import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed, pipeline #https://huggingface.co/spaces/lvwerra/codeparrot-generation title = "SantaCoder+Stack Exchange Generator 🎅🏾+📚" description = "This is a subspace to make code generation with [SantaCoder](https://huggingface.co/bigcode/santacoder) fine-tuned on [Stack Exchange](https://huggingface.co/datasets/ArmelR/stack-exchange-instruction). Feel free to check this larger [space](https://huggingface.co/spaces/loubnabnl/Code-generation-models-v1) for more information about code generation with 🤗." example = [ ["def print_hello_world():", 8, 0.6, 42], ["def get_file_size(filepath):", 40, 0.6, 42], ["def count_lines(filename):", 40, 0.6, 42], ["def count_words(filename):", 40, 0.6, 42]] checkpoint = "ArmelR/Stack10K2048" tokenizer = AutoTokenizer.from_pretrained(checkpoint) model = AutoModelForCausalLM.from_pretrained(checkpoint, trust_remote_code=True) def code_generation(gen_prompt, max_tokens, temperature=0.6, seed=42): set_seed(seed) pipe = pipeline("text-generation", model=model, tokenizer=tokenizer) generated_text = pipe( gen_prompt, do_sample=True, top_p=0.95, temperature=temperature, max_new_tokens=max_tokens, eos_token_id=tokenizer.eos_token_id )[0]['generated_text'] return generated_text iface = gr.Interface( fn=code_generation, inputs=[ gr.Textbox(lines=10, label="Input code"), gr.inputs.Slider( minimum=8, maximum=256, step=1, default=8, label="Number of tokens to generate", ), gr.inputs.Slider( minimum=0, maximum=2, step=0.1, default=0.6, label="Temperature", ), gr.inputs.Slider( minimum=0, maximum=1000, step=1, default=42, label="Random seed to use for the generation" ) ], outputs=gr.Textbox(label="Predicted code", lines=10), examples=example, layout="horizontal", theme="peach", description=description, title=title ) iface.launch()