File size: 14,201 Bytes
a4bc2b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7bf4ad
a4bc2b0
 
 
 
 
47d2cff
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
#!/usr/bin/env python

from __future__ import annotations

import argparse
import pathlib
import torch
import gradio as gr

from vtoonify_model import Model

def parse_args() -> argparse.Namespace:
    parser = argparse.ArgumentParser()
    parser.add_argument('--device', type=str, default='cpu')
    parser.add_argument('--theme', type=str)
    parser.add_argument('--share', action='store_true')
    parser.add_argument('--port', type=int)
    parser.add_argument('--disable-queue',
                        dest='enable_queue',
                        action='store_false')
    return parser.parse_args()

DESCRIPTION = '''
<div align=center>
<h1 style="font-weight: 900; margin-bottom: 7px;">
   Portrait Style Transfer with <a href="https://github.com/williamyang1991/VToonify">VToonify</a>
</h1>
<video id="video" width=50% controls="" preload="none" poster="https://repository-images.githubusercontent.com/534480768/53715b0f-a2df-4daa-969c-0e74c102d339">
<source id="mp4" src="https://user-images.githubusercontent.com/18130694/189483939-0fc4a358-fb34-43cc-811a-b22adb820d57.mp4
" type="video/mp4">
</videos></div>
'''
FOOTER = '<div align=center><img id="visitor-badge" alt="visitor badge" src="https://visitor-badge.laobi.icu/badge?page_id=williamyang1991/VToonify" /></div>'

ARTICLE = r"""
If VToonify is helpful, please help to ⭐ the <a href='https://github.com/williamyang1991/VToonify' target='_blank'>Github Repo</a>. Thanks! 
[![GitHub Stars](https://img.shields.io/github/stars/williamyang1991/VToonify?style=social)](https://github.com/williamyang1991/VToonify)
---
πŸ“ **Citation**
If our work is useful for your research, please consider citing:
```bibtex
@article{yang2022Vtoonify,
  title={VToonify: Controllable High-Resolution Portrait Video Style Transfer},
  author={Yang, Shuai and Jiang, Liming and Liu, Ziwei and Loy, Chen Change},
  journal={ACM Transactions on Graphics (TOG)},
  volume={41},
  number={6},
  articleno={203},
  pages={1--15},
  year={2022},
  publisher={ACM New York, NY, USA},
  doi={10.1145/3550454.3555437},
}
```
πŸ“‹ **License**
This project is licensed under <a rel="license" href="https://github.com/williamyang1991/VToonify/blob/main/LICENSE.md">S-Lab License 1.0</a>. 
Redistribution and use for non-commercial purposes should follow this license.
πŸ“§ **Contact**
If you have any questions, please feel free to reach me out at <b>[email protected]</b>.
"""

def update_slider(choice: str) -> dict:
    if type(choice) == str and choice.endswith('-d'):
        return gr.Slider.update(maximum=1, minimum=0, value=0.5)
    else:
        return gr.Slider.update(maximum=0.5, minimum=0.5, value=0.5)

def set_example_image(example: list) -> dict:
    return gr.Image.update(value=example[0])

def set_example_video(example: list) -> dict:
    return gr.Video.update(value=example[0]), 
   
sample_video = ['./vtoonify/data/529_2.mp4','./vtoonify/data/7154235.mp4','./vtoonify/data/651.mp4','./vtoonify/data/908.mp4']
sample_vid = gr.Video(label='Video file')  #for displaying the example
example_videos = gr.components.Dataset(components=[sample_vid], samples=[[path] for path in sample_video], type='values', label='Video Examples')     

def main():
    args = parse_args()
    args.device = 'cuda' if torch.cuda.is_available() else 'cpu'
    print('*** Now using %s.'%(args.device))
    model = Model(device=args.device)
    
    with gr.Blocks(theme=args.theme, css='style.css') as demo:
        
        gr.Markdown(DESCRIPTION)
    
        with gr.Box():
            gr.Markdown('''## Step 1(Select Style)
    - Select **Style Type**.
        - Type with `-d` means it supports style degree adjustment.
        - Type without `-d` usually has better toonification quality.
    ''')
            with gr.Row():
                with gr.Column():
                    gr.Markdown('''Select Style Type''')  
                    with gr.Row():
                        style_type = gr.Radio(label='Style Type',
                                              choices=['cartoon1','cartoon1-d','cartoon2-d','cartoon3-d',
                                                       'cartoon4','cartoon4-d','cartoon5-d','comic1-d',
                                                       'comic2-d','arcane1','arcane1-d','arcane2', 'arcane2-d',
                                                       'caricature1','caricature2','pixar','pixar-d',
                                                       'illustration1-d', 'illustration2-d', 'illustration3-d', 'illustration4-d', 'illustration5-d', 
                                                      ]
                                             )   
                        exstyle = gr.Variable()
                    with gr.Row():
                        loadmodel_button = gr.Button('Load Model')
                    with gr.Row():
                        load_info = gr.Textbox(label='Process Information', interactive=False, value='No model loaded.')
                with gr.Column():
                    gr.Markdown('''Reference Styles
    ![example](https://raw.githubusercontent.com/williamyang1991/tmpfile/master/vtoonify/style.jpg)''')   


        with gr.Box():
            gr.Markdown('''## Step 2 (Preprocess Input Image / Video)
    - Drop an image/video containing a near-frontal face to the **Input Image**/**Input Video**.
    - Hit the **Rescale Image**/**Rescale First Frame** button.
        - Rescale the input to make it best fit the model.
        - The final image result will be based on this **Rescaled Face**. Use padding parameters to adjust the background space.
        - **<font color=red>Solution to [Error: no face detected!]</font>**: VToonify uses dlib.get_frontal_face_detector but sometimes it fails to detect a face. You can try several times or use other images until a face is detected, then switch back to the original image.
    - For video input, further hit the **Rescale Video** button.
        - The final video result will be based on this **Rescaled Video**. To avoid overload, video is cut to at most **100/300** frames for CPU/GPU, respectively.
    ''')
            with gr.Row():
                with gr.Box():
                    with gr.Column():
                        gr.Markdown('''Choose the padding parameters.
        ![example](https://raw.githubusercontent.com/williamyang1991/tmpfile/master/vtoonify/rescale.jpg)''')
                        with gr.Row():
                            top = gr.Slider(128,
                                            256,
                                            value=200,
                                            step=8,
                                            label='top')
                        with gr.Row():
                            bottom = gr.Slider(128,
                                            256,
                                            value=200,
                                            step=8,
                                            label='bottom')
                        with gr.Row():
                            left = gr.Slider(128,
                                            256,
                                            value=200,
                                            step=8,
                                            label='left')
                        with gr.Row():
                            right = gr.Slider(128,
                                            256,
                                            value=200,
                                            step=8,
                                            label='right')     
                with gr.Box():
                    with gr.Column():
                        gr.Markdown('''Input''')                
                        with gr.Row():
                            input_image = gr.Image(label='Input Image',
                                                           type='filepath')
                        with gr.Row():
                            preprocess_image_button = gr.Button('Rescale Image') 
                        with gr.Row():
                            input_video = gr.Video(label='Input Video',
                                                   mirror_webcam=False,
                                                          type='filepath')  
                        with gr.Row():
                            preprocess_video0_button = gr.Button('Rescale First Frame')
                            preprocess_video1_button = gr.Button('Rescale Video')

                with gr.Box():
                    with gr.Column():
                        gr.Markdown('''View''')
                        with gr.Row():
                            input_info = gr.Textbox(label='Process Information', interactive=False, value='n.a.')
                        with gr.Row():
                            aligned_face = gr.Image(label='Rescaled Face',
                                            type='numpy',
                                            interactive=False)
                            instyle = gr.Variable()
                        with gr.Row():
                            aligned_video = gr.Video(label='Rescaled Video',
                                            type='mp4',
                                            interactive=False)  
            with gr.Row():
                with gr.Column():
                    paths = ['./vtoonify/data/pexels-andrea-piacquadio-733872.jpg','./vtoonify/data/i5R8hbZFDdc.jpg','./vtoonify/data/yRpe13BHdKw.jpg','./vtoonify/data/ILip77SbmOE.jpg','./vtoonify/data/077436.jpg','./vtoonify/data/081680.jpg']
                    example_images = gr.Dataset(components=[input_image],
                                            samples=[[path] for path in paths],
                                               label='Image Examples')
                with gr.Column():
                    #example_videos = gr.Dataset(components=[input_video], samples=[['./vtoonify/data/529.mp4']], type='values')
                    #to render video example on mouse hover/click        
                    example_videos.render()
                    #to load sample video into input_video upon clicking on it
                    def load_examples(video):  
                        #print("****** inside load_example() ******")
                        #print("in_video is : ", video[0])
                        return video[0]

                    example_videos.click(load_examples, example_videos, input_video) 

        with gr.Box():
            gr.Markdown('''## Step 3 (Generate Style Transferred Image/Video)''')
            with gr.Row():
                with gr.Column():
                    gr.Markdown('''
                        - Adjust **Style Degree**.
                        - Hit **Toonify!** to toonify one frame. Hit **VToonify!** to toonify full video.
                            - Estimated time on 1600x1440 video of 300 frames: 1 hour (CPU); 2 mins (GPU)
                        ''')
                    style_degree = gr.Slider(0,
                                             1,
                                             value=0.5,
                                             step=0.05,
                                             label='Style Degree')  
                with gr.Column():
                    gr.Markdown('''![example](https://raw.githubusercontent.com/williamyang1991/tmpfile/master/vtoonify/degree.jpg)
                        ''')  
            with gr.Row():
                output_info = gr.Textbox(label='Process Information', interactive=False, value='n.a.')
            with gr.Row():
                with gr.Column():
                    with gr.Row():
                        result_face = gr.Image(label='Result Image',
                                            type='numpy',
                                            interactive=False)
                    with gr.Row():
                        toonify_button = gr.Button('Toonify!')
                with gr.Column():
                    with gr.Row():
                        result_video = gr.Video(label='Result Video',
                                            type='mp4',
                                            interactive=False)    
                    with gr.Row():
                        vtoonify_button = gr.Button('VToonify!')
        
        gr.Markdown(ARTICLE)
        gr.Markdown(FOOTER)

        loadmodel_button.click(fn=model.load_model,
                                inputs=[style_type],
                                outputs=[exstyle, load_info])


        style_type.change(fn=update_slider,
                          inputs=style_type,
                          outputs=style_degree)

        preprocess_image_button.click(fn=model.detect_and_align_image,
                                inputs=[input_image, top, bottom, left, right],
                                outputs=[aligned_face, instyle, input_info])
        preprocess_video0_button.click(fn=model.detect_and_align_video,
                                inputs=[input_video, top, bottom, left, right],
                                outputs=[aligned_face, instyle, input_info])
        preprocess_video1_button.click(fn=model.detect_and_align_full_video,
                                inputs=[input_video, top, bottom, left, right],
                                outputs=[aligned_video, instyle, input_info])

        toonify_button.click(fn=model.image_toonify,
                                inputs=[aligned_face, instyle, exstyle, style_degree, style_type],
                                outputs=[result_face, output_info])
        vtoonify_button.click(fn=model.video_tooniy,
                                inputs=[aligned_video, instyle, exstyle, style_degree, style_type],
                                outputs=[result_video, output_info])


        example_images.click(fn=set_example_image,
                                 inputs=example_images,
                                 outputs=example_images.components)
        
    demo.launch(
        enable_queue=args.enable_queue,
        server_port=args.port,
        share=True,
    )


if __name__ == '__main__':
    main()