564056396484, 1.7689703702926636, 1.865809440612793, 64200, 0.00019788611776663464]
2023-02-06 05:20:56,605 9nineM INFO Train Epoch: 76 [50%]
2023-02-06 05:20:56,606 9nineM INFO [2.385148525238037, 2.502060890197754, 6.575152397155762, 24.20307159423828, 1.674390196800232, 1.6329617500305176, 64400, 0.00019788611776663464]
2023-02-06 05:21:25,733 9nineM INFO Saving model and optimizer state at iteration 76 to ./logs\9nineM\G_64400.pth
2023-02-06 05:21:26,481 9nineM INFO Saving model and optimizer state at iteration 76 to ./logs\9nineM\D_64400.pth
2023-02-06 05:24:10,848 9nineM INFO Train Epoch: 76 [73%]
2023-02-06 05:24:10,848 9nineM INFO [2.4705684185028076, 2.2331924438476562, 4.316597938537598, 21.17183494567871, 1.8557251691818237, 1.450272798538208, 64600, 0.00019788611776663464]
2023-02-06 05:26:54,935 9nineM INFO Train Epoch: 76 [97%]
2023-02-06 05:26:54,936 9nineM INFO [2.601595878601074, 2.2771596908569336, 5.144861221313477, 22.146696090698242, 1.7484124898910522, 1.5043407678604126, 64800, 0.00019788611776663464]
2023-02-06 05:27:23,905 9nineM INFO Saving model and optimizer state at iteration 76 to ./logs\9nineM\G_64800.pth
2023-02-06 05:27:24,936 9nineM INFO Saving model and optimizer state at iteration 76 to ./logs\9nineM\D_64800.pth
2023-02-06 05:27:48,334 9nineM INFO ====> Epoch: 76
2023-02-06 05:30:37,137 9nineM INFO Train Epoch: 77 [20%]
2023-02-06 05:30:37,137 9nineM INFO [2.365074634552002, 2.463613271713257, 5.400785446166992, 20.98668098449707, 1.7013943195343018, 1.6169242858886719, 65000, 0.0001978613820019138]
2023-02-06 05:33:20,757 9nineM INFO Train Epoch: 77 [44%]
2023-02-06 05:33:20,758 9nineM INFO [2.445028066635132, 2.237590789794922, 5.2281293869018555, 23.237245559692383, 1.736968755722046, 1.720275640487671, 65200, 0.0001978613820019138]
2023-02-06 05:33:50,107 9nineM INFO Saving model and optimizer state at iteration 77 to ./logs\9nineM\G_65200.pth
2023-02-06 05:33:50,773 9nineM INFO Saving model and optimizer state at iteration 77 to ./logs\9nineM\D_65200.pth
2023-02-06 05:36:35,113 9nineM INFO Train Epoch: 77 [67%]
2023-02-06 05:36:35,114 9nineM INFO [2.5210564136505127, 2.193607807159424, 4.394340991973877, 21.00632095336914, 1.795645833015442, 1.6523388624191284, 65400, 0.0001978613820019138]
2023-02-06 05:39:18,849 9nineM INFO Train Epoch: 77 [91%]
2023-02-06 05:39:18,849 9nineM INFO [2.5398499965667725, 2.335365056991577, 4.490217208862305, 19.484638214111328, 1.7037937641143799, 1.7897189855575562, 65600, 0.0001978613820019138]
2023-02-06 05:39:48,452 9nineM INFO Saving model and optimizer state at iteration 77 to ./logs\9nineM\G_65600.pth
2023-02-06 05:39:49,125 9nineM INFO Saving model and optimizer state at iteration 77 to ./logs\9nineM\D_65600.pth
2023-02-06 05:40:55,486 9nineM INFO ====> Epoch: 77
2023-02-06 05:42:59,001 9nineM INFO Train Epoch: 78 [14%]
2023-02-06 05:42:59,003 9nineM INFO [2.4388952255249023, 2.405015230178833, 4.805449962615967, 20.763015747070312, 1.807286024093628, 1.7616719007492065, 65800, 0.00019783664932916355]
2023-02-06 05:45:43,988 9nineM INFO Train Epoch: 78 [37%]
2023-02-06 05:45:43,988 9nineM INFO [2.264955759048462, 2.2813100814819336, 5.926263332366943, 24.083023071289062, 1.579649806022644, 1.7028638124465942, 66000, 0.00019783664932916355]
2023-02-06 05:46:14,480 9nineM INFO Saving model and optimizer state at iteration 78 to ./logs\9nineM\G_66000.pth
2023-02-06 05:46:15,162 9nineM INFO Saving model and optimizer state at iteration 78 to ./logs\9nineM\D_66000.pth
2023-02-06 05:49:00,678 9nineM INFO Train Epoch: 78 [61%]
2023-02-06 05:49:00,679 9nineM INFO [2.3051817417144775, 2.6702542304992676, 5.46689510345459, 22.072662353515625, 1.9787356853485107, 1.7422808408737183, 66200, 0.00019783664932916355]
2023-02-06 05:51:43,708 9nineM INFO Train Epoch: 78 [84%]
2023-02-06 05:51:43,709 9nineM INFO [2.4244790077209473, 2.3375325202941895, 5.385674953460693, 21.36229133605957, 1.8320544958114624, 1.6734129190444946, 66400, 0.00019783664932916355]
2023-02-06 05:52:12,773 9nineM INFO Saving model and optimizer state at iteration 78 to ./logs\9nineM\G_66400.pth
2023-02-06 05:52:13,541 9nineM INFO Saving model and optimizer state at iteration 78 to ./logs\9nineM\D_66400.pth
2023-02-06 05:54:03,122 9nineM INFO ====> Epoch: 78
2023-02-06 05:55:26,532 9nineM INFO Train Epoch: 79 [8%]
2023-02-06 05:55:26,532 9nineM INFO [2.3645448684692383, 2.5583982467651367, 5.855003833770752, 21.44668197631836, 1.8052489757537842, 1.861608862876892, 66600, 0.0001978119197479974]
2023-02-06 05:58:09,323 9nineM INFO Train Epoch: 79 [31%]
2023-02-06 05:58:09,324 9nineM INFO [2.2633349895477295, 2.7029590606689453, 6.055595397949219, 20.4661865234375, 1.68825101852417, 1.40994131565094, 66800, 0.0001978119197479974]
2023-02-06 05:58:38,869 9nineM INFO Saving model and optimizer state at iteration 79 to ./logs\9nineM\G_66800.pth
2023-02-06 05:58:39,561 9nineM INFO Saving model and optimizer state at iteration 79 to ./logs\9nineM\D_66800.pth
2023-02-06 06:01:24,574 9nineM INFO Train Epoch: 79 [55%]
2023-02-06 06:01:24,575 9nineM INFO [2.553617238998413, 2.3292808532714844, 5.63338041305542, 22.44329071044922, 1.7927372455596924, 1.6714777946472168, 67000, 0.0001978119197479974]
2023-02-06 06:04:09,185 9nineM INFO Train Epoch: 79 [78%]
2023-02-06 06:04:09,186 9nineM INFO [2.2242395877838135, 2.42453670501709, 6.259720802307129, 24.094356536865234, 1.759538173675537, 2.102372169494629, 67200, 0.0001978119197479974]
2023-02-06 06:04:39,911 9nineM INFO Saving model and optimizer state at iteration 79 to ./logs\9nineM\G_67200.pth
2023-02-06 06:04:40,945 9nineM INFO Saving model and optimizer state at iteration 79 to ./logs\9nineM\D_67200.pth
2023-02-06 06:07:13,955 9nineM INFO ====> Epoch: 79
2023-02-06 06:07:52,662 9nineM INFO Train Epoch: 80 [2%]
2023-02-06 06:07:52,663 9nineM INFO [2.4591546058654785, 2.247199535369873, 4.015508651733398, 19.516265869140625, 1.7036457061767578, 1.6470491886138916, 67400, 0.0001977871932580289]
2023-02-06 06:10:36,108 9nineM INFO Train Epoch: 80 [25%]
2023-02-06 06:10:36,109 9nineM INFO [2.5015718936920166, 2.36966872215271, 5.009028434753418, 20.039779663085938, 1.8621348142623901, 1.8031896352767944, 67600, 0.0001977871932580289]
2023-02-06 06:11:06,229 9nineM INFO Saving model and optimizer state at iteration 80 to ./logs\9nineM\G_67600.pth
2023-02-06 06:11:06,887 9nineM INFO Saving model and optimizer state at iteration 80 to ./logs\9nineM\D_67600.pth
2023-02-06 06:13:50,944 9nineM INFO Train Epoch: 80 [48%]
2023-02-06 06:13:50,945 9nineM INFO [2.483105182647705, 2.1891396045684814, 4.582153797149658, 20.420331954956055, 1.7401020526885986, 1.8074232339859009, 67800, 0.0001977871932580289]
2023-02-06 06:16:34,914 9nineM INFO Train Epoch: 80 [72%]
2023-02-06 06:16:34,915 9nineM INFO [2.465446949005127, 2.326713800430298, 4.555657386779785, 19.09385871887207, 1.7095659971237183, 1.7812799215316772, 68000, 0.0001977871932580289]
2023-02-06 06:17:04,264 9nineM INFO Saving model and optimizer state at iteration 80 to ./logs\9nineM\G_68000.pth
2023-02-06 06:17:04,974 9nineM INFO Saving model and optimizer state at iteration 80 to ./logs\9nineM\D_68000.pth
2023-02-06 06:19:49,384 9nineM INFO Train Epoch: 80 [95%]
2023-02-06 06:19:49,385 9nineM INFO [2.534393548965454, 2.290717363357544, 4.47852897644043, 18.6915283203125, 1.8048498630523682, 1.5194993019104004, 68200, 0.0001977871932580289]
2023-02-06 06:20:22,954 9nineM INFO ====> Epoch: 80
2023-02-06 06:23:01,154 9nineM INFO Train Epoch: 81 [19%]
2023-02-06 06:23:01,155 9nineM INFO [2.447075843811035, 2.4602949619293213, 5.389459133148193, 22.743417739868164, 1.6735265254974365, 1.9042701721191406, 68400, 0.00019776246985887165]
2023-02-06 06:23:30,658 9nineM INFO Saving model and optimizer state at iteration 81 to ./logs\9nineM\G_68400.pth
2023-02-06 06:23:31,317 9nineM INFO Saving model and optimizer state at iteration 81 to ./logs\9nineM\D_68400.pth
2023-02-06 06:26:15,683 9nineM INFO Train Epoch: 81 [42%]
2023-02-06 06:26:15,683 9nineM INFO [2.463613986968994, 2.263181686401367, 5.198321342468262, 20.553791046142578, 1.7596567869186401, 1.6983942985534668, 68600, 0.00019776246985887165]
2023-02-06 06:28:59,102 9nineM INFO Train Epoch: 81 [66%]
2023-02-06 06:28:59,102 9nineM INFO [2.4809608459472656, 2.0485968589782715, 5.3793439865112305, 21.732845306396484, 1.7214068174362183, 1.644992470741272, 68800, 0.00019776246985887165]
2023-02-06 06:29:29,318 9nineM INFO Saving model and optimizer state at iteration 81 to ./logs\9nineM\G_68800.pth
2023-02-06 06:29:30,299 9nineM INFO Saving model and optimizer state at iteration 81 to ./logs\9nineM\D_68800.pth
2023-02-06 06:32:15,266 9nineM INFO Train Epoch: 81 [89%]
2023-02-06 06:32:15,266 9nineM INFO [2.6072030067443848, 2.166703939437866, 4.1110992431640625, 22.301462173461914, 1.8661930561065674, 1.7933987379074097, 69000, 0.00019776246985887165]
2023-02-06 06:33:32,306 9nineM INFO ====> Epoch: 81
2023-02-06 06:35:29,074 9nineM INFO Train Epoch: 82 [13%]
2023-02-06 06:35:29,075 9nineM INFO [2.3665108680725098, 2.451719284057617, 5.408698558807373, 22.32443618774414, 1.7192881107330322, 1.540388584136963, 69200, 0.0001977377495501393]
2023-02-06 06:35:58,332 9nineM INFO Saving model and optimizer state at iteration 82 to ./logs\9nineM\G_69200.pth
2023-02-06 06:35:59,293 9nineM INFO Saving model and optimizer state at iteration 82 to ./logs\9nineM\D_69200.pth
2023-02-06 06:38:42,664 9nineM INFO Train Epoch: 82 [36%]
2023-02-06 06:38:42,665 9nineM INFO [2.7151167392730713, 2.011469841003418, 5.684447765350342, 22.217403411865234, 1.6232354640960693, 1.2984273433685303, 69400, 0.0001977377495501393]
2023-02-06 06:41:27,151 9nineM INFO Train Epoch: 82 [59%]
2023-02-06 06:41:27,152 9nineM INFO [2.4808833599090576, 2.1504311561584473, 4.597093105316162, 23.039443969726562, 1.7188286781311035, 1.7281453609466553, 69600, 0.0001977377495501393]
2023-02-06 06:41:56,782 9nineM INFO Saving model and optimizer state at iteration 82 to ./logs\9nineM\G_69600.pth
2023-02-06 06:41:57,829 9nineM INFO Saving model and optimizer state at iteration 82 to ./logs\9nineM\D_69600.pth
2023-02-06 06:44:41,047 9nineM INFO Train Epoch: 82 [83%]
2023-02-06 06:44:41,048 9nineM INFO [2.5977725982666016, 2.1633665561676025, 4.614894866943359, 20.658193588256836, 1.7138280868530273, 1.6857067346572876, 69800, 0.0001977377495501393]
2023-02-06 06:46:41,369 9nineM INFO ====> Epoch: 82
2023-02-06 06:47:53,130 9nineM INFO Train Epoch: 83 [6%]
2023-02-06 06:47:53,131 9nineM INFO [2.5026674270629883, 2.5217862129211426, 5.649263381958008, 22.40220069885254, 1.8129355907440186, 1.6959840059280396, 70000, 0.0001977130323314455]
2023-02-06 06:48:23,258 9nineM INFO Saving model and optimizer state at iteration 83 to ./logs\9nineM\G_70000.pth
2023-02-06 06:48:24,297 9nineM INFO Saving model and optimizer state at iteration 83 to ./logs\9nineM\D_70000.pth
2023-02-06 06:51:08,155 9nineM INFO Train Epoch: 83 [30%]
2023-02-06 06:51:08,155 9nineM INFO [2.1798133850097656, 2.7249562740325928, 6.645028114318848, 22.770557403564453, 1.7452046871185303, 1.8580926656723022, 70200, 0.0001977130323314455]
2023-02-06 06:53:53,498 9nineM INFO Train Epoch: 83 [53%]
2023-02-06 06:53:53,498 9nineM INFO [2.541210174560547, 2.201444625854492, 4.370961666107178, 19.41265296936035, 1.7169926166534424, 1.755746841430664, 70400, 0.0001977130323314455]
2023-02-06 06:54:22,407 9nineM INFO Saving model and optimizer state at iteration 83 to ./logs\9nineM\G_70400.pth
2023-02-06 06:54:23,076 9nineM INFO Saving model and optimizer state at iteration 83 to ./logs\9nineM\D_70400.pth
2023-02-06 06:57:05,720 9nineM INFO Train Epoch: 83 [77%]
2023-02-06 06:57:05,720 9nineM INFO [2.431915044784546, 2.4835550785064697, 5.7723283767700195, 21.41901969909668, 1.6493549346923828, 1.791164517402649, 70600, 0.0001977130323314455]
2023-02-06 06:59:49,534 9nineM INFO ====> Epoch: 83
2023-02-06 07:00:18,748 9nineM INFO Train Epoch: 84 [0%]
2023-02-06 07:00:18,749 9nineM INFO [2.513869285583496, 2.107764959335327, 4.408920764923096, 19.62989044189453, 1.6258065700531006, 1.6767607927322388, 70800, 0.00019768831820240408]
2023-02-06 07:00:48,180 9nineM INFO Saving model and optimizer state at iteration 84 to ./logs\9nineM\G_70800.pth
2023-02-06 07:00:49,224 9nineM INFO Saving model and optimizer state at iteration 84 to ./logs\9nineM\D_70800.pth
2023-02-06 07:03:32,265 9nineM INFO Train Epoch: 84 [24%]
2023-02-06 07:03:32,265 9nineM INFO [2.4345879554748535, 2.309798002243042, 4.741629123687744, 21.760465621948242, 1.7242400646209717, 1.506618857383728, 71000, 0.00019768831820240408]
2023-02-06 07:06:16,502 9nineM INFO Train Epoch: 84 [47%]
2023-02-06 07:06:16,502 9nineM INFO [2.479665756225586, 2.433314085006714, 5.1933674812316895, 21.31283187866211, 1.6841895580291748, 1.7562897205352783, 71200, 0.00019768831820240408]
2023-02-06 07:06:46,812 9nineM INFO Saving model and optimizer state at iteration 84 to ./logs\9nineM\G_71200.pth
2023-02-06 07:06:47,500 9nineM INFO Saving model and optimizer state at iteration 84 to ./logs\9nineM\D_71200.pth
2023-02-06 07:09:32,538 9nineM INFO Train Epoch: 84 [70%]
2023-02-06 07:09:32,539 9nineM INFO [2.40413236618042, 2.5912506580352783, 6.041769981384277, 22.648101806640625, 1.771620512008667, 1.703296422958374, 71400, 0.00019768831820240408]
2023-02-06 07:12:17,435 9nineM INFO Train Epoch: 84 [94%]
2023-02-06 07:12:17,436 9nineM INFO [2.358267068862915, 2.385530710220337, 5.9982075691223145, 22.88961410522461, 1.7426775693893433, 1.8333910703659058, 71600, 0.00019768831820240408]
2023-02-06 07:12:47,102 9nineM INFO Saving model and optimizer state at iteration 84 to ./logs\9nineM\G_71600.pth
2023-02-06 07:12:47,766 9nineM INFO Saving model and optimizer state at iteration 84 to ./logs\9nineM\D_71600.pth
2023-02-06 07:13:30,563 9nineM INFO ====> Epoch: 84
2023-02-06 07:16:01,426 9nineM INFO Train Epoch: 85 [17%]
2023-02-06 07:16:01,427 9nineM INFO [2.3528549671173096, 2.277402400970459, 5.613468647003174, 22.561620712280273, 1.7338169813156128, 1.8296408653259277, 71800, 0.00019766360716262876]
2023-02-06 07:18:45,800 9nineM INFO Train Epoch: 85 [41%]
2023-02-06 07:18:45,801 9nineM INFO [2.4195868968963623, 2.400357484817505, 6.125772953033447, 21.994230270385742, 1.966027021408081, 1.4489802122116089, 72000, 0.00019766360716262876]
2023-02-06 07:19:15,482 9nineM INFO Saving model and optimizer state at iteration 85 to ./logs\9nineM\G_72000.pth
2023-02-06 07:19:16,251 9nineM INFO Saving model and optimizer state at iteration 85 to ./logs\9nineM\D_72000.pth
2023-02-06 07:21:59,420 9nineM INFO Train Epoch: 85 [64%]
2023-02-06 07:21:59,421 9nineM INFO [2.51851487159729, 2.247016429901123, 6.0481486320495605, 23.90782928466797, 1.729480266571045, 1.576174020767212, 72200, 0.00019766360716262876]
2023-02-06 07:24:43,265 9nineM INFO Train Epoch: 85 [88%]
2023-02-06 07:24:43,266 9nineM INFO [2.529348850250244, 2.436415910720825, 4.762678146362305, 20.736583709716797, 1.6964658498764038, 1.4529114961624146, 72400, 0.00019766360716262876]
2023-02-06 07:25:13,730 9nineM INFO Saving model and optimizer state at iteration 85 to ./logs\9nineM\G_72400.pth
2023-02-06 07:25:14,397 9nineM INFO Saving model and optimizer state at iteration 85 to ./logs\9nineM\D_72400.pth
2023-02-06 07:26:40,149 9nineM INFO ====> Epoch: 85
2023-02-06 07:28:25,427 9nineM INFO Train Epoch: 86 [11%]
2023-02-06 07:28:25,428 9nineM INFO [2.436279535293579, 2.2832374572753906, 6.255619525909424, 22.62698745727539, 1.695105791091919, 1.2563732862472534, 72600, 0.00019763889921173343]
2023-02-06 07:31:09,401 9nineM INFO Train Epoch: 86 [35%]
2023-02-06 07:31:09,401 9nineM INFO [2.3377299308776855, 2.6488444805145264, 6.051377773284912, 24.113723754882812, 1.6612577438354492, 1.7706013917922974, 72800, 0.00019763889921173343]
2023-02-06 07:31:39,220 9nineM INFO Saving model and optimizer state at iteration 86 to ./logs\9nineM\G_72800.pth
2023-02-06 07:31:39,893 9nineM INFO Saving model and optimizer state at iteration 86 to ./logs\9nineM\D_72800.pth
2023-02-06 07:34:23,301 9nineM INFO Train Epoch: 86 [58%]
2023-02-06 07:34:23,302 9nineM INFO [2.406329870223999, 2.486889123916626, 5.256746292114258, 21.62246322631836, 1.7571786642074585, 1.7853766679763794, 73000, 0.00019763889921173343]
2023-02-06 07:37:07,826 9nineM INFO Train Epoch: 86 [81%]
2023-02-06 07:37:07,827 9nineM INFO [2.551205635070801, 2.0159339904785156, 4.293013572692871, 18.935142517089844, 1.712545394897461, 1.5677807331085205, 73200, 0.00019763889921173343]
2023-02-06 07:37:37,650 9nineM INFO Saving model and optimizer state at iteration 86 to ./logs\9nineM\G_73200.pth
2023-02-06 07:37:38,325 9nineM INFO Saving model and optimizer state at iteration 86 to ./logs\9nineM\D_73200.pth
2023-02-06 07:39:48,837 9nineM INFO ====> Epoch: 86
2023-02-06 07:40:51,655 9nineM INFO Train Epoch: 87 [5%]
2023-02-06 07:40:51,655 9nineM INFO [2.459545612335205, 2.432029962539673, 5.8289079666137695, 23.371789932250977, 1.6886625289916992, 2.1385974884033203, 73400, 0.00019761419434933197]
2023-02-06 07:43:35,967 9nineM INFO Train Epoch: 87 [28%]
2023-02-06 07:43:35,968 9nineM INFO [2.5478644371032715, 2.123600959777832, 4.178177356719971, 21.52782440185547, 1.669135570526123, 1.7438825368881226, 73600, 0.00019761419434933197]
2023-02-06 07:44:06,519 9nineM INFO Saving model and optimizer state at iteration 87 to ./logs\9nineM\G_73600.pth
2023-02-06 07:44:07,198 9nineM INFO Saving model and optimizer state at iteration 87 to ./logs\9nineM\D_73600.pth
2023-02-06 07:46:52,105 9nineM INFO Train Epoch: 87 [52%]
2023-02-06 07:46:52,105 9nineM INFO [2.4402291774749756, 2.3444480895996094, 5.813377857208252, 22.064144134521484, 1.8148679733276367, 1.6917070150375366, 73800, 0.00019761419434933197]
2023-02-06 07:49:35,273 9nineM INFO Train Epoch: 87 [75%]
2023-02-06 07:49:35,273 9nineM INFO [2.453408718109131, 2.390099048614502, 6.011960029602051, 23.739017486572266, 1.6957061290740967, 1.9181777238845825, 74000, 0.00019761419434933197]
2023-02-06 07:50:04,951 9nineM INFO Saving model and optimizer state at iteration 87 to ./logs\9nineM\G_74000.pth
2023-02-06 07:50:05,616 9nineM INFO Saving model and optimizer state at iteration 87 to ./logs\9nineM\D_74000.pth
2023-02-06 07:52:49,629 9nineM INFO Train Epoch: 87 [99%]
2023-02-06 07:52:49,630 9nineM INFO [2.774932861328125, 2.2087159156799316, 4.179932117462158, 20.815813064575195, 1.735036849975586, 1.7144614458084106, 74200, 0.00019761419434933197]
2023-02-06 07:52:58,863 9nineM INFO ====> Epoch: 87
2023-02-06 07:56:01,332 9nineM INFO Train Epoch: 88 [22%]
2023-02-06 07:56:01,333 9nineM INFO [2.351933002471924, 2.399723768234253, 5.7615180015563965, 21.04006576538086, 1.8368992805480957, 1.5686800479888916, 74400, 0.0001975894925750383]
2023-02-06 07:56:31,382 9nineM INFO Saving model and optimizer state at iteration 88 to ./logs\9nineM\G_74400.pth
2023-02-06 07:56:32,418 9nineM INFO Saving model and optimizer state at iteration 88 to ./logs\9nineM\D_74400.pth
2023-02-06 07:59:17,214 9nineM INFO Train Epoch: 88 [46%]
2023-02-06 07:59:17,214 9nineM INFO [2.4161877632141113, 2.6639819145202637, 6.529877185821533, 22.935834884643555, 1.7379610538482666, 2.1611557006835938, 74600, 0.0001975894925750383]
2023-02-06 08:02:00,819 9nineM INFO Train Epoch: 88 [69%]
2023-02-06 08:02:00,819 9nineM INFO [2.620955467224121, 2.19480562210083, 3.8729798793792725, 18.966899871826172, 1.7245399951934814, 1.749035120010376, 74800, 0.0001975894925750383]
2023-02-06 08:02:31,484 9nineM INFO Saving model and optimizer state at iteration 88 to ./logs\9nineM\G_74800.pth
2023-02-06 08:02:32,289 9nineM INFO Saving model and optimizer state at iteration 88 to ./logs\9nineM\D_74800.pth
2023-02-06 08:05:16,380 9nineM INFO Train Epoch: 88 [92%]
2023-02-06 08:05:16,381 9nineM INFO [2.3153486251831055, 2.869502067565918, 6.9400739669799805, 25.257213592529297, 1.8956434726715088, 1.7915812730789185, 75000, 0.0001975894925750383]
2023-02-06 08:06:10,217 9nineM INFO ====> Epoch: 88
2023-02-06 08:08:29,207 9nineM INFO Train Epoch: 89 [16%]
2023-02-06 08:08:29,207 9nineM INFO [2.563227891921997, 2.303346872329712, 5.9095845222473145, 20.591371536254883, 1.6575027704238892, 1.8249729871749878, 75200, 0.0001975647938884664]
2023-02-06 08:08:59,182 9nineM INFO Saving model and optimizer state at iteration 89 to ./logs\9nineM\G_75200.pth
2023-02-06 08:09:00,160 9nineM INFO Saving model and optimizer state at iteration 89 to ./logs\9nineM\D_75200.pth
2023-02-06 08:11:46,003 9nineM INFO Train Epoch: 89 [39%]
2023-02-06 08:11:46,004 9nineM INFO [2.429751396179199, 2.1531074047088623, 5.851095199584961, 21.706199645996094, 1.6220355033874512, 1.6162998676300049, 75400, 0.0001975647938884664]
2023-02-06 08:14:29,994 9nineM INFO Train Epoch: 89 [63%]
2023-02-06 08:14:30,004 9nineM INFO [2.330639123916626, 2.474106788635254, 6.4344162940979, 22.50442123413086, 1.6688852310180664, 1.5176169872283936, 75600, 0.0001975647938884664]
2023-02-06 08:15:00,097 9nineM INFO Saving model and optimizer state at iteration 89 to ./logs\9nineM\G_75600.pth
2023-02-06 08:15:01,127 9nineM INFO Saving model and optimizer state at iteration 89 to ./logs\9nineM\D_75600.pth
2023-02-06 08:17:44,416 9nineM INFO Train Epoch: 89 [86%]
2023-02-06 08:17:44,416 9nineM INFO [2.6924614906311035, 2.412978172302246, 5.988645076751709, 21.709091186523438, 1.6463394165039062, 1.858162522315979, 75800, 0.0001975647938884664]
2023-02-06 08:19:20,462 9nineM INFO ====> Epoch: 89
2023-02-06 08:20:56,935 9nineM INFO Train Epoch: 90 [10%]
2023-02-06 08:20:56,936 9nineM INFO [2.7380805015563965, 2.1342973709106445, 4.8604416847229, 22.41645050048828, 1.649432897567749, 1.7473390102386475, 76000, 0.00019754009828923033]
2023-02-06 08:21:27,354 9nineM INFO Saving model and optimizer state at iteration 90 to ./logs\9nineM\G_76000.pth
2023-02-06 08:21:28,043 9nineM INFO Saving model and optimizer state at iteration 90 to ./logs\9nineM\D_76000.pth
2023-02-06 08:24:14,115 9nineM INFO Train Epoch: 90 [33%]
2023-02-06 08:24:14,115 9nineM INFO [2.4273974895477295, 2.4092748165130615, 5.792497634887695, 22.798677444458008, 1.831376314163208, 1.3821916580200195, 76200, 0.00019754009828923033]
2023-02-06 08:26:57,187 9nineM INFO Train Epoch: 90 [57%]
2023-02-06 08:26:57,188 9nineM INFO [2.442150831222534, 2.240342617034912, 3.9635114669799805, 19.100793838500977, 1.736262321472168, 1.6014679670333862, 76400, 0.00019754009828923033]
2023-02-06 08:27:27,431 9nineM INFO Saving model and optimizer state at iteration 90 to ./logs\9nineM\G_76400.pth
2023-02-06 08:27:28,107 9nineM INFO Saving model and optimizer state at iteration 90 to ./logs\9nineM\D_76400.pth
2023-02-06 08:30:12,423 9nineM INFO Train Epoch: 90 [80%]
2023-02-06 08:30:12,423 9nineM INFO [2.235164165496826, 2.598625421524048, 7.3009233474731445, 23.685441970825195, 1.9746477603912354, 1.9208588600158691, 76600, 0.00019754009828923033]
2023-02-06 08:32:31,914 9nineM INFO ====> Epoch: 90
2023-02-06 08:33:24,576 9nineM INFO Train Epoch: 91 [4%]
2023-02-06 08:33:24,576 9nineM INFO [2.332494020462036, 2.453765630722046, 6.486380577087402, 23.615463256835938, 1.828294038772583, 1.5180131196975708, 76800, 0.00019751540577694416]
2023-02-06 08:33:54,087 9nineM INFO Saving model and optimizer state at iteration 91 to ./logs\9nineM\G_76800.pth
2023-02-06 08:33:54,749 9nineM INFO Saving model and optimizer state at iteration 91 to ./logs\9nineM\D_76800.pth
2023-02-06 08:36:39,783 9nineM INFO Train Epoch: 91 [27%]
2023-02-06 08:36:39,784 9nineM INFO [2.502366542816162, 2.4421446323394775, 5.533163070678711, 21.886863708496094, 1.6957695484161377, 1.537204623222351, 77000, 0.00019751540577694416]
2023-02-06 08:39:23,860 9nineM INFO Train Epoch: 91 [50%]
2023-02-06 08:39:23,861 9nineM INFO [2.708211660385132, 2.3591372966766357, 4.701547622680664, 20.629417419433594, 1.7782450914382935, 1.5841456651687622, 77200, 0.00019751540577694416]
2023-02-06 08:39:54,615 9nineM INFO Saving model and optimizer state at iteration 91 to ./logs\9nineM\G_77200.pth
2023-02-06 08:39:55,312 9nineM INFO Saving model and optimizer state at iteration 91 to ./logs\9nineM\D_77200.pth
2023-02-06 08:42:39,685 9nineM INFO Train Epoch: 91 [74%]
2023-02-06 08:42:39,685 9nineM INFO [2.6561498641967773, 1.8691446781158447, 4.050014019012451, 16.30718231201172, 1.6753971576690674, 1.5077694654464722, 77400, 0.00019751540577694416]
2023-02-06 08:45:24,048 9nineM INFO Train Epoch: 91 [97%]
2023-02-06 08:45:24,049 9nineM INFO [2.4711616039276123, 2.310570478439331, 5.5823845863342285, 21.722213745117188, 1.644073724746704, 1.7697749137878418, 77600, 0.00019751540577694416]
2023-02-06 08:45:53,976 9nineM INFO Saving model and optimizer state at iteration 91 to ./logs\9nineM\G_77600.pth
2023-02-06 08:45:54,647 9nineM INFO Saving model and optimizer state at iteration 91 to ./logs\9nineM\D_77600.pth
2023-02-06 08:46:14,032 9nineM INFO ====> Epoch: 91
2023-02-06 08:49:07,467 9nineM INFO Train Epoch: 92 [21%]
2023-02-06 08:49:07,468 9nineM INFO [2.2348618507385254, 2.5985894203186035, 6.874838829040527, 24.005840301513672, 1.7192668914794922, 1.6330294609069824, 77800, 0.00019749071635122203]
2023-02-06 08:51:51,630 9nineM INFO Train Epoch: 92 [44%]
2023-02-06 08:51:51,631 9nineM INFO [2.4240803718566895, 2.4423389434814453, 5.2924299240112305, 21.001216888427734, 1.645182728767395, 1.7892088890075684, 78000, 0.00019749071635122203]
2023-02-06 08:52:22,287 9nineM INFO Saving model and optimizer state at iteration 92 to ./logs\9nineM\G_78000.pth
2023-02-06 08:52:22,971 9nineM INFO Saving model and optimizer state at iteration 92 to ./logs\9nineM\D_78000.pth
2023-02-06 08:55:07,023 9nineM INFO Train Epoch: 92 [68%]
2023-02-06 08:55:07,023 9nineM INFO [2.5800209045410156, 2.1491897106170654, 4.399610996246338, 18.640945434570312, 1.7993099689483643, 1.4998753070831299, 78200, 0.00019749071635122203]
2023-02-06 08:57:52,510 9nineM INFO Train Epoch: 92 [91%]
2023-02-06 08:57:52,511 9nineM INFO [2.5566086769104004, 2.0559134483337402, 4.5262346267700195, 19.169645309448242, 1.6868771314620972, 1.8564404249191284, 78400, 0.00019749071635122203]
2023-02-06 08:58:22,538 9nineM INFO Saving model and optimizer state at iteration 92 to ./logs\9nineM\G_78400.pth
2023-02-06 08:58:23,313 9nineM INFO Saving model and optimizer state at iteration 92 to ./logs\9nineM\D_78400.pth
2023-02-06 08:59:24,804 9nineM INFO ====> Epoch: 92
2023-02-06 09:01:36,233 9nineM INFO Train Epoch: 93 [15%]
2023-02-06 09:01:36,234 9nineM INFO [2.39662504196167, 2.420403480529785, 5.744348526000977, 21.538177490234375, 1.8771326541900635, 1.5871466398239136, 78600, 0.00019746603001167813]
2023-02-06 09:04:20,741 9nineM INFO Train Epoch: 93 [38%]
2023-02-06 09:04:20,742 9nineM INFO [2.543275833129883, 2.5176210403442383, 5.027650833129883, 20.407011032104492, 1.7027983665466309, 1.605425238609314, 78800, 0.00019746603001167813]
2023-02-06 09:04:50,775 9nineM INFO Saving model and optimizer state at iteration 93 to ./logs\9nineM\G_78800.pth
2023-02-06 09:04:51,442 9nineM INFO Saving model and optimizer state at iteration 93 to ./logs\9nineM\D_78800.pth
2023-02-06 09:07:35,022 9nineM INFO Train Epoch: 93 [61%]
2023-02-06 09:07:35,023 9nineM INFO [2.6210103034973145, 2.4276318550109863, 4.3305768966674805, 19.075326919555664, 1.7570873498916626, 1.3267184495925903, 79000, 0.00019746603001167813]
2023-02-06 09:10:19,949 9nineM INFO Train Epoch: 93 [85%]
2023-02-06 09:10:19,950 9nineM INFO [2.3554506301879883, 2.321150064468384, 5.2854533195495605, 20.60268783569336, 1.6685529947280884, 1.5909291505813599, 79200, 0.00019746603001167813]
2023-02-06 09:10:50,190 9nineM INFO Saving model and optimizer state at iteration 93 to ./logs\9nineM\G_79200.pth
2023-02-06 09:10:51,238 9nineM INFO Saving model and optimizer state at iteration 93 to ./logs\9nineM\D_79200.pth
2023-02-06 09:12:36,594 9nineM INFO ====> Epoch: 93
2023-02-06 09:14:02,167 9nineM INFO Train Epoch: 94 [8%]
2023-02-06 09:14:02,168 9nineM INFO [2.474219799041748, 2.1666572093963623, 5.405589580535889, 20.69824981689453, 1.6610714197158813, 1.8200420141220093, 79400, 0.00019744134675792665]
2023-02-06 09:16:46,176 9nineM INFO Train Epoch: 94 [32%]
2023-02-06 09:16:46,176 9nineM INFO [2.2707855701446533, 2.6161155700683594, 6.605481147766113, 23.567001342773438, 1.6379531621932983, 1.573609709739685, 79600, 0.00019744134675792665]
2023-02-06 09:17:16,412 9nineM INFO Saving model and optimizer state at iteration 94 to ./logs\9nineM\G_79600.pth
2023-02-06 09:17:17,085 9nineM INFO Saving model and optimizer state at iteration 94 to ./logs\9nineM\D_79600.pth
2023-02-06 09:20:02,914 9nineM INFO Train Epoch: 94 [55%]
2023-02-06 09:20:02,915 9nineM INFO [2.358057975769043, 2.419687271118164, 6.182150840759277, 21.989639282226562, 1.6308257579803467, 1.7845832109451294, 79800, 0.00019744134675792665]
2023-02-06 09:22:46,788 9nineM INFO Train Epoch: 94 [79%]
2023-02-06 09:22:46,788 9nineM INFO [2.5282747745513916, 2.2075276374816895, 5.014464378356934, 23.92791748046875, 1.7892478704452515, 1.9707386493682861, 80000, 0.00019744134675792665]
2023-02-06 09:23:16,660 9nineM INFO Saving model and optimizer state at iteration 94 to ./logs\9nineM\G_80000.pth
2023-02-06 09:23:17,635 9nineM INFO Saving model and optimizer state at iteration 94 to ./logs\9nineM\D_80000.pth
2023-02-06 09:25:47,060 9nineM INFO ====> Epoch: 94
2023-02-06 09:26:31,328 9nineM INFO Train Epoch: 95 [2%]
2023-02-06 09:26:31,329 9nineM INFO [2.611557960510254, 2.1368024349212646, 4.674160957336426, 21.47587013244629, 1.7486618757247925, 1.8024684190750122, 80200, 0.0001974166665895819]
2023-02-06 09:29:14,949 9nineM INFO Train Epoch: 95 [26%]
2023-02-06 09:29:14,949 9nineM INFO [2.3544092178344727, 2.420233964920044, 4.87743616104126, 20.30710792541504, 1.7553374767303467, 1.753144383430481, 80400, 0.0001974166665895819]
2023-02-06 09:29:46,319 9nineM INFO Saving model and optimizer state at iteration 95 to ./logs\9nineM\G_80400.pth
2023-02-06 09:29:46,998 9nineM INFO Saving model and optimizer state at iteration 95 to ./logs\9nineM\D_80400.pth
2023-02-06 09:32:33,227 9nineM INFO Train Epoch: 95 [49%]
2023-02-06 09:32:33,227 9nineM INFO [2.563666582107544, 2.3308403491973877, 3.933803081512451, 18.542442321777344, 1.7422237396240234, 1.398514747619629, 80600, 0.0001974166665895819]
2023-02-06 09:35:17,038 9nineM INFO Train Epoch: 95 [72%]
2023-02-06 09:35:17,038 9nineM INFO [2.4261467456817627, 2.45843243598938, 6.599765777587891, 22.300697326660156, 1.5651326179504395, 2.066063404083252, 80800, 0.0001974166665895819]
2023-02-06 09:35:46,870 9nineM INFO Saving model and optimizer state at iteration 95 to ./logs\9nineM\G_80800.pth
2023-02-06 09:35:47,901 9nineM INFO Saving model and optimizer state at iteration 95 to ./logs\9nineM\D_80800.pth
2023-02-06 09:38:32,362 9nineM INFO Train Epoch: 95 [96%]
2023-02-06 09:38:32,363 9nineM INFO [2.578087091445923, 2.2593815326690674, 5.092343807220459, 20.626312255859375, 1.7683870792388916, 1.6862581968307495, 81000, 0.0001974166665895819]
2023-02-06 09:39:00,580 9nineM INFO ====> Epoch: 95
2023-02-06 09:41:43,540 9nineM INFO Train Epoch: 96 [19%]
2023-02-06 09:41:43,541 9nineM INFO [2.463958740234375, 2.409057855606079, 4.879076957702637, 21.166793823242188, 1.8808834552764893, 1.5445358753204346, 81200, 0.0001973919895062582]
2023-02-06 09:42:14,429 9nineM INFO Saving model and optimizer state at iteration 96 to ./logs\9nineM\G_81200.pth
2023-02-06 09:42:15,461 9nineM INFO Saving model and optimizer state at iteration 96 to ./logs\9nineM\D_81200.pth
2023-02-06 09:44:59,900 9nineM INFO Train Epoch: 96 [43%]
2023-02-06 09:44:59,901 9nineM INFO [2.601001739501953, 2.3067445755004883, 4.806454658508301, 19.276342391967773, 1.7806379795074463, 1.5881966352462769, 81400, 0.0001973919895062582]
2023-02-06 09:47:43,682 9nineM INFO Train Epoch: 96 [66%]
2023-02-06 09:47:43,683 9nineM INFO [2.5201852321624756, 2.24310040473938, 5.889530181884766, 22.60037612915039, 1.6959882974624634, 1.7985490560531616, 81600, 0.0001973919895062582]
2023-02-06 09:48:13,153 9nineM INFO Saving model and optimizer state at iteration 96 to ./logs\9nineM\G_81600.pth
2023-02-06 09:48:13,962 9nineM INFO Saving model and optimizer state at iteration 96 to ./logs\9nineM\D_81600.pth
2023-02-06 09:50:59,027 9nineM INFO Train Epoch: 96 [90%]
2023-02-06 09:50:59,028 9nineM INFO [2.223468780517578, 2.3834099769592285, 5.985912799835205, 22.880109786987305, 1.9438378810882568, 1.3537657260894775, 81800, 0.0001973919895062582]
2023-02-06 09:52:12,250 9nineM INFO ====> Epoch: 96
2023-02-06 09:54:13,665 9nineM INFO Train Epoch: 97 [13%]
2023-02-06 09:54:13,666 9nineM INFO [2.352487087249756, 2.4814560413360596, 5.062458515167236, 19.829917907714844, 1.7631676197052002, 1.4059443473815918, 82000, 0.0001973673155075699]
2023-02-06 09:54:43,761 9nineM INFO Saving model and optimizer state at iteration 97 to ./logs\9nineM\G_82000.pth
2023-02-06 09:54:44,436 9nineM INFO Saving model and optimizer state at iteration 97 to ./logs\9nineM\D_82000.pth
2023-02-06 09:57:27,479 9nineM INFO Train Epoch: 97 [37%]
2023-02-06 09:57:27,479 9nineM INFO [2.4364724159240723, 2.3127033710479736, 5.209924697875977, 20.141944885253906, 1.8136754035949707, 1.963226318359375, 82200, 0.0001973673155075699]
2023-02-06 10:00:12,229 9nineM INFO Train Epoch: 97 [60%]
2023-02-06 10:00:12,230 9nineM INFO [2.397002696990967, 2.158003330230713, 5.6529860496521, 23.534862518310547, 1.837640643119812, 2.124126434326172, 82400, 0.0001973673155075699]
2023-02-06 10:00:43,447 9nineM INFO Saving model and optimizer state at iteration 97 to ./logs\9nineM\G_82400.pth
2023-02-06 10:00:44,131 9nineM INFO Saving model and optimizer state at iteration 97 to ./logs\9nineM\D_82400.pth
2023-02-06 10:03:27,934 9nineM INFO Train Epoch: 97 [83%]
2023-02-06 10:03:27,934 9nineM INFO [2.4804859161376953, 2.191072940826416, 4.700316429138184, 19.811946868896484, 1.827562689781189, 1.6359989643096924, 82600, 0.0001973673155075699]
2023-02-06 10:05:24,542 9nineM INFO ====> Epoch: 97
2023-02-06 10:06:41,042 9nineM INFO Train Epoch: 98 [7%]
2023-02-06 10:06:41,043 9nineM INFO [2.589195966720581, 2.1672840118408203, 3.9097087383270264, 15.982277870178223, 1.690781593322754, 1.3834786415100098, 82800, 0.00019734264459313146]
2023-02-06 10:07:10,698 9nineM INFO Saving model and optimizer state at iteration 98 to ./logs\9nineM\G_82800.pth
2023-02-06 10:07:11,388 9nineM INFO Saving model and optimizer state at iteration 98 to ./logs\9nineM\D_82800.pth
2023-02-06 10:09:56,132 9nineM INFO Train Epoch: 98 [30%]
2023-02-06 10:09:56,133 9nineM INFO [2.2744922637939453, 2.516529083251953, 6.178014278411865, 23.27471923828125, 1.8042044639587402, 1.5633985996246338, 83000, 0.00019734264459313146]
2023-02-06 10:12:39,711 9nineM INFO Train Epoch: 98 [54%]
2023-02-06 10:12:39,712 9nineM INFO [2.3667120933532715, 2.5111308097839355, 5.213499069213867, 19.3061466217041, 1.6293022632598877, 1.5213712453842163, 83200, 0.00019734264459313146]
2023-02-06 10:13:11,009 9nineM INFO Saving model and optimizer state at iteration 98 to ./logs\9nineM\G_83200.pth
2023-02-06 10:13:12,080 9nineM INFO Saving model and optimizer state at iteration 98 to ./logs\9nineM\D_83200.pth
2023-02-06 10:15:57,460 9nineM INFO Train Epoch: 98 [77%]
2023-02-06 10:15:57,461 9nineM INFO [2.1953697204589844, 2.7360687255859375, 6.203606128692627, 22.292343139648438, 1.657147765159607, 1.4958841800689697, 83400, 0.00019734264459313146]
2023-02-06 10:18:36,765 9nineM INFO ====> Epoch: 98
2023-02-06 10:19:11,281 9nineM INFO Train Epoch: 99 [1%]
2023-02-06 10:19:11,282 9nineM INFO [2.451085329055786, 2.4639837741851807, 5.215527534484863, 22.481882095336914, 1.674523115158081, 1.8604766130447388, 83600, 0.0001973179767625573]
2023-02-06 10:19:40,733 9nineM INFO Saving model and optimizer state at iteration 99 to ./logs\9nineM\G_83600.pth
2023-02-06 10:19:41,516 9nineM INFO Saving model and optimizer state at iteration 99 to ./logs\9nineM\D_83600.pth
2023-02-06 10:22:25,452 9nineM INFO Train Epoch: 99 [24%]
2023-02-06 10:22:25,453 9nineM INFO [2.4752984046936035, 2.3966166973114014, 5.918449878692627, 21.627058029174805, 1.71543550491333, 1.565459132194519, 83800, 0.0001973179767625573]
2023-02-06 10:25:09,570 9nineM INFO Train Epoch: 99 [48%]
2023-02-06 10:25:09,570 9nineM INFO [2.568911075592041, 2.5234763622283936, 5.772751331329346, 21.747419357299805, 1.6511496305465698, 1.1468724012374878, 84000, 0.0001973179767625573]
2023-02-06 10:25:39,863 9nineM INFO Saving model and optimizer state at iteration 99 to ./logs\9nineM\G_84000.pth
2023-02-06 10:25:40,858 9nineM INFO Saving model and optimizer state at iteration 99 to ./logs\9nineM\D_84000.pth
2023-02-06 10:28:24,806 9nineM INFO Train Epoch: 99 [71%]
2023-02-06 10:28:24,806 9nineM INFO [2.125399589538574, 2.816816806793213, 6.9142374992370605, 25.68486213684082, 1.7990564107894897, 1.9879125356674194, 84200, 0.0001973179767625573]
2023-02-06 10:31:09,724 9nineM INFO Train Epoch: 99 [94%]
2023-02-06 10:31:09,725 9nineM INFO [2.2676405906677246, 2.59442400932312, 5.924431800842285, 22.553234100341797, 1.7911489009857178, 1.6102948188781738, 84400, 0.0001973179767625573]
2023-02-06 10:31:40,127 9nineM INFO Saving model and optimizer state at iteration 99 to ./logs\9nineM\G_84400.pth
2023-02-06 10:31:40,816 9nineM INFO Saving model and optimizer state at iteration 99 to ./logs\9nineM\D_84400.pth
2023-02-06 10:32:20,165 9nineM INFO ====> Epoch: 99
2023-02-06 10:34:54,257 9nineM INFO Train Epoch: 100 [18%]
2023-02-06 10:34:54,258 9nineM INFO [2.5476250648498535, 2.2353858947753906, 4.74211311340332, 20.432907104492188, 1.6521961688995361, 1.5227948427200317, 84600, 0.00019729331201546197]
2023-02-06 10:37:37,164 9nineM INFO Train Epoch: 100 [41%]
2023-02-06 10:37:37,164 9nineM INFO [2.3216915130615234, 2.4710023403167725, 6.245323657989502, 24.969099044799805, 1.5494719743728638, 1.6234177350997925, 84800, 0.00019729331201546197]
2023-02-06 10:38:07,297 9nineM INFO Saving model and optimizer state at iteration 100 to ./logs\9nineM\G_84800.pth
2023-02-06 10:38:08,000 9nineM INFO Saving model and optimizer state at iteration 100 to ./logs\9nineM\D_84800.pth
2023-02-06 10:40:52,533 9nineM INFO Train Epoch: 100 [65%]
2023-02-06 10:40:52,533 9nineM INFO [2.5477421283721924, 2.298691511154175, 5.10249662399292, 21.817508697509766, 1.777747631072998, 1.809820294380188, 85000, 0.00019729331201546197]
2023-02-06 10:43:37,482 9nineM INFO Train Epoch: 100 [88%]
2023-02-06 10:43:37,482 9nineM INFO [2.5234744548797607, 2.2988555431365967, 4.506878852844238, 18.725780487060547, 1.8095089197158813, 1.669141173362732, 85200, 0.00019729331201546197]
2023-02-06 10:44:09,203 9nineM INFO Saving model and optimizer state at iteration 100 to ./logs\9nineM\G_85200.pth
2023-02-06 10:44:10,236 9nineM INFO Saving model and optimizer state at iteration 100 to ./logs\9nineM\D_85200.pth
2023-02-06 10:45:33,612 9nineM INFO ====> Epoch: 100
2023-02-06 10:47:25,153 9nineM INFO Train Epoch: 101 [12%]
2023-02-06 10:47:25,153 9nineM INFO [2.544187545776367, 2.4020485877990723, 6.031364917755127, 22.315113067626953, 1.7466915845870972, 1.7877157926559448, 85400, 0.00019726865035146003]
2023-02-06 10:50:08,879 9nineM INFO Train Epoch: 101 [35%]
2023-02-06 10:50:08,880 9nineM INFO [2.6537857055664062, 2.2612950801849365, 4.77888822555542, 20.681739807128906, 1.6496939659118652, 1.7405048608779907, 85600, 0.00019726865035146003]
2023-02-06 10:50:39,052 9nineM INFO Saving model and optimizer state at iteration 101 to ./logs\9nineM\G_85600.pth
2023-02-06 10:50:39,716 9nineM INFO Saving model and optimizer state at iteration 101 to ./logs\9nineM\D_85600.pth
2023-02-06 10:53:23,840 9nineM INFO Train Epoch: 101 [59%]
2023-02-06 10:53:23,841 9nineM INFO [2.3079352378845215, 2.533984661102295, 5.961873531341553, 22.472530364990234, 1.8380146026611328, 1.473942518234253, 85800, 0.00019726865035146003]
2023-02-06 10:56:09,476 9nineM INFO Train Epoch: 101 [82%]
2023-02-06 10:56:09,476 9nineM INFO [2.5508816242218018, 2.2959938049316406, 5.255324363708496, 22.835617065429688, 1.8479453325271606, 1.771566390991211, 86000, 0.00019726865035146003]
2023-02-06 10:56:40,434 9nineM INFO Saving model and optimizer state at iteration 101 to ./logs\9nineM\G_86000.pth
2023-02-06 10:56:41,133 9nineM INFO Saving model and optimizer state at iteration 101 to ./logs\9nineM\D_86000.pth
2023-02-06 10:58:46,783 9nineM INFO ====> Epoch: 101
2023-02-06 10:59:55,812 9nineM INFO Train Epoch: 102 [6%]
2023-02-06 10:59:55,813 9nineM INFO [2.6004433631896973, 2.0733160972595215, 5.038445949554443, 20.638139724731445, 1.6360429525375366, 1.7312970161437988, 86200, 0.0001972439917701661]
2023-02-06 11:02:40,275 9nineM INFO Train Epoch: 102 [29%]
2023-02-06 11:02:40,276 9nineM INFO [2.5770530700683594, 2.3011891841888428, 6.0666046142578125, 22.05961036682129, 1.729824185371399, 1.7705416679382324, 86400, 0.0001972439917701661]
2023-02-06 11:03:10,492 9nineM INFO Saving model and optimizer state at iteration 102 to ./logs\9nineM\G_86400.pth
2023-02-06 11:03:11,262 9nineM INFO Saving model and optimizer state at iteration 102 to ./logs\9nineM\D_86400.pth
2023-02-06 11:05:56,035 9nineM INFO Train Epoch: 102 [52%]
2023-02-06 11:05:56,036 9nineM INFO [2.349095344543457, 2.5271549224853516, 6.557182788848877, 22.814111709594727, 1.86641526222229, 1.6259549856185913, 86600, 0.0001972439917701661]
2023-02-06 11:08:41,047 9nineM INFO Train Epoch: 102 [76%]
2023-02-06 11:08:41,047 9nineM INFO [2.524496555328369, 2.219241142272949, 5.192203998565674, 20.76837921142578, 1.6769731044769287, 1.737959384918213, 86800, 0.0001972439917701661]
2023-02-06 11:09:12,287 9nineM INFO Saving model and optimizer state at iteration 102 to ./logs\9nineM\G_86800.pth
2023-02-06 11:09:13,205 9nineM INFO Saving model and optimizer state at iteration 102 to ./logs\9nineM\D_86800.pth
2023-02-06 11:11:56,898 9nineM INFO Train Epoch: 102 [99%]
2023-02-06 11:11:56,898 9nineM INFO [2.205711603164673, 2.617997169494629, 6.884082794189453, 25.529481887817383, 1.7504960298538208, 1.672400951385498, 87000, 0.0001972439917701661]
2023-02-06 11:12:02,213 9nineM INFO ====> Epoch: 102
2023-02-06 11:15:09,764 9nineM INFO Train Epoch: 103 [23%]
2023-02-06 11:15:09,764 9nineM INFO [2.2377357482910156, 2.602341890335083, 7.447323799133301, 23.61313247680664, 1.7152796983718872, 1.8794821500778198, 87200, 0.0001972193362711948]
2023-02-06 11:15:40,223 9nineM INFO Saving model and optimizer state at iteration 103 to ./logs\9nineM\G_87200.pth
2023-02-06 11:15:41,168 9nineM INFO Saving model and optimizer state at iteration 103 to ./logs\9nineM\D_87200.pth
2023-02-06 11:18:27,520 9nineM INFO Train Epoch: 103 [46%]
2023-02-06 11:18:27,521 9nineM INFO [2.712226390838623, 2.2979068756103516, 5.092637062072754, 20.449615478515625, 1.737058162689209, 1.4950884580612183, 87400, 0.0001972193362711948]
2023-02-06 11:21:12,014 9nineM INFO Train Epoch: 103 [70%]
2023-02-06 11:21:12,014 9nineM INFO [2.30623197555542, 2.5487325191497803, 5.575582504272461, 20.675832748413086, 1.706954836845398, 1.6465661525726318, 87600, 0.0001972193362711948]
2023-02-06 11:21:43,820 9nineM INFO Saving model and optimizer state at iteration 103 to ./logs\9nineM\G_87600.pth
2023-02-06 11:21:44,853 9nineM INFO Saving model and optimizer state at iteration 103 to ./logs\9nineM\D_87600.pth
2023-02-06 11:24:28,298 9nineM INFO Train Epoch: 103 [93%]
2023-02-06 11:24:28,299 9nineM INFO [2.4253954887390137, 2.36098313331604, 5.977612495422363, 21.248291015625, 1.8056401014328003, 1.7103567123413086, 87800, 0.0001972193362711948]
2023-02-06 11:25:17,552 9nineM INFO ====> Epoch: 103
2023-02-06 11:27:41,207 9nineM INFO Train Epoch: 104 [17%]
2023-02-06 11:27:41,207 9nineM INFO [2.463886260986328, 2.316082715988159, 5.195700168609619, 20.788217544555664, 1.651336431503296, 1.5984183549880981, 88000, 0.0001971946838541609]
2023-02-06 11:28:11,486 9nineM INFO Saving model and optimizer state at iteration 104 to ./logs\9nineM\G_88000.pth
2023-02-06 11:28:12,165 9nineM INFO Saving model and optimizer state at iteration 104 to ./logs\9nineM\D_88000.pth
2023-02-06 11:30:56,757 9nineM INFO Train Epoch: 104 [40%]
2023-02-06 11:30:56,758 9nineM INFO [2.375288963317871, 2.3273239135742188, 4.723942279815674, 19.1896915435791, 1.7673020362854004, 1.876954197883606, 88200, 0.0001971946838541609]
2023-02-06 11:33:42,344 9nineM INFO Train Epoch: 104 [63%]
2023-02-06 11:33:42,345 9nineM INFO [2.212533950805664, 2.5205368995666504, 7.182621955871582, 23.782886505126953, 1.7014200687408447, 1.5421793460845947, 88400, 0.0001971946838541609]
2023-02-06 11:34:12,802 9nineM INFO Saving model and optimizer state at iteration 104 to ./logs\9nineM\G_88400.pth
2023-02-06 11:34:13,530 9nineM INFO Saving model and optimizer state at iteration 104 to ./logs\9nineM\D_88400.pth
2023-02-06 11:36:58,686 9nineM INFO Train Epoch: 104 [87%]
2023-02-06 11:36:58,688 9nineM INFO [2.6404221057891846, 1.999783992767334, 3.515745162963867, 18.34442138671875, 1.7381060123443604, 1.2916051149368286, 88600, 0.0001971946838541609]
2023-02-06 11:38:30,380 9nineM INFO ====> Epoch: 104
2023-02-06 11:40:11,306 9nineM INFO Train Epoch: 105 [10%]
2023-02-06 11:40:11,307 9nineM INFO [2.5333781242370605, 2.0580761432647705, 4.338613510131836, 18.535072326660156, 1.7914912700653076, 1.4338421821594238, 88800, 0.0001971700345186791]
2023-02-06 11:40:42,688 9nineM INFO Saving model and optimizer state at iteration 105 to ./logs\9nineM\G_88800.pth
2023-02-06 11:40:43,373 9nineM INFO Saving model and optimizer state at iteration 105 to ./logs\9nineM\D_88800.pth
2023-02-06 11:43:28,822 9nineM INFO Train Epoch: 105 [34%]
2023-02-06 11:43:28,823 9nineM INFO [2.6348657608032227, 2.2804720401763916, 5.731025695800781, 21.585073471069336, 1.744161605834961, 1.906490683555603, 89000, 0.0001971700345186791]
2023-02-06 11:46:13,883 9nineM INFO Train Epoch: 105 [57%]
2023-02-06 11:46:13,884 9nineM INFO [2.4561171531677246, 2.150024890899658, 6.180589199066162, 22.93134307861328, 2.06330943107605, 1.433523178100586, 89200, 0.0001971700345186791]
2023-02-06 11:46:44,083 9nineM INFO Saving model and optimizer state at iteration 105 to ./logs\9nineM\G_89200.pth
2023-02-06 11:46:45,111 9nineM INFO Saving model and optimizer state at iteration 105 to ./logs\9nineM\D_89200.pth
2023-02-06 11:49:28,921 9nineM INFO Train Epoch: 105 [81%]
2023-02-06 11:49:28,922 9nineM INFO [2.183551073074341, 2.5984156131744385, 6.716160774230957, 23.298635482788086, 1.7402210235595703, 1.5968148708343506, 89400, 0.0001971700345186791]
2023-02-06 11:51:44,434 9nineM INFO ====> Epoch: 105
2023-02-06 11:52:41,462 9nineM INFO Train Epoch: 106 [4%]
2023-02-06 11:52:41,463 9nineM INFO [2.3252651691436768, 2.640533924102783, 6.423140525817871, 23.449329376220703, 1.690205454826355, 1.4696669578552246, 89600, 0.00019714538826436426]
2023-02-06 11:53:12,433 9nineM INFO Saving model and optimizer state at iteration 106 to ./logs\9nineM\G_89600.pth
2023-02-06 11:53:13,138 9nineM INFO Saving model and optimizer state at iteration 106 to ./logs\9nineM\D_89600.pth
2023-02-06 11:55:56,804 9nineM INFO Train Epoch: 106 [28%]
2023-02-06 11:55:56,804 9nineM INFO [2.674956798553467, 2.393597364425659, 4.778692245483398, 18.844938278198242, 1.786001205444336, 1.6210120916366577, 89800, 0.00019714538826436426]
2023-02-06 11:58:42,274 9nineM INFO Train Epoch: 106 [51%]
2023-02-06 11:58:42,274 9nineM INFO [2.336738109588623, 2.489057779312134, 6.216240882873535, 22.527603149414062, 1.7865468263626099, 1.4562931060791016, 90000, 0.00019714538826436426]
2023-02-06 11:59:13,143 9nineM INFO Saving model and optimizer state at iteration 106 to ./logs\9nineM\G_90000.pth
2023-02-06 11:59:14,176 9nineM INFO Saving model and optimizer state at iteration 106 to ./logs\9nineM\D_90000.pth
2023-02-06 12:01:58,936 9nineM INFO Train Epoch: 106 [74%]
2023-02-06 12:01:58,937 9nineM INFO [2.3444700241088867, 2.7502689361572266, 6.141520023345947, 23.710206985473633, 1.6360828876495361, 2.0136559009552, 90200, 0.00019714538826436426]
2023-02-06 12:04:43,804 9nineM INFO Train Epoch: 106 [98%]
2023-02-06 12:04:43,804 9nineM INFO [2.321829319000244, 2.5711233615875244, 7.130553245544434, 23.442434310913086, 1.7535964250564575, 1.7496147155761719, 90400, 0.00019714538826436426]
2023-02-06 12:05:15,078 9nineM INFO Saving model and optimizer state at iteration 106 to ./logs\9nineM\G_90400.pth
2023-02-06 12:05:15,750 9nineM INFO Saving model and optimizer state at iteration 106 to ./logs\9nineM\D_90400.pth
2023-02-06 12:05:31,205 9nineM INFO ====> Epoch: 106
2023-02-06 12:08:29,964 9nineM INFO Train Epoch: 107 [21%]
2023-02-06 12:08:29,964 9nineM INFO [2.4372658729553223, 2.724229335784912, 7.476496696472168, 24.135536193847656, 1.7371110916137695, 1.520024299621582, 90600, 0.0001971207450908312]
2023-02-06 12:11:14,222 9nineM INFO Train Epoch: 107 [45%]
2023-02-06 12:11:14,223 9nineM INFO [2.4366061687469482, 2.343618154525757, 6.166101455688477, 22.922292709350586, 1.7660292387008667, 1.7507487535476685, 90800, 0.0001971207450908312]
2023-02-06 12:11:44,831 9nineM INFO Saving model and optimizer state at iteration 107 to ./logs\9nineM\G_90800.pth
2023-02-06 12:11:45,517 9nineM INFO Saving model and optimizer state at iteration 107 to ./logs\9nineM\D_90800.pth
2023-02-06 12:14:29,985 9nineM INFO Train Epoch: 107 [68%]
2023-02-06 12:14:29,986 9nineM INFO [2.506448745727539, 2.181760311126709, 5.925235271453857, 22.16648292541504, 1.6654726266860962, 1.3967851400375366, 91000, 0.0001971207450908312]
2023-02-06 12:17:14,777 9nineM INFO Train Epoch: 107 [92%]
2023-02-06 12:17:14,778 9nineM INFO [2.42924165725708, 2.3328113555908203, 6.019453048706055, 21.61944007873535, 1.754049301147461, 1.4748058319091797, 91200, 0.0001971207450908312]
2023-02-06 12:17:45,318 9nineM INFO Saving model and optimizer state at iteration 107 to ./logs\9nineM\G_91200.pth
2023-02-06 12:17:46,004 9nineM INFO Saving model and optimizer state at iteration 107 to ./logs\9nineM\D_91200.pth
2023-02-06 12:18:45,653 9nineM INFO ====> Epoch: 107
2023-02-06 12:21:05,160 9nineM INFO Train Epoch: 108 [15%]
2023-02-06 12:21:05,161 9nineM INFO [2.4319915771484375, 2.3685550689697266, 4.853661060333252, 20.543039321899414, 1.7073560953140259, 1.7163294553756714, 91400, 0.00019709610499769482]
2023-02-06 12:23:47,605 9nineM INFO Train Epoch: 108 [39%]
2023-02-06 12:23:47,605 9nineM INFO [2.5256752967834473, 2.322812080383301, 4.907132625579834, 20.325536727905273, 1.7290232181549072, 1.8438165187835693, 91600, 0.00019709610499769482]
2023-02-06 12:24:18,913 9nineM INFO Saving model and optimizer state at iteration 108 to ./logs\9nineM\G_91600.pth
2023-02-06 12:24:19,584 9nineM INFO Saving model and optimizer state at iteration 108 to ./logs\9nineM\D_91600.pth
2023-02-06 12:27:05,811 9nineM INFO Train Epoch: 108 [62%]
2023-02-06 12:27:05,812 9nineM INFO [2.1529364585876465, 2.707568645477295, 7.620291233062744, 24.264650344848633, 1.7756242752075195, 1.9135087728500366, 91800, 0.00019709610499769482]
2023-02-06 12:29:50,634 9nineM INFO Train Epoch: 108 [85%]
2023-02-06 12:29:50,634 9nineM INFO [2.622178077697754, 2.3537964820861816, 5.093014240264893, 20.53378677368164, 1.6982512474060059, 1.4778978824615479, 92000, 0.00019709610499769482]
2023-02-06 12:30:22,090 9nineM INFO Saving model and optimizer state at iteration 108 to ./logs\9nineM\G_92000.pth
2023-02-06 12:30:22,786 9nineM INFO Saving model and optimizer state at iteration 108 to ./logs\9nineM\D_92000.pth
2023-02-06 12:32:07,275 9nineM INFO ====> Epoch: 108
2023-02-06 12:33:41,777 9nineM INFO Train Epoch: 109 [9%]
2023-02-06 12:33:41,778 9nineM INFO [2.635251760482788, 2.060101270675659, 4.255732536315918, 20.782381057739258, 1.6539850234985352, 1.4945626258850098, 92200, 0.0001970714679845701]
2023-02-06 12:36:27,527 9nineM INFO Train Epoch: 109 [32%]
2023-02-06 12:36:27,528 9nineM INFO [2.5063834190368652, 2.531637191772461, 5.950955867767334, 21.967214584350586, 1.7070696353912354, 1.0353264808654785, 92400, 0.0001970714679845701]
2023-02-06 12:36:59,546 9nineM INFO Saving model and optimizer state at iteration 109 to ./logs\9nineM\G_92400.pth
2023-02-06 12:37:00,238 9nineM INFO Saving model and optimizer state at iteration 109 to ./logs\9nineM\D_92400.pth
2023-02-06 12:39:46,307 9nineM INFO Train Epoch: 109 [56%]
2023-02-06 12:39:46,308 9nineM INFO [2.151048183441162, 2.8025808334350586, 6.490227699279785, 20.46746063232422, 1.7056280374526978, 1.7053507566452026, 92600, 0.0001970714679845701]
2023-02-06 12:42:30,182 9nineM INFO Train Epoch: 109 [79%]
2023-02-06 12:42:30,183 9nineM INFO [2.2614662647247314, 2.6110925674438477, 7.116613388061523, 22.354225158691406, 1.7279560565948486, 1.4162933826446533, 92800, 0.0001970714679845701]
2023-02-06 12:43:03,633 9nineM INFO Saving model and optimizer state at iteration 109 to ./logs\9nineM\G_92800.pth
2023-02-06 12:43:04,517 9nineM INFO Saving model and optimizer state at iteration 109 to ./logs\9nineM\D_92800.pth
2023-02-06 12:45:34,237 9nineM INFO ====> Epoch: 109
2023-02-06 12:46:24,617 9nineM INFO Train Epoch: 110 [3%]
2023-02-06 12:46:24,617 9nineM INFO [2.337944507598877, 2.3767123222351074, 5.4418044090271, 19.818981170654297, 1.6453347206115723, 1.761839747428894, 93000, 0.000197046834051072]
2023-02-06 12:49:11,570 9nineM INFO Train Epoch: 110 [26%]
2023-02-06 12:49:11,570 9nineM INFO [2.3932392597198486, 2.3815081119537354, 5.581759452819824, 20.538192749023438, 1.703857421875, 1.7869685888290405, 93200, 0.000197046834051072]
2023-02-06 12:49:44,055 9nineM INFO Saving model and optimizer state at iteration 110 to ./logs\9nineM\G_93200.pth
2023-02-06 12:49:44,781 9nineM INFO Saving model and optimizer state at iteration 110 to ./logs\9nineM\D_93200.pth
2023-02-06 12:52:32,172 9nineM INFO Train Epoch: 110 [50%]
2023-02-06 12:52:32,173 9nineM INFO [2.3217198848724365, 2.69116473197937, 5.505145072937012, 21.991470336914062, 1.768148422241211, 1.7189995050430298, 93400, 0.000197046834051072]
2023-02-06 12:55:21,886 9nineM INFO Train Epoch: 110 [73%]
2023-02-06 12:55:21,887 9nineM INFO [2.1904287338256836, 2.523667097091675, 6.984142303466797, 22.651687622070312, 1.6384049654006958, 1.5759012699127197, 93600, 0.000197046834051072]
2023-02-06 12:55:56,524 9nineM INFO Saving model and optimizer state at iteration 110 to ./logs\9nineM\G_93600.pth
2023-02-06 12:55:57,264 9nineM INFO Saving model and optimizer state at iteration 110 to ./logs\9nineM\D_93600.pth
2023-02-06 12:58:45,262 9nineM INFO Train Epoch: 110 [96%]
2023-02-06 12:58:45,262 9nineM INFO [2.44917893409729, 2.738584518432617, 5.793365955352783, 22.983779907226562, 1.9288597106933594, 1.8642157316207886, 93800, 0.000197046834051072]
2023-02-06 12:59:10,786 9nineM INFO ====> Epoch: 110
2023-02-06 13:02:05,416 9nineM INFO Train Epoch: 111 [20%]
2023-02-06 13:02:05,417 9nineM INFO [2.508176803588867, 2.2645320892333984, 5.212980270385742, 20.7646541595459, 1.8853695392608643, 1.7219749689102173, 94000, 0.00019702220319681561]
2023-02-06 13:02:37,861 9nineM INFO Saving model and optimizer state at iteration 111 to ./logs\9nineM\G_94000.pth
2023-02-06 13:02:38,555 9nineM INFO Saving model and optimizer state at iteration 111 to ./logs\9nineM\D_94000.pth
2023-02-06 13:05:26,720 9nineM INFO Train Epoch: 111 [43%]
2023-02-06 13:05:26,721 9nineM INFO [2.611619710922241, 2.063815116882324, 4.077986717224121, 18.16786766052246, 1.6656677722930908, 1.9092652797698975, 94200, 0.00019702220319681561]
2023-02-06 13:08:15,293 9nineM INFO Train Epoch: 111 [67%]
2023-02-06 13:08:15,294 9nineM INFO [2.3580873012542725, 2.61769700050354, 6.616842269897461, 22.40196990966797, 1.7497141361236572, 1.3369446992874146, 94400, 0.00019702220319681561]
2023-02-06 13:08:49,762 9nineM INFO Saving model and optimizer state at iteration 111 to ./logs\9nineM\G_94400.pth
2023-02-06 13:08:50,490 9nineM INFO Saving model and optimizer state at iteration 111 to ./logs\9nineM\D_94400.pth
2023-02-06 13:11:38,113 9nineM INFO Train Epoch: 111 [90%]
2023-02-06 13:11:38,113 9nineM INFO [2.413390636444092, 2.509127616882324, 4.37823486328125, 19.72787857055664, 1.701365351676941, 1.420450210571289, 94600, 0.00019702220319681561]
2023-02-06 13:12:47,771 9nineM INFO ====> Epoch: 111
2023-02-06 13:14:56,897 9nineM INFO Train Epoch: 112 [14%]
2023-02-06 13:14:56,898 9nineM INFO [2.484596014022827, 2.232524871826172, 5.295563220977783, 19.982742309570312, 1.745281457901001, 1.5976684093475342, 94800, 0.000196997575421416]
2023-02-06 13:15:29,617 9nineM INFO Saving model and optimizer state at iteration 112 to ./logs\9nineM\G_94800.pth
2023-02-06 13:15:30,380 9nineM INFO Saving model and optimizer state at iteration 112 to ./logs\9nineM\D_94800.pth
2023-02-06 13:18:18,410 9nineM INFO Train Epoch: 112 [37%]
2023-02-06 13:18:18,411 9nineM INFO [2.456583023071289, 2.3107943534851074, 6.071109771728516, 22.921361923217773, 1.7969210147857666, 1.6460708379745483, 95000, 0.000196997575421416]
2023-02-06 13:21:05,725 9nineM INFO Train Epoch: 112 [61%]
2023-02-06 13:21:05,727 9nineM INFO [2.469888210296631, 2.4473538398742676, 5.119750022888184, 21.343137741088867, 1.671108603477478, 1.7484978437423706, 95200, 0.000196997575421416]
2023-02-06 13:21:39,301 9nineM INFO Saving model and optimizer state at iteration 112 to ./logs\9nineM\G_95200.pth
2023-02-06 13:21:40,111 9nineM INFO Saving model and optimizer state at iteration 112 to ./logs\9nineM\D_95200.pth
2023-02-06 13:24:25,441 9nineM INFO Train Epoch: 112 [84%]
2023-02-06 13:24:25,442 9nineM INFO [2.55717396736145, 2.1455161571502686, 5.304982662200928, 21.301620483398438, 1.604736089706421, 1.5033036470413208, 95400, 0.000196997575421416]
2023-02-06 13:26:17,275 9nineM INFO ====> Epoch: 112
2023-02-06 13:27:38,968 9nineM INFO Train Epoch: 113 [8%]
2023-02-06 13:27:38,969 9nineM INFO [2.587958335876465, 1.9178141355514526, 3.5232930183410645, 16.94198989868164, 1.8393373489379883, 1.5986642837524414, 95600, 0.00019697295072448832]
2023-02-06 13:28:09,748 9nineM INFO Saving model and optimizer state at iteration 113 to ./logs\9nineM\G_95600.pth
2023-02-06 13:28:10,541 9nineM INFO Saving model and optimizer state at iteration 113 to ./logs\9nineM\D_95600.pth
2023-02-06 13:30:56,682 9nineM INFO Train Epoch: 113 [31%]
2023-02-06 13:30:56,682 9nineM INFO [2.498879909515381, 2.2045531272888184, 6.230116367340088, 22.36961555480957, 1.9318259954452515, 1.512890338897705, 95800, 0.00019697295072448832]
2023-02-06 13:33:43,018 9nineM INFO Train Epoch: 113 [54%]
2023-02-06 13:33:43,018 9nineM INFO [2.413757801055908, 2.5063464641571045, 5.826871395111084, 22.346698760986328, 1.5606420040130615, 1.8357735872268677, 96000, 0.00019697295072448832]
2023-02-06 13:34:15,067 9nineM INFO Saving model and optimizer state at iteration 113 to ./logs\9nineM\G_96000.pth
2023-02-06 13:34:15,788 9nineM INFO Saving model and optimizer state at iteration 113 to ./logs\9nineM\D_96000.pth
2023-02-06 13:36:59,900 9nineM INFO Train Epoch: 113 [78%]
2023-02-06 13:36:59,900 9nineM INFO [2.3261818885803223, 2.487793207168579, 7.112005710601807, 23.60846519470215, 1.6689367294311523, 1.6204299926757812, 96200, 0.00019697295072448832]
2023-02-06 13:39:35,420 9nineM INFO ====> Epoch: 113
2023-02-06 13:40:14,850 9nineM INFO Train Epoch: 114 [1%]
2023-02-06 13:40:14,851 9nineM INFO [2.3594369888305664, 2.57433819770813, 5.664788722991943, 22.25078582763672, 1.9012060165405273, 1.2977750301361084, 96400, 0.00019694832910564775]
2023-02-06 13:40:45,516 9nineM INFO Saving model and optimizer state at iteration 114 to ./logs\9nineM\G_96400.pth
2023-02-06 13:40:46,209 9nineM INFO Saving model and optimizer state at iteration 114 to ./logs\9nineM\D_96400.pth
2023-02-06 13:43:32,605 9nineM INFO Train Epoch: 114 [25%]
2023-02-06 13:43:32,606 9nineM INFO [2.386523962020874, 2.780449628829956, 7.271634101867676, 24.21062660217285, 1.8169474601745605, 1.6657459735870361, 96600, 0.00019694832910564775]
2023-02-06 13:46:17,214 9nineM INFO Train Epoch: 114 [48%]
2023-02-06 13:46:17,215 9nineM INFO [2.5572080612182617, 2.2631192207336426, 5.437740802764893, 22.049312591552734, 1.6838626861572266, 1.687936782836914, 96800, 0.00019694832910564775]
2023-02-06 13:46:49,216 9nineM INFO Saving model and optimizer state at iteration 114 to ./logs\9nineM\G_96800.pth
2023-02-06 13:46:49,891 9nineM INFO Saving model and optimizer state at iteration 114 to ./logs\9nineM\D_96800.pth
2023-02-06 13:49:34,885 9nineM INFO Train Epoch: 114 [72%]
2023-02-06 13:49:34,886 9nineM INFO [2.509824752807617, 2.1153953075408936, 4.205113887786865, 18.1639404296875, 1.7349073886871338, 1.8490338325500488, 97000, 0.00019694832910564775]
2023-02-06 13:52:19,032 9nineM INFO Train Epoch: 114 [95%]
2023-02-06 13:52:19,032 9nineM INFO [2.557098388671875, 2.4876413345336914, 6.374693870544434, 23.068641662597656, 1.7634309530258179, 2.146819829940796, 97200, 0.00019694832910564775]
2023-02-06 13:52:50,423 9nineM INFO Saving model and optimizer state at iteration 114 to ./logs\9nineM\G_97200.pth
2023-02-06 13:52:51,119 9nineM INFO Saving model and optimizer state at iteration 114 to ./logs\9nineM\D_97200.pth
2023-02-06 13:53:25,705 9nineM INFO ====> Epoch: 114
2023-02-06 13:56:05,556 9nineM INFO Train Epoch: 115 [19%]
2023-02-06 13:56:05,556 9nineM INFO [2.4791998863220215, 2.470241069793701, 5.086457252502441, 22.2614803314209, 1.7222354412078857, 1.655585765838623, 97400, 0.00019692371056450955]
2023-02-06 13:58:49,903 9nineM INFO Train Epoch: 115 [42%]
2023-02-06 13:58:49,904 9nineM INFO [2.315728187561035, 2.4930951595306396, 6.787493705749512, 21.897361755371094, 1.6553869247436523, 1.5442155599594116, 97600, 0.00019692371056450955]
2023-02-06 13:59:21,449 9nineM INFO Saving model and optimizer state at iteration 115 to ./logs\9nineM\G_97600.pth
2023-02-06 13:59:22,120 9nineM INFO Saving model and optimizer state at iteration 115 to ./logs\9nineM\D_97600.pth
2023-02-06 14:02:07,861 9nineM INFO Train Epoch: 115 [65%]
2023-02-06 14:02:07,862 9nineM INFO [2.396742582321167, 2.444382667541504, 5.668606281280518, 21.09869384765625, 1.8376652002334595, 2.2215919494628906, 97800, 0.00019692371056450955]
2023-02-06 14:04:53,754 9nineM INFO Train Epoch: 115 [89%]
2023-02-06 14:04:53,754 9nineM INFO [2.4273695945739746, 2.435178279876709, 5.798398494720459, 22.221467971801758, 1.5377154350280762, 1.521401047706604, 98000, 0.00019692371056450955]
2023-02-06 14:05:25,646 9nineM INFO Saving model and optimizer state at iteration 115 to ./logs\9nineM\G_98000.pth
2023-02-06 14:05:26,321 9nineM INFO Saving model and optimizer state at iteration 115 to ./logs\9nineM\D_98000.pth
2023-02-06 14:06:44,849 9nineM INFO ====> Epoch: 115
2023-02-06 14:08:39,868 9nineM INFO Train Epoch: 116 [12%]
2023-02-06 14:08:39,869 9nineM INFO [2.7019729614257812, 2.1025826930999756, 3.5376508235931396, 18.070817947387695, 1.7493133544921875, 1.4884207248687744, 98200, 0.000196899095100689]
2023-02-06 14:11:25,999 9nineM INFO Train Epoch: 116 [36%]
2023-02-06 14:11:26,001 9nineM INFO [2.3110673427581787, 2.503537893295288, 6.2430267333984375, 22.04073143005371, 1.6430292129516602, 1.535827875137329, 98400, 0.000196899095100689]
2023-02-06 14:11:57,174 9nineM INFO Saving model and optimizer state at iteration 116 to ./logs\9nineM\G_98400.pth
2023-02-06 14:11:57,896 9nineM INFO Saving model and optimizer state at iteration 116 to ./logs\9nineM\D_98400.pth
2023-02-06 14:14:42,464 9nineM INFO Train Epoch: 116 [59%]
2023-02-06 14:14:42,465 9nineM INFO [2.4880621433258057, 2.404099941253662, 5.671602725982666, 21.134979248046875, 1.6529762744903564, 1.822348952293396, 98600, 0.000196899095100689]
2023-02-06 14:17:27,938 9nineM INFO Train Epoch: 116 [83%]
2023-02-06 14:17:27,938 9nineM INFO [2.503242254257202, 2.505859851837158, 5.302490234375, 20.080013275146484, 1.6597877740859985, 1.8725287914276123, 98800, 0.000196899095100689]
2023-02-06 14:17:59,644 9nineM INFO Saving model and optimizer state at iteration 116 to ./logs\9nineM\G_98800.pth
2023-02-06 14:18:00,367 9nineM INFO Saving model and optimizer state at iteration 116 to ./logs\9nineM\D_98800.pth
2023-02-06 14:20:02,752 9nineM INFO ====> Epoch: 116
2023-02-06 14:21:15,069 9nineM INFO Train Epoch: 117 [6%]
2023-02-06 14:21:15,069 9nineM INFO [2.4922256469726562, 2.3742361068725586, 5.965278625488281, 21.643754959106445, 1.6999168395996094, 1.4700614213943481, 99000, 0.0001968744827138014]
2023-02-06 14:23:59,952 9nineM INFO Train Epoch: 117 [30%]
2023-02-06 14:23:59,953 9nineM INFO [2.36883544921875, 2.564002513885498, 5.826452732086182, 21.186851501464844, 1.6937975883483887, 1.5655131340026855, 99200, 0.0001968744827138014]
2023-02-06 14:24:31,005 9nineM INFO Saving model and optimizer state at iteration 117 to ./logs\9nineM\G_99200.pth
2023-02-06 14:24:31,700 9nineM INFO Saving model and optimizer state at iteration 117 to ./logs\9nineM\D_99200.pth
2023-02-06 14:27:16,673 9nineM INFO Train Epoch: 117 [53%]
2023-02-06 14:27:16,673 9nineM INFO [2.366628408432007, 2.5843231678009033, 5.344743728637695, 20.844276428222656, 1.721157193183899, 1.6528679132461548, 99400, 0.0001968744827138014]
2023-02-06 14:30:02,394 9nineM INFO Train Epoch: 117 [76%]
2023-02-06 14:30:02,395 9nineM INFO [2.2989799976348877, 2.538928985595703, 6.5035834312438965, 21.046674728393555, 1.7636724710464478, 1.4543215036392212, 99600, 0.0001968744827138014]
2023-02-06 14:30:34,651 9nineM INFO Saving model and optimizer state at iteration 117 to ./logs\9nineM\G_99600.pth
2023-02-06 14:30:35,349 9nineM INFO Saving model and optimizer state at iteration 117 to ./logs\9nineM\D_99600.pth
2023-02-06 14:33:21,323 9nineM INFO Train Epoch: 117 [100%]
2023-02-06 14:33:21,323 9nineM INFO [2.1168360710144043, 2.7229878902435303, 6.997582912445068, 23.13353729248047, 1.692934513092041, 1.757822871208191, 99800, 0.0001968744827138014]
2023-02-06 14:33:22,488 9nineM INFO ====> Epoch: 117
2023-02-06 14:36:37,198 9nineM INFO Train Epoch: 118 [23%]
2023-02-06 14:36:37,198 9nineM INFO [2.463253974914551, 2.4275407791137695, 6.569629192352295, 22.935827255249023, 1.9200811386108398, 1.3774988651275635, 100000, 0.00019684987340346216]
2023-02-06 14:37:08,509 9nineM INFO Saving model and optimizer state at iteration 118 to ./logs\9nineM\G_100000.pth
2023-02-06 14:37:09,182 9nineM INFO Saving model and optimizer state at iteration 118 to ./logs\9nineM\D_100000.pth
2023-02-06 14:39:54,174 9nineM INFO Train Epoch: 118 [47%]
2023-02-06 14:39:54,175 9nineM INFO [2.4459586143493652, 2.2267520427703857, 5.4457106590271, 19.94850730895996, 1.9416693449020386, 1.846510648727417, 100200, 0.00019684987340346216]
2023-02-06 14:42:38,436 9nineM INFO Train Epoch: 118 [70%]
2023-02-06 14:42:38,437 9nineM INFO [2.0921056270599365, 2.9189417362213135, 7.457575798034668, 22.23969078063965, 1.8530688285827637, 1.4119536876678467, 100400, 0.00019684987340346216]
2023-02-06 14:43:10,184 9nineM INFO Saving model and optimizer state at iteration 118 to ./logs\9nineM\G_100400.pth
2023-02-06 14:43:10,874 9nineM INFO Saving model and optimizer state at iteration 118 to ./logs\9nineM\D_100400.pth
2023-02-06 14:45:56,413 9nineM INFO Train Epoch: 118 [94%]
2023-02-06 14:45:56,414 9nineM INFO [2.5850701332092285, 2.1893467903137207, 4.486823081970215, 19.829696655273438, 1.7508349418640137, 1.3020449876785278, 100600, 0.00019684987340346216]
2023-02-06 14:46:41,157 9nineM INFO ====> Epoch: 118
2023-02-06 14:49:12,134 9nineM INFO Train Epoch: 119 [17%]
2023-02-06 14:49:12,134 9nineM INFO [2.463219165802002, 2.3701207637786865, 4.950770378112793, 19.350027084350586, 1.7054181098937988, 1.643091082572937, 100800, 0.00019682526716928672]
2023-02-06 14:49:44,155 9nineM INFO Saving model and optimizer state at iteration 119 to ./logs\9nineM\G_100800.pth
2023-02-06 14:49:44,866 9nineM INFO Saving model and optimizer state at iteration 119 to ./logs\9nineM\D_100800.pth
2023-02-06 14:52:31,408 9nineM INFO Train Epoch: 119 [41%]
2023-02-06 14:52:31,409 9nineM INFO [2.4125354290008545, 2.588454484939575, 5.436824798583984, 22.007740020751953, 1.7436957359313965, 1.6960844993591309, 101000, 0.00019682526716928672]
2023-02-06 14:55:15,157 9nineM INFO Train Epoch: 119 [64%]
2023-02-06 14:55:15,157 9nineM INFO [2.3535709381103516, 2.5076091289520264, 5.693776607513428, 19.578813552856445, 1.7230958938598633, 1.789415955543518, 101200, 0.00019682526716928672]
2023-02-06 14:55:46,342 9nineM INFO Saving model and optimizer state at iteration 119 to ./logs\9nineM\G_101200.pth
2023-02-06 14:55:47,136 9nineM INFO Saving model and optimizer state at iteration 119 to ./logs\9nineM\D_101200.pth
2023-02-06 14:58:31,073 9nineM INFO Train Epoch: 119 [87%]
2023-02-06 14:58:31,074 9nineM INFO [2.305410385131836, 2.6288323402404785, 6.146034240722656, 23.32713508605957, 1.765282154083252, 1.5977996587753296, 101400, 0.00019682526716928672]
2023-02-06 15:00:00,036 9nineM INFO ====> Epoch: 119
2023-02-06 15:01:46,563 9nineM INFO Train Epoch: 120 [11%]
2023-02-06 15:01:46,564 9nineM INFO [2.2018096446990967, 2.7710883617401123, 7.08325719833374, 22.080549240112305, 1.9377415180206299, 1.6101778745651245, 101600, 0.00019680066401089056]
2023-02-06 15:02:18,483 9nineM INFO Saving model and optimizer state at iteration 120 to ./logs\9nineM\G_101600.pth
2023-02-06 15:02:19,174 9nineM INFO Saving model and optimizer state at iteration 120 to ./logs\9nineM\D_101600.pth
2023-02-06 15:05:03,431 9nineM INFO Train Epoch: 120 [34%]
2023-02-06 15:05:03,432 9nineM INFO [2.2975335121154785, 2.515549421310425, 6.2778425216674805, 22.98143196105957, 1.5956683158874512, 1.819651484489441, 101800, 0.00019680066401089056]
2023-02-06 15:07:51,652 9nineM INFO Train Epoch: 120 [58%]
2023-02-06 15:07:51,652 9nineM INFO [2.500098466873169, 2.4463696479797363, 5.057762145996094, 19.23154640197754, 1.7394850254058838, 1.7072340250015259, 102000, 0.00019680066401089056]
2023-02-06 15:08:24,001 9nineM INFO Saving model and optimizer state at iteration 120 to ./logs\9nineM\G_102000.pth
2023-02-06 15:08:24,697 9nineM INFO Saving model and optimizer state at iteration 120 to ./logs\9nineM\D_102000.pth
2023-02-06 15:11:08,275 9nineM INFO Train Epoch: 120 [81%]
2023-02-06 15:11:08,276 9nineM INFO [2.571516990661621, 2.3051207065582275, 3.9737179279327393, 19.891653060913086, 1.8753881454467773, 1.9612761735916138, 102200, 0.00019680066401089056]
2023-02-06 15:13:20,459 9nineM INFO ====> Epoch: 120
2023-02-06 15:14:23,344 9nineM INFO Train Epoch: 121 [5%]
2023-02-06 15:14:23,345 9nineM INFO [2.510283946990967, 2.2863705158233643, 4.1958327293396, 19.206239700317383, 1.6095335483551025, 1.7505130767822266, 102400, 0.00019677606392788917]
2023-02-06 15:14:54,450 9nineM INFO Saving model and optimizer state at iteration 121 to ./logs\9nineM\G_102400.pth
2023-02-06 15:14:55,142 9nineM INFO Saving model and optimizer state at iteration 121 to ./logs\9nineM\D_102400.pth
2023-02-06 15:17:39,837 9nineM INFO Train Epoch: 121 [28%]
2023-02-06 15:17:39,837 9nineM INFO [2.541640043258667, 2.1485772132873535, 4.516676425933838, 20.732175827026367, 1.6872812509536743, 1.5659551620483398, 102600, 0.00019677606392788917]
2023-02-06 15:20:24,949 9nineM INFO Train Epoch: 121 [52%]
2023-02-06 15:20:24,949 9nineM INFO [2.328838348388672, 2.1609835624694824, 6.217496395111084, 20.118305206298828, 1.651740550994873, 1.891235113143921, 102800, 0.00019677606392788917]
2023-02-06 15:20:57,629 9nineM INFO Saving model and optimizer state at iteration 121 to ./logs\9nineM\G_102800.pth
2023-02-06 15:20:58,321 9nineM INFO Saving model and optimizer state at iteration 121 to ./logs\9nineM\D_102800.pth
2023-02-06 15:23:43,852 9nineM INFO Train Epoch: 121 [75%]
2023-02-06 15:23:43,853 9nineM INFO [2.2651047706604004, 2.775912284851074, 5.114157676696777, 20.266437530517578, 1.821028709411621, 1.757179617881775, 103000, 0.00019677606392788917]
2023-02-06 15:26:30,090 9nineM INFO Train Epoch: 121 [98%]
2023-02-06 15:26:30,090 9nineM INFO [2.5284314155578613, 2.1871793270111084, 5.4745073318481445, 19.901260375976562, 1.8009440898895264, 1.846165418624878, 103200, 0.00019677606392788917]
2023-02-06 15:27:02,475 9nineM INFO Saving model and optimizer state at iteration 121 to ./logs\9nineM\G_103200.pth
2023-02-06 15:27:03,194 9nineM INFO Saving model and optimizer state at iteration 121 to ./logs\9nineM\D_103200.pth
2023-02-06 15:27:14,424 9nineM INFO ====> Epoch: 121
2023-02-06 15:30:18,024 9nineM INFO Train Epoch: 122 [22%]
2023-02-06 15:30:18,025 9nineM INFO [2.3980889320373535, 2.2477893829345703, 5.920403957366943, 21.125410079956055, 1.651360034942627, 1.4833674430847168, 103400, 0.00019675146691989817]
2023-02-06 15:33:03,224 9nineM INFO Train Epoch: 122 [45%]
2023-02-06 15:33:03,224 9nineM INFO [2.30232572555542, 2.4761180877685547, 6.809429168701172, 24.03131103515625, 1.5712530612945557, 1.9463590383529663, 103600, 0.00019675146691989817]
2023-02-06 15:33:34,309 9nineM INFO Saving model and optimizer state at iteration 122 to ./logs\9nineM\G_103600.pth
2023-02-06 15:33:34,996 9nineM INFO Saving model and optimizer state at iteration 122 to ./logs\9nineM\D_103600.pth
2023-02-06 15:36:21,012 9nineM INFO Train Epoch: 122 [69%]
2023-02-06 15:36:21,013 9nineM INFO [2.5232338905334473, 2.344912528991699, 4.960516452789307, 21.083236694335938, 1.7441201210021973, 1.6607543230056763, 103800, 0.00019675146691989817]
2023-02-06 15:39:05,829 9nineM INFO Train Epoch: 122 [92%]
2023-02-06 15:39:05,829 9nineM INFO [2.47275710105896, 2.1884095668792725, 5.5966010093688965, 21.980180740356445, 1.6928645372390747, 2.009143352508545, 104000, 0.00019675146691989817]
2023-02-06 15:39:37,939 9nineM INFO Saving model and optimizer state at iteration 122 to ./logs\9nineM\G_104000.pth
2023-02-06 15:39:38,714 9nineM INFO Saving model and optimizer state at iteration 122 to ./logs\9nineM\D_104000.pth
2023-02-06 15:40:33,552 9nineM INFO ====> Epoch: 122
2023-02-06 15:42:55,043 9nineM INFO Train Epoch: 123 [16%]
2023-02-06 15:42:55,044 9nineM INFO [2.498145580291748, 2.2360188961029053, 5.111078262329102, 19.09475326538086, 1.7608081102371216, 1.4617615938186646, 104200, 0.00019672687298653317]
2023-02-06 15:45:40,140 9nineM INFO Train Epoch: 123 [39%]
2023-02-06 15:45:40,141 9nineM INFO [2.4925827980041504, 2.1025991439819336, 4.783213138580322, 19.508392333984375, 1.7997462749481201, 1.593095302581787, 104400, 0.00019672687298653317]
2023-02-06 15:46:11,404 9nineM INFO Saving model and optimizer state at iteration 123 to ./logs\9nineM\G_104400.pth
2023-02-06 15:46:12,095 9nineM INFO Saving model and optimizer state at iteration 123 to ./logs\9nineM\D_104400.pth
2023-02-06 15:48:57,344 9nineM INFO Train Epoch: 123 [63%]
2023-02-06 15:48:57,345 9nineM INFO [2.4662418365478516, 2.7075507640838623, 6.420268535614014, 22.104938507080078, 1.8007514476776123, 1.8012120723724365, 104600, 0.00019672687298653317]
2023-02-06 15:51:42,027 9nineM INFO Train Epoch: 123 [86%]
2023-02-06 15:51:42,028 9nineM INFO [2.616326093673706, 2.269937038421631, 4.204921722412109, 20.067710876464844, 1.6697479486465454, 1.74994957447052, 104800, 0.00019672687298653317]
2023-02-06 15:52:13,001 9nineM INFO Saving model and optimizer state at iteration 123 to ./logs\9nineM\G_104800.pth
2023-02-06 15:52:13,679 9nineM INFO Saving model and optimizer state at iteration 123 to ./logs\9nineM\D_104800.pth
2023-02-06 15:53:51,452 9nineM INFO ====> Epoch: 123
2023-02-06 15:55:28,143 9nineM INFO Train Epoch: 124 [9%]
2023-02-06 15:55:28,143 9nineM INFO [2.438673257827759, 2.386467695236206, 6.2910895347595215, 22.673343658447266, 1.7006206512451172, 1.5440673828125, 105000, 0.00019670228212740986]
2023-02-06 15:58:12,658 9nineM INFO Train Epoch: 124 [33%]
2023-02-06 15:58:12,659 9nineM INFO [2.281498670578003, 2.406327724456787, 6.589284420013428, 22.119091033935547, 1.9388227462768555, 1.598183274269104, 105200, 0.00019670228212740986]
2023-02-06 15:58:44,440 9nineM INFO Saving model and optimizer state at iteration 124 to ./logs\9nineM\G_105200.pth
2023-02-06 15:58:45,132 9nineM INFO Saving model and optimizer state at iteration 124 to ./logs\9nineM\D_105200.pth
2023-02-06 16:01:30,510 9nineM INFO Train Epoch: 124 [56%]
2023-02-06 16:01:30,511 9nineM INFO [2.3354380130767822, 2.402249336242676, 7.290963172912598, 23.93175506591797, 1.6598782539367676, 1.8917102813720703, 105400, 0.00019670228212740986]
2023-02-06 16:04:16,120 9nineM INFO Train Epoch: 124 [80%]
2023-02-06 16:04:16,121 9nineM INFO [2.357271432876587, 2.5641093254089355, 6.540933132171631, 23.41145133972168, 1.8118276596069336, 1.4825334548950195, 105600, 0.00019670228212740986]
2023-02-06 16:04:47,242 9nineM INFO Saving model and optimizer state at iteration 124 to ./logs\9nineM\G_105600.pth
2023-02-06 16:04:47,923 9nineM INFO Saving model and optimizer state at iteration 124 to ./logs\9nineM\D_105600.pth
2023-02-06 16:07:10,698 9nineM INFO ====> Epoch: 124
2023-02-06 16:08:03,503 9nineM INFO Train Epoch: 125 [3%]
2023-02-06 16:08:03,503 9nineM INFO [2.448438882827759, 2.445228099822998, 5.618696212768555, 20.60164451599121, 1.66410231590271, 1.615474820137024, 105800, 0.00019667769434214392]
2023-02-06 16:10:49,168 9nineM INFO Train Epoch: 125 [27%]
2023-02-06 16:10:49,168 9nineM INFO [2.325075626373291, 2.5221643447875977, 5.33622932434082, 20.46728515625, 1.6575069427490234, 1.6003532409667969, 106000, 0.00019667769434214392]
2023-02-06 16:11:21,217 9nineM INFO Saving model and optimizer state at iteration 125 to ./logs\9nineM\G_106000.pth
2023-02-06 16:11:21,902 9nineM INFO Saving model and optimizer state at iteration 125 to ./logs\9nineM\D_106000.pth
2023-02-06 16:14:07,608 9nineM INFO Train Epoch: 125 [50%]
2023-02-06 16:14:07,609 9nineM INFO [2.4673702716827393, 2.565077066421509, 6.060758590698242, 23.33299446105957, 1.8389701843261719, 1.6925863027572632, 106200, 0.00019667769434214392]
2023-02-06 16:16:53,934 9nineM INFO Train Epoch: 125 [74%]
2023-02-06 16:16:53,934 9nineM INFO [2.4451231956481934, 2.3460519313812256, 4.507089138031006, 17.921092987060547, 1.7477185726165771, 1.6921159029006958, 106400, 0.00019667769434214392]
2023-02-06 16:17:26,437 9nineM INFO Saving model and optimizer state at iteration 125 to ./logs\9nineM\G_106400.pth
2023-02-06 16:17:27,130 9nineM INFO Saving model and optimizer state at iteration 125 to ./logs\9nineM\D_106400.pth
2023-02-06 16:20:12,115 9nineM INFO Train Epoch: 125 [97%]
2023-02-06 16:20:12,115 9nineM INFO [2.3526041507720947, 2.144291639328003, 5.205575466156006, 19.205556869506836, 1.7281032800674438, 1.7087838649749756, 106600, 0.00019667769434214392]
2023-02-06 16:20:33,330 9nineM INFO ====> Epoch: 125
2023-02-06 16:23:29,219 9nineM INFO Train Epoch: 126 [21%]
2023-02-06 16:23:29,219 9nineM INFO [2.557781457901001, 2.014836311340332, 4.775179862976074, 17.935400009155273, 1.715360164642334, 1.7885620594024658, 106800, 0.00019665310963035113]
2023-02-06 16:24:00,707 9nineM INFO Saving model and optimizer state at iteration 126 to ./logs\9nineM\G_106800.pth
2023-02-06 16:24:01,491 9nineM INFO Saving model and optimizer state at iteration 126 to ./logs\9nineM\D_106800.pth
2023-02-06 16:26:46,610 9nineM INFO Train Epoch: 126 [44%]
2023-02-06 16:26:46,610 9nineM INFO [2.5940823554992676, 2.119807720184326, 5.177199840545654, 22.355192184448242, 1.7283027172088623, 2.107990026473999, 107000, 0.00019665310963035113]
2023-02-06 16:29:31,484 9nineM INFO Train Epoch: 126 [67%]
2023-02-06 16:29:31,485 9nineM INFO [2.445890426635742, 2.2680559158325195, 5.12460470199585, 19.459461212158203, 1.7874096632003784, 1.5999054908752441, 107200, 0.00019665310963035113]
2023-02-06 16:30:03,402 9nineM INFO Saving model and optimizer state at iteration 126 to ./logs\9nineM\G_107200.pth
2023-02-06 16:30:04,094 9nineM INFO Saving model and optimizer state at iteration 126 to ./logs\9nineM\D_107200.pth
2023-02-06 16:32:49,551 9nineM INFO Train Epoch: 126 [91%]
2023-02-06 16:32:49,552 9nineM INFO [2.4641480445861816, 2.220811605453491, 5.251368045806885, 20.558815002441406, 1.601214051246643, 1.5639407634735107, 107400, 0.00019665310963035113]
2023-02-06 16:33:54,242 9nineM INFO ====> Epoch: 126
2023-02-06 16:36:05,336 9nineM INFO Train Epoch: 127 [14%]
2023-02-06 16:36:05,337 9nineM INFO [1.9362939596176147, 3.120637893676758, 8.201459884643555, 25.22907066345215, 1.7208821773529053, 1.6794835329055786, 107600, 0.00019662852799164733]
2023-02-06 16:36:37,122 9nineM INFO Saving model and optimizer state at iteration 127 to ./logs\9nineM\G_107600.pth
2023-02-06 16:36:37,809 9nineM INFO Saving model and optimizer state at iteration 127 to ./logs\9nineM\D_107600.pth
2023-02-06 16:39:23,674 9nineM INFO Train Epoch: 127 [38%]
2023-02-06 16:39:23,675 9nineM INFO [2.6253600120544434, 2.2207937240600586, 5.682074546813965, 22.05364227294922, 1.7517821788787842, 1.6732871532440186, 107800, 0.00019662852799164733]
2023-02-06 16:42:08,220 9nineM INFO Train Epoch: 127 [61%]
2023-02-06 16:42:08,221 9nineM INFO [2.2905819416046143, 2.337268114089966, 6.093254089355469, 21.193681716918945, 1.7052127122879028, 1.2583754062652588, 108000, 0.00019662852799164733]
2023-02-06 16:42:39,774 9nineM INFO Saving model and optimizer state at iteration 127 to ./logs\9nineM\G_108000.pth
2023-02-06 16:42:40,471 9nineM INFO Saving model and optimizer state at iteration 127 to ./logs\9nineM\D_108000.pth
2023-02-06 16:45:26,187 9nineM INFO Train Epoch: 127 [85%]
2023-02-06 16:45:26,187 9nineM INFO [2.3456192016601562, 2.675173044204712, 7.440110683441162, 22.693382263183594, 1.7892179489135742, 1.4919089078903198, 108200, 0.00019662852799164733]
2023-02-06 16:47:14,916 9nineM INFO ====> Epoch: 127
2023-02-06 16:48:43,682 9nineM INFO Train Epoch: 128 [8%]
2023-02-06 16:48:43,683 9nineM INFO [2.614778995513916, 2.1944501399993896, 4.002857208251953, 18.55801010131836, 1.7237768173217773, 1.4934300184249878, 108400, 0.00019660394942564837]
2023-02-06 16:49:15,370 9nineM INFO Saving model and optimizer state at iteration 128 to ./logs\9nineM\G_108400.pth
2023-02-06 16:49:16,058 9nineM INFO Saving model and optimizer state at iteration 128 to ./logs\9nineM\D_108400.pth
2023-02-06 16:52:01,377 9nineM INFO Train Epoch: 128 [32%]
2023-02-06 16:52:01,378 9nineM INFO [2.3290157318115234, 2.4676098823547363, 5.933804988861084, 21.577899932861328, 1.8265401124954224, 1.89597487449646, 108600, 0.00019660394942564837]
2023-02-06 16:54:47,001 9nineM INFO Train Epoch: 128 [55%]
2023-02-06 16:54:47,002 9nineM INFO [2.540832996368408, 2.246537208557129, 4.1585917472839355, 18.283985137939453, 1.700262188911438, 1.7168816328048706, 108800, 0.00019660394942564837]
2023-02-06 16:55:19,135 9nineM INFO Saving model and optimizer state at iteration 128 to ./logs\9nineM\G_108800.pth
2023-02-06 16:55:19,944 9nineM INFO Saving model and optimizer state at iteration 128 to ./logs\9nineM\D_108800.pth
2023-02-06 16:58:05,218 9nineM INFO Train Epoch: 128 [78%]
2023-02-06 16:58:05,218 9nineM INFO [2.343088150024414, 2.3620457649230957, 6.226370334625244, 21.107290267944336, 1.7152656316757202, 1.6601958274841309, 109000, 0.00019660394942564837]
2023-02-06 17:00:36,881 9nineM INFO ====> Epoch: 128
2023-02-06 17:01:20,561 9nineM INFO Train Epoch: 129 [2%]
2023-02-06 17:01:20,561 9nineM INFO [2.516071319580078, 2.467613935470581, 4.537166118621826, 19.915565490722656, 1.7546274662017822, 1.5628968477249146, 109200, 0.00019657937393197016]
2023-02-06 17:01:52,074 9nineM INFO Saving model and optimizer state at iteration 129 to ./logs\9nineM\G_109200.pth
2023-02-06 17:01:52,769 9nineM INFO Saving model and optimizer state at iteration 129 to ./logs\9nineM\D_109200.pth
2023-02-06 17:04:38,635 9nineM INFO Train Epoch: 129 [25%]
2023-02-06 17:04:38,636 9nineM INFO [2.5061702728271484, 2.3820605278015137, 5.687960624694824, 21.9094295501709, 1.6847442388534546, 1.6685965061187744, 109400, 0.00019657937393197016]
2023-02-06 17:07:23,668 9nineM INFO Train Epoch: 129 [49%]
2023-02-06 17:07:23,669 9nineM INFO [2.2507522106170654, 2.5004069805145264, 7.823785305023193, 22.741954803466797, 1.8799254894256592, 1.5477299690246582, 109600, 0.00019657937393197016]
2023-02-06 17:07:55,442 9nineM INFO Saving model and optimizer state at iteration 129 to ./logs\9nineM\G_109600.pth
2023-02-06 17:07:56,139 9nineM INFO Saving model and optimizer state at iteration 129 to ./logs\9nineM\D_109600.pth
2023-02-06 17:10:41,579 9nineM INFO Train Epoch: 129 [72%]
2023-02-06 17:10:41,580 9nineM INFO [2.576294422149658, 2.466991901397705, 5.959920883178711, 19.854829788208008, 1.6014974117279053, 1.8656115531921387, 109800, 0.00019657937393197016]
2023-02-06 17:13:26,784 9nineM INFO Train Epoch: 129 [96%]
2023-02-06 17:13:26,784 9nineM INFO [2.1566967964172363, 2.796489953994751, 8.104927062988281, 25.290363311767578, 1.677327036857605, 1.7374876737594604, 110000, 0.00019657937393197016]
2023-02-06 17:13:59,809 9nineM INFO Saving model and optimizer state at iteration 129 to ./logs\9nineM\G_110000.pth
2023-02-06 17:14:00,551 9nineM INFO Saving model and optimizer state at iteration 129 to ./logs\9nineM\D_110000.pth
2023-02-06 17:14:32,121 9nineM INFO ====> Epoch: 129
2023-02-06 17:17:17,773 9nineM INFO Train Epoch: 130 [19%]
2023-02-06 17:17:17,774 9nineM INFO [2.3088245391845703, 2.8287353515625, 6.850808143615723, 22.376914978027344, 1.720123529434204, 1.552506923675537, 110200, 0.00019655480151022865]
2023-02-06 17:20:04,569 9nineM INFO Train Epoch: 130 [43%]
2023-02-06 17:20:04,570 9nineM INFO [2.5641283988952637, 2.157201051712036, 6.115917682647705, 20.03248405456543, 1.7070456743240356, 1.195562720298767, 110400, 0.00019655480151022865]
2023-02-06 17:20:38,558 9nineM INFO Saving model and optimizer state at iteration 130 to ./logs\9nineM\G_110400.pth
2023-02-06 17:20:39,287 9nineM INFO Saving model and optimizer state at iteration 130 to ./logs\9nineM\D_110400.pth
2023-02-06 17:23:26,196 9nineM INFO Train Epoch: 130 [66%]
2023-02-06 17:23:26,196 9nineM INFO [2.4797720909118652, 2.3528714179992676, 6.306701183319092, 20.948516845703125, 1.6772387027740479, 1.6101850271224976, 110600, 0.00019655480151022865]
2023-02-06 17:26:11,355 9nineM INFO Train Epoch: 130 [89%]
2023-02-06 17:26:11,356 9nineM INFO [2.730914831161499, 1.92982816696167, 3.5945303440093994, 16.298423767089844, 1.6480116844177246, 1.6665343046188354, 110800, 0.00019655480151022865]
2023-02-06 17:26:43,293 9nineM INFO Saving model and optimizer state at iteration 130 to ./logs\9nineM\G_110800.pth
2023-02-06 17:26:44,109 9nineM INFO Saving model and optimizer state at iteration 130 to ./logs\9nineM\D_110800.pth
2023-02-06 17:27:58,664 9nineM INFO ====> Epoch: 130
2023-02-06 17:30:00,534 9nineM INFO Train Epoch: 131 [13%]
2023-02-06 17:30:00,535 9nineM INFO [2.685152053833008, 2.0549843311309814, 5.298932075500488, 20.420000076293945, 1.5637484788894653, 1.7170839309692383, 111000, 0.00019653023216003985]
2023-02-06 17:32:47,125 9nineM INFO Train Epoch: 131 [36%]
2023-02-06 17:32:47,126 9nineM INFO [2.3477985858917236, 2.4249043464660645, 5.269962310791016, 20.208158493041992, 1.755613923072815, 1.6324561834335327, 111200, 0.00019653023216003985]
2023-02-06 17:33:18,966 9nineM INFO Saving model and optimizer state at iteration 131 to ./logs\9nineM\G_111200.pth
2023-02-06 17:33:19,669 9nineM INFO Saving model and optimizer state at iteration 131 to ./logs\9nineM\D_111200.pth
2023-02-06 17:36:06,284 9nineM INFO Train Epoch: 131 [60%]
2023-02-06 17:36:06,285 9nineM INFO [2.260867118835449, 2.4859883785247803, 6.8141188621521, 21.756410598754883, 1.6294654607772827, 1.3097648620605469, 111400, 0.00019653023216003985]
2023-02-06 17:38:51,314 9nineM INFO Train Epoch: 131 [83%]
2023-02-06 17:38:51,315 9nineM INFO [2.321812152862549, 2.5985615253448486, 5.669463157653809, 20.308734893798828, 1.6229777336120605, 1.3409274816513062, 111600, 0.00019653023216003985]
2023-02-06 17:39:23,773 9nineM INFO Saving model and optimizer state at iteration 131 to ./logs\9nineM\G_111600.pth
2023-02-06 17:39:24,562 9nineM INFO Saving model and optimizer state at iteration 131 to ./logs\9nineM\D_111600.pth
2023-02-06 17:41:23,863 9nineM INFO ====> Epoch: 131
2023-02-06 17:42:41,670 9nineM INFO Train Epoch: 132 [7%]
2023-02-06 17:42:41,671 9nineM INFO [2.269984006881714, 2.3962604999542236, 6.287789821624756, 22.223419189453125, 1.7952971458435059, 1.4477769136428833, 111800, 0.00019650566588101984]
2023-02-06 17:45:27,035 9nineM INFO Train Epoch: 132 [30%]
2023-02-06 17:45:27,036 9nineM INFO [2.577596664428711, 2.2556490898132324, 4.243098735809326, 20.36516761779785, 1.7083340883255005, 1.563464641571045, 112000, 0.00019650566588101984]
2023-02-06 17:46:00,148 9nineM INFO Saving model and optimizer state at iteration 132 to ./logs\9nineM\G_112000.pth
2023-02-06 17:46:00,859 9nineM INFO Saving model and optimizer state at iteration 132 to ./logs\9nineM\D_112000.pth
2023-02-06 17:48:46,899 9nineM INFO Train Epoch: 132 [54%]
2023-02-06 17:48:46,900 9nineM INFO [2.3364675045013428, 2.4299540519714355, 5.966333866119385, 21.793182373046875, 1.6928566694259644, 1.7479687929153442, 112200, 0.00019650566588101984]
2023-02-06 17:51:32,487 9nineM INFO Train Epoch: 132 [77%]
2023-02-06 17:51:32,488 9nineM INFO [2.6574320793151855, 2.086085796356201, 5.10287618637085, 21.37195587158203, 1.6615488529205322, 1.5229588747024536, 112400, 0.00019650566588101984]
2023-02-06 17:52:06,033 9nineM INFO Saving model and optimizer state at iteration 132 to ./logs\9nineM\G_112400.pth
2023-02-06 17:52:06,732 9nineM INFO Saving model and optimizer state at iteration 132 to ./logs\9nineM\D_112400.pth
2023-02-06 17:54:50,218 9nineM INFO ====> Epoch: 132
2023-02-06 17:55:25,129 9nineM INFO Train Epoch: 133 [0%]
2023-02-06 17:55:25,130 9nineM INFO [2.3558051586151123, 2.649467945098877, 6.2440876960754395, 21.53974723815918, 1.7715338468551636, 1.7623863220214844, 112600, 0.0001964811026727847]
2023-02-06 17:58:11,248 9nineM INFO Train Epoch: 133 [24%]
2023-02-06 17:58:11,248 9nineM INFO [2.2452285289764404, 2.6025023460388184, 5.581013202667236, 19.501935958862305, 1.7821968793869019, 1.6202852725982666, 112800, 0.0001964811026727847]
2023-02-06 17:58:43,256 9nineM INFO Saving model and optimizer state at iteration 133 to ./logs\9nineM\G_112800.pth
2023-02-06 17:58:43,945 9nineM INFO Saving model and optimizer state at iteration 133 to ./logs\9nineM\D_112800.pth
2023-02-06 18:01:31,218 9nineM INFO Train Epoch: 133 [47%]
2023-02-06 18:01:31,219 9nineM INFO [2.321185827255249, 2.5362143516540527, 5.924492359161377, 22.061859130859375, 1.688535451889038, 1.394166350364685, 113000, 0.0001964811026727847]
2023-02-06 18:04:17,458 9nineM INFO Train Epoch: 133 [71%]
2023-02-06 18:04:17,459 9nineM INFO [2.319377899169922, 2.3305535316467285, 6.212714195251465, 21.521169662475586, 1.711829662322998, 1.8327008485794067, 113200, 0.0001964811026727847]
2023-02-06 18:04:49,789 9nineM INFO Saving model and optimizer state at iteration 133 to ./logs\9nineM\G_113200.pth
2023-02-06 18:04:50,480 9nineM INFO Saving model and optimizer state at iteration 133 to ./logs\9nineM\D_113200.pth
2023-02-06 18:07:35,937 9nineM INFO Train Epoch: 133 [94%]
2023-02-06 18:07:35,938 9nineM INFO [2.408998727798462, 2.5829079151153564, 7.041913986206055, 23.381765365600586, 1.790878176689148, 1.6280030012130737, 113400, 0.0001964811026727847]
2023-02-06 18:08:16,834 9nineM INFO ====> Epoch: 133
2023-02-06 18:10:51,925 9nineM INFO Train Epoch: 134 [18%]
2023-02-06 18:10:51,925 9nineM INFO [2.243528366088867, 2.692565679550171, 7.503571510314941, 22.869403839111328, 1.6828540563583374, 1.642391562461853, 113600, 0.00019645654253495058]
2023-02-06 18:11:24,191 9nineM INFO Saving model and optimizer state at iteration 134 to ./logs\9nineM\G_113600.pth
2023-02-06 18:11:24,885 9nineM INFO Saving model and optimizer state at iteration 134 to ./logs\9nineM\D_113600.pth
2023-02-06 18:14:12,477 9nineM INFO Train Epoch: 134 [41%]
2023-02-06 18:14:12,477 9nineM INFO [2.3350560665130615, 2.5503907203674316, 6.156712532043457, 22.925025939941406, 1.7280542850494385, 1.8451484441757202, 113800, 0.00019645654253495058]
2023-02-06 18:16:57,382 9nineM INFO Train Epoch: 134 [65%]
2023-02-06 18:16:57,382 9nineM INFO [2.29552960395813, 2.376685857772827, 6.592720985412598, 21.430940628051758, 1.8966145515441895, 1.5641173124313354, 114000, 0.00019645654253495058]
2023-02-06 18:17:31,183 9nineM INFO Saving model and optimizer state at iteration 134 to ./logs\9nineM\G_114000.pth
2023-02-06 18:17:31,902 9nineM INFO Saving model and optimizer state at iteration 134 to ./logs\9nineM\D_114000.pth
2023-02-06 18:20:19,220 9nineM INFO Train Epoch: 134 [88%]
2023-02-06 18:20:19,221 9nineM INFO [2.537724733352661, 2.1297531127929688, 4.756051063537598, 17.612483978271484, 1.6361194849014282, 1.7162665128707886, 114200, 0.00019645654253495058]
2023-02-06 18:21:44,252 9nineM INFO ====> Epoch: 134
2023-02-06 18:23:37,755 9nineM INFO Train Epoch: 135 [11%]
2023-02-06 18:23:37,755 9nineM INFO [2.5274243354797363, 2.2241621017456055, 4.527782917022705, 19.2587890625, 1.734229564666748, 1.5080584287643433, 114400, 0.0001964319854671337]
2023-02-06 18:24:11,163 9nineM INFO Saving model and optimizer state at iteration 135 to ./logs\9nineM\G_114400.pth
2023-02-06 18:24:11,953 9nineM INFO Saving model and optimizer state at iteration 135 to ./logs\9nineM\D_114400.pth
2023-02-06 18:26:59,118 9nineM INFO Train Epoch: 135 [35%]
2023-02-06 18:26:59,118 9nineM INFO [2.228125810623169, 2.656797170639038, 7.3901801109313965, 23.070409774780273, 1.762709379196167, 1.3937914371490479, 114600, 0.0001964319854671337]
2023-02-06 18:29:44,905 9nineM INFO Train Epoch: 135 [58%]
2023-02-06 18:29:44,905 9nineM INFO [2.4320075511932373, 2.4277989864349365, 5.85286283493042, 21.0933780670166, 1.7470276355743408, 1.7924855947494507, 114800, 0.0001964319854671337]
2023-02-06 18:30:17,356 9nineM INFO Saving model and optimizer state at iteration 135 to ./logs\9nineM\G_114800.pth
2023-02-06 18:30:18,055 9nineM INFO Saving model and optimizer state at iteration 135 to ./logs\9nineM\D_114800.pth
2023-02-06 18:33:03,621 9nineM INFO Train Epoch: 135 [82%]
2023-02-06 18:33:03,622 9nineM INFO [2.143054962158203, 2.655668258666992, 6.541446208953857, 22.054094314575195, 1.766592264175415, 1.7490730285644531, 115000, 0.0001964319854671337]
2023-02-06 18:35:12,686 9nineM INFO ====> Epoch: 135
2023-02-06 18:36:20,672 9nineM INFO Train Epoch: 136 [5%]
2023-02-06 18:36:20,673 9nineM INFO [2.2677929401397705, 2.3687334060668945, 6.2986249923706055, 20.939075469970703, 1.697746992111206, 1.8127354383468628, 115200, 0.0001964074314689503]
2023-02-06 18:36:53,092 9nineM INFO Saving model and optimizer state at iteration 136 to ./logs\9nineM\G_115200.pth
2023-02-06 18:36:53,898 9nineM INFO Saving model and optimizer state at iteration 136 to ./logs\9nineM\D_115200.pth
2023-02-06 18:39:41,740 9nineM INFO Train Epoch: 136 [29%]
2023-02-06 18:39:41,741 9nineM INFO [2.3394155502319336, 2.6773366928100586, 6.513527870178223, 22.537111282348633, 1.6556422710418701, 1.5885149240493774, 115400, 0.0001964074314689503]
2023-02-06 18:42:27,365 9nineM INFO Train Epoch: 136 [52%]
2023-02-06 18:42:27,365 9nineM INFO [2.4375386238098145, 2.6626136302948, 5.572325229644775, 19.88722038269043, 1.7356163263320923, 2.05466365814209, 115600, 0.0001964074314689503]
2023-02-06 18:42:59,269 9nineM INFO Saving model and optimizer state at iteration 136 to ./logs\9nineM\G_115600.pth
2023-02-06 18:42:59,970 9nineM INFO Saving model and optimizer state at iteration 136 to ./logs\9nineM\D_115600.pth
2023-02-06 18:45:45,968 9nineM INFO Train Epoch: 136 [76%]
2023-02-06 18:45:45,969 9nineM INFO [2.44460391998291, 2.4632773399353027, 5.772214889526367, 21.629426956176758, 1.7663202285766602, 2.0208678245544434, 115800, 0.0001964074314689503]
2023-02-06 18:48:30,844 9nineM INFO Train Epoch: 136 [99%]
2023-02-06 18:48:30,845 9nineM INFO [2.4162187576293945, 2.2298314571380615, 5.3683671951293945, 21.47169303894043, 1.6094458103179932, 1.774322748184204, 116000, 0.0001964074314689503]
2023-02-06 18:49:03,370 9nineM INFO Saving model and optimizer state at iteration 136 to ./logs\9nineM\G_116000.pth
2023-02-12 04:37:29,614 9nineM INFO {'train': {'log_interval': 200, 'eval_interval': 400, 'seed': 1234, 'epochs': 1000, 'learning_rate': 0.0002, 'betas': [0.8, 0.99], 'eps': 1e-09, 'batch_size': 16, 'fp16_run': False, 'lr_decay': 0.999875, 'segment_size': 8192, 'init_lr_ratio': 1, 'warmup_epochs': 0, 'c_mel': 45, 'c_kl': 1.0}, 'data': {'training_files': 'filelists/9nine_multi/filelists/MultiNoHaru_train.txt.cleaned', 'validation_files': 'filelists/9nine_multi/filelists/MultiNoHaru_valid.txt.cleaned', 'text_cleaners': ['japanese_cleaners2'], 'max_wav_value': 32768.0, 'sampling_rate': 22050, 'filter_length': 1024, 'hop_length': 256, 'win_length': 1024, 'n_mel_channels': 80, 'mel_fmin': 0.0, 'mel_fmax': None, 'add_blank': True, 'n_speakers': 5, 'cleaned_text': True}, 'model': {'inter_channels': 192, 'hidden_channels': 192, 'filter_channels': 768, 'n_heads': 2, 'n_layers': 6, 'kernel_size': 3, 'p_dropout': 0.1, 'resblock': '1', 'resblock_kernel_sizes': [3, 7, 11], 'resblock_dilation_sizes': [[1, 3, 5], [1, 3, 5], [1, 3, 5]], 'upsample_rates': [8, 8, 2, 2], 'upsample_initial_channel': 512, 'upsample_kernel_sizes': [16, 16, 4, 4], 'n_layers_q': 3, 'use_spectral_norm': False, 'gin_channels': 256}, 'model_dir': './logs\\9nineM', 'ckptG': None, 'ckptD': None}
2023-02-12 04:38:05,317 9nineM INFO Train Epoch: 1 [0%]
2023-02-12 04:38:05,318 9nineM INFO [6.0741496086120605, 4.674299240112305, 0.37357205152511597, 100.2466049194336, 1.9271368980407715, 206.81471252441406, 0, 0.0002]
2023-02-12 04:38:26,136 9nineM INFO Saving model and optimizer state at iteration 1 to ./logs\9nineM\G_0.pth
2023-02-12 04:38:26,864 9nineM INFO Saving model and optimizer state at iteration 1 to ./logs\9nineM\D_0.pth
2023-02-12 04:41:31,297 9nineM INFO Train Epoch: 1 [23%]
2023-02-12 04:41:31,298 9nineM INFO [1.8814308643341064, 3.0982019901275635, 5.636070251464844, 43.64947509765625, 1.9057422876358032, 1.7150471210479736, 200, 0.0002]
2023-02-12 04:44:25,929 9nineM INFO Train Epoch: 1 [47%]
2023-02-12 04:44:25,930 9nineM INFO [2.2280142307281494, 2.190523386001587, 3.9681339263916016, 37.336788177490234, 1.9838364124298096, 1.3402962684631348, 400, 0.0002]
2023-02-12 04:44:48,338 9nineM INFO Saving model and optimizer state at iteration 1 to ./logs\9nineM\G_400.pth
2023-02-12 04:44:49,018 9nineM INFO Saving model and optimizer state at iteration 1 to ./logs\9nineM\D_400.pth
2023-02-12 04:47:41,530 9nineM INFO Train Epoch: 1 [70%]
2023-02-12 04:47:41,530 9nineM INFO [2.1953139305114746, 2.7316408157348633, 4.507357597351074, 36.56730651855469, 2.1782724857330322, 1.5445265769958496, 600, 0.0002]
2023-02-12 04:50:29,804 9nineM INFO Train Epoch: 1 [94%]
2023-02-12 04:50:29,804 9nineM INFO [1.9672067165374756, 2.559593677520752, 4.635627746582031, 34.88198471069336, 2.085712432861328, 1.6550763845443726, 800, 0.0002]
2023-02-12 04:50:50,643 9nineM INFO Saving model and optimizer state at iteration 1 to ./logs\9nineM\G_800.pth
2023-02-12 04:50:51,384 9nineM INFO Saving model and optimizer state at iteration 1 to ./logs\9nineM\D_800.pth
2023-02-12 04:51:35,762 9nineM INFO ====> Epoch: 1
2023-02-12 04:53:58,110 9nineM INFO Train Epoch: 2 [17%]
2023-02-12 04:53:58,110 9nineM INFO [2.1823103427886963, 2.9389171600341797, 4.653263568878174, 33.464107513427734, 2.0744001865386963, 1.5382697582244873, 1000, 0.000199975]
2023-02-12 04:56:43,337 9nineM INFO Train Epoch: 2 [41%]
2023-02-12 04:56:43,337 9nineM INFO [2.1907596588134766, 2.2755777835845947, 4.492942810058594, 33.94969940185547, 2.1231160163879395, 1.3922680616378784, 1200, 0.000199975]
2023-02-12 04:57:03,865 9nineM INFO Saving model and optimizer state at iteration 2 to ./logs\9nineM\G_1200.pth
2023-02-12 04:57:04,477 9nineM INFO Saving model and optimizer state at iteration 2 to ./logs\9nineM\D_1200.pth
2023-02-12 04:59:49,597 9nineM INFO Train Epoch: 2 [64%]
2023-02-12 04:59:49,598 9nineM INFO [2.227170467376709, 2.6497111320495605, 4.81112003326416, 32.33095932006836, 1.9701876640319824, 1.3651307821273804, 1400, 0.000199975]
2023-02-12 05:02:37,286 9nineM INFO Train Epoch: 2 [88%]
2023-02-12 05:02:37,286 9nineM INFO [2.4975926876068115, 2.5202813148498535, 3.5076069831848145, 36.55912399291992, 2.0596163272857666, 1.4623568058013916, 1600, 0.000199975]
2023-02-12 05:02:57,631 9nineM INFO Saving model and optimizer state at iteration 2 to ./logs\9nineM\G_1600.pth
2023-02-12 05:02:58,242 9nineM INFO Saving model and optimizer state at iteration 2 to ./logs\9nineM\D_1600.pth
2023-02-12 05:04:25,186 9nineM INFO ====> Epoch: 2
2023-02-12 05:06:03,591 9nineM INFO Train Epoch: 3 [11%]
2023-02-12 05:06:03,592 9nineM INFO [2.7553861141204834, 2.0805437564849854, 2.5315897464752197, 28.083301544189453, 2.1212515830993652, 1.276499629020691, 1800, 0.000199950003125]
2023-02-12 14:23:49,269 9nineM INFO Train Epoch: 3 [34%]
2023-02-12 14:23:49,279 9nineM INFO [2.103278160095215, 2.5340070724487305, 4.954019546508789, 36.43415832519531, 2.1033124923706055, 1.9096229076385498, 2000, 0.000199950003125]
2023-02-12 14:24:11,096 9nineM INFO Saving model and optimizer state at iteration 3 to ./logs\9nineM\G_2000.pth
2023-02-12 14:24:11,851 9nineM INFO Saving model and optimizer state at iteration 3 to ./logs\9nineM\D_2000.pth
|